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Abstract2

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired3

structure is not always obtained. In this work, we report a methodology that uses a4

joint machine learning and experimental approach to obtain the optimal synthesis of5

a MOF. A synthetic conditions finder was used to derive the experimental protocols6

and a microwave based high-throughput robotic platform was used for the synthesis of7

Al-PMOF (H2TCPP[AlOH]2(DMF3(H2O)2)). Al-PMOF was previously synthesized8

using a hydrothermal reaction, which gave a low throughput yield due to its relatively9

long reaction time (16 hours). In this work, we carried out a systematic search for10

the optimal reaction conditions using a microwave assisted reaction synthesis. For this11
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search we used a genetic algorithm and we show that already in the 2nd generation12

we obtained conditions that give excellent crystallinity and yield close to 80% in much13

shorter reaction time (50 minutes). In addition, by analysing the failed and partly14

successful experiments, we could identify the most important experimental variables15

that determine the crystallinity and yield.16

Introduction17

For the last two decades, metal-organic frameworks (MOFs) have been an extensive object18

of study1–3 thanks to their high porosity4–7 and their extensive spectrum of applications,19

including gas storage and separation, sensing, catalysis and drug delivery.8–17 MOF synthe-20

sis consists of the self-assembly of the organic ligand and metal component into a periodic21

network.18 Several methods for MOF synthesis have been developed including solvothermal,22

electrochemical, mechanochemical, microwave, and ultrasound.8,16,19–21 In all these, one usu-23

ally tries to find the optimal conditions at which crystals can form. Often this requires24

finding a sweet spot where the binding of the ligand and metal node is sufficiently strong25

that a stable crystal can form, but not too strong that the system quickly forms an amor-26

phous structure which cannot be crystallized. In addition, different topologies may form22
27

depending on the synthesis conditions.2328

There are a considerable number of parameters that can influence the reaction and its29

outcome (i.e., solvents, pH, reagents concentration, reaction time, temperature, pressure,30

etc.),24,25 and the optimization of these conditions for new or established MOFs is often la-31

borious, expensive and time-consuming.26,27 While conventionally, the optimization of these32

parameters rest on the chemical intuition of individuals, novel approaches are needed to33

tackle the extensive diversity in chemistry of MOFs.28 Therefore, data-driven approaches34

have been developed to accelerate such optimization processes.29–38 Moosavi et al.29 com-35

bined a genetic algorithm (GA) with machine learning (ML) to optimise the synthesis of the36

MOFs. They illustrated their approach with the synthesis of HKUST-139 using a microwave-37
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based robotic platform, to find the synthesis conditions of HKUST-1 that yielded high quality38

crystals. This approach not only aims to find the optimal reaction conditions, but also aims39

to learn the most important experimental variables from analysing both successful, partly40

successful, and failed experiments.41

In this work, we applied the Synthetic Conditions Finder (SyCoFinder),40 which is the42

web-application based on the methodology developed by Moosavi et al.,29 to find the optimal43

synthesis conditions for Al-PMOF (H2TCPP[AlOH]2(DMF3(H2O)2)), first synthesized by44

Fateeva et al.41 Unlike HKUST-1, our knowledge of alternative synthesis conditions of Al-45

PMOF is very limited. To the best of our knowledge, to date only one synthesis condition, a46

hydrothermal reaction, has been reported.41 Unfortunately, this synthesis gives a relatively47

low yield (ca. 40%) with the reaction time of 16 hours.41 Recently, there has been a renewed48

interest in this MOF as Boyd et al.42 discovered that this material can efficiently capture CO249

from wet flue gasses. However, the low yield and relatively long reaction time of the current50

reaction is at present a bottleneck to scale-up the synthesis. It is therefore important to51

investigate whether the yield and time of the reaction can be further optimized. In addition,52

it will give us some insights whether the approach developed by Moosavi et al. can be53

extended to other MOF systems.54

Results55

Experimental variables56

The reported Al-PMOF synthesis is in pure water at a relatively high temperature (180 ºC).4157

We have carried out some attempts to synthesize Al-PMOF at a lower temperature or in pure58

dimethylformamide (DMF), which easily dissolves the ligand, but at these conditions we do59

not produce the MOF. If we repeat the synthesis in pure water, we obtained variable yields60

(40% to 90%) (Table S1). It is therefore interesting to systematically explore the synthesis61

conditions. For this purpose, we used our high-throughput microwave-based robotic platform62
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(Figure S1).63

We start our first set of experiments (first generation) which aims at giving the most64

diverse set in terms of experimental synthesis conditions. We explored the following set of65

five variables:66

1. Power of the microwave, by changing the power of the microwave we can influence the67

time it takes the reaction solution to reach the required temperature;68

2. Solvent composition, our solution has a fixed composition: 80% water and 20% of69

an organic solvent, as it was found to be the most promising ratio from our previous70

solvothermal attempts to increase the yield of the reaction (Table S2 and Figure S2) as71

well as it presented a higher amount of an environmentally friendly solvent.43 We tested72

five different organic solvents that cover a range of different boiling points (from 75◦C to73

190◦C): ethanol (EtOH), 1-propanol, dimethylformamide (DMF), dimethylacetamide74

(DMA) and dimethyl sulfoxide (DMSO);75

3. Reaction time, which is the total time our vial was in the microwave (including both:76

the time required to reach the temperature at which the reaction takes place (< 177

minute) and the reaction time itself);78

4. Reaction temperature, the temperature at which the reaction is carried out;79

5. Concentration of the reactants, the aluminium to porphyrin ratio was constant and set80

as in the hydrothermal synthesis.41 Concentrations 1 and 2 possess the same amount81

of solvent but different amounts of precursors, while concentrations 2 and 3 possess the82

same amount of precursors but different volumes (Table S3). This systematic approach83

would allows us to assess the influence of each factor: concentration and pressure in84

the reaction vial.85

The ranges of these variables were based on our experience with the solvothermal synthesis86

of Al-PMOF and are detailed in Table 1. In contrast to our previous work where we used87
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one-hot encoding for solvent type, here, we describe solvents with a continuous variable to88

better interpolate between different solvent types. The boiling point of the solvent is a good89

descriptor as it is important for solvothermal synthesis.2090

Table 1: Table showing the synthetic variables, their ranges and importance based on our
chemical intuition from the solvothermal synthesis. The concentration was given discrete
variables: 1, 2, and 3 corresponding to high, medium, and low concentration, respectively
(see Table S3 for experimental details).

Variable Range Importance
Power [W] 200 to 300 1.48

Temperature [°C] 175 to 200 4.47
Time [min] 20 to 60 4.47

Concentration [-] 1 to 3 4.90
Boiling Point [°C] 80 to 190 6.46

Design of the experimental protocols with the SyCoFinder91

Based on the range of the variables given in Table 1, we used the SyCoFinder40 to generate a92

set of 25 most diverse experiments (Table S4). In the first generation, variables are weighted93

based on the chemical intuition from the solvothermal synthesis, as listed in Table 1. The94

type of solvent (i.e., boiling point) was deemed to be the most important variable. Reaction95

temperature, time and concentration were thought to play a slightly less important role,96

and power the least important of all the variables studied. These 25 reactions were carried97

out utilising the microwave and robotic platform (Figure S1). After synthesis, each sample98

was collected individually by centrifugation, washed with the organic solvent used for the99

reaction itself and then dried overnight in a ventilated oven at 60◦C.100

Crystalline structure and yield101

The resulting reactions produce vastly different results; a number of experiments yielded little102

or no powder, and many were amorphous. The powder X-ray diffraction (PXRD) pattern103

was collected, showing very distinct crystallinity for the best and worst samples (Figure 1).104
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Seven reactions from the first generation yielded a PXRD pattern characteristic of Al-PMOF.105

The crystallinity was ranked on a scale of 1 to 10, where 1 was used for samples that did not106

yield a powder, 2-5 was for samples that were amorphous or had poor crystallinity, while107

higher numbers were given to powders which presented better crystallinity. Distinctions108

between 9 and 10 were made for those which presented additional peaks or fully matched109

the Al-PMOF predicted pattern without any additional phase or impurities, respectively.110

Figure 1: PXRD of the best and worst samples produced from the first generation of exper-
iments, with the crystal derived predicted pattern of Al-PMOF from the CIF file.

The ranking from the first generation (Figure 4) was used to further optimise the synthesis111

by generating a second generation of experiments with the genetic algorithm of SyCoFinder112

(Table S5). Again, after synthesis, the PXRD patterns were gathered and the experimental113

results were ranked. Interestingly, in this second generation, all of the material synthesised114
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proved to be crystalline and matched the PXRD pattern of Al-PMOF (Figure 2).115

Our initial aim was to screen for both crystallinity and yield. As already after the first116

generation we obtained a near perfect score on crystallinity, we could already rank our reac-117

tion conditions based on yield. We determined the yield by weighing the powder obtained118

divided by the amount of porphyrin ligand used in the synthesis, which gives a good indica-119

tion of what the actual yield would be. Interestingly, a number of conditions gave excellent120

results, with a high yield and good crystallinity (Figures 2 and 4). As the crystallinity and121

yield where sufficiently high and the surface area similar to what was obtained previously,122

there was no need for a 3rd generation of experiments.123

Figure 2: PXRD of the best (highest crystallinity and yield) and worst samples produced
from the second generation of experiments, with the crystal derived predicted pattern of
Al-PMOF from the CIF file.
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For carbon capture applications it is important that the pore structure is the same as124

the solvothermal synthesis. As a high-throughput technique, we determined the surface125

area from a nitrogen (N2) isotherm at 77 K for the highest ranked materials (samples 4126

and 15 from generation 2). From these isotherms, we obtained surface areas (1236 m2 g−1)127

comparable to that previously reported with a hydrothermal synthesis (i.e., 1400 m2 g−1),41128

which indicates it is likely that the robot synthesized material has retained the pore structure129

of the MOF, and so, it should be suitable for CO2 capture applications.130

Reproducibility and large MOF synthesis131

The reproducibility of the highest ranking synthesis conditions were also tested, with the132

robotic platform set up to run 16 reactions over a 24 hour period. The powder was collected133

by centrifuge, and then washed with solvent and dried overnight. The combined PXRD pat-134

tern matched Al-PMOF perfectly, and the surface area and pore volume of the large sample135

determined from a N2 isotherm at 77K were also comparable. Continuously synthesising136

using the platform this way can generate gram amounts of powder that can be used for137

further applications such as CO2 capture at a large scale.138

Discussion139

Analysis of the experimental variables140

In Figure 4, we have summarized the results of this study. And in Figure 3 we show, through141

analysis of the failed and partially successful experiments, the relative importance of the142

experimental variables in obtaining (a) high crystallinity, and (b) high yield, as obtained143

from the machine learning module in the SyCoFinder. From our analysis, we see that the144

changes of concentration of reactants followed by changes in the solvent have the most impact145

on crystallinity. While for the yield, by far the most important criteria is the solvent type.146
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Figure 3: Pie charts showing the relative importance of each synthesis variable on (a) crys-
tallinity, (b) yield.

Influence of the solvent147

The standard hydrothermal procedure for the synthesis of this MOF shows that, although148

synthesized in pure water, a higher temperature (i.e., 180◦C) is required to dissolve the149

porphyrin and allow it to react with the aluminium precursor. Using a mixture of water150

and another organic solvent could help the porphyrin to dissolve, whilst retaining the high151

heat capacity of water which seems to be required to form the MOF. Solvothermal reactions152

with different H2O:DMF ratios (i.e., 20:80%, 50:50%, and 80:20%) were carried out (see153

supplementary information for experimental details) and the optimal results were obtained154

with a 80:20% H2O:DMF ratio (Table S2 and Figure S2). DMF is a common solvent for155

MOF synthesis,44 due to its high dielectric constant and relatively high boiling point. It is156

interesting to look in some detail at the second generation of experiments that were proposed157

by SyCoFinder’s algorithm. In the first generation, DMF was included as additional organic158

solvent, yet the second generation of reactions did not include any experiments with DMF.159

This is due to the fact that the crystallinity of samples with DMF are poor, and the other160

solvents yielded higher crystallinity. The analysis of the data shows that the solvent type,161

which we characterize by the boiling point, is one of the key variables that determine the162
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crystallinity. The data also show that, although the type of solvent is important, the quality163

of the crystals does not linearly correlate with the boiling point. Yield might be better164

described by this factor: higher boiling point solvents (i.e., DMSO) show a much lower yield,165

while lower boiling point solvents (i.e., EtOH) show a higer one (Figure 4).166

Influence of the concentration167

The concentration of the precursors was also studied: Al-PMOF was obtained with the same168

metal to ligand ratio except for different amounts of solvent, which also leads to a change169

of the pressure inside the reaction vessel. As a control, concentrations 1 and 2, possess the170

same volume but different metal and ligand concentrations (Table S3). The analysis of the171

relative importance of experimental variables shows that concentration plays a major role172

on crystallinity. The lowest concentration (i.e., concentration 3, which also presents the173

largest amount of solvent, and thus highest pressure) is not suggested in generation 2, as174

it leads to relatively poor crystallinities in generation 1. It seems that the combination of175

low concentrations and high pressures in the reaction vessel are not beneficial for the MOF176

formation. On the other hand, if we compare concentrations 1 and 2, which possess the same177

volume, the highest concentration (i.e., concentration 1) tends to give better crystallinities178

overall, which may be positively correlated to the kinetics of the reaction45 (Figure 4).179
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Figure 4: Parameters and results of optimization with microwave power, reaction tempera-
ture, time, concentration and solvents selected for each Al-PMOF synthesis. Color code is
given for worst (brown) and best (dark green) samples. Generation 1 was ranked in terms
of the crystallinity of each sample, while the success of generation 2 was determined by the
yield as all samples proved to be highly crystalline. This proves the success of the GA in
providing good crystallinity of all samples in just one generation.

Influence of other variables180

The other variables studied (i.e., reaction time, temperature and power of the microwave)181

were deemed to be less important for both analyses: crystallinity and yield of Al-PMOF182

synthesis (Figure 3). These were adapted to our needs (i.e., low reaction time) and had been183

tuned according to our knowledge of the hydrothermal synthesis (i.e., reaction temperature),184

while the power was limited by our microwave reactor.185
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Conclusions186

In summary, we have developed an alternative Al-PMOF synthesis method, using a mi-187

crowave reactor with comparable crystallinity and surface area to the traditional Al-PMOF188

hydrothermal synthesis, but with a higher yield and a much shorter reaction time.189

The other interesting part of this work, is the methodology which we used to find the190

optimal synthesis conditions: an experimental design which learns from the failed and partly191

successful experiments. Although we used a robot in this work, the total number of ex-192

periments that were used to find these conditions, only two generations and total of 45193

experiments, illustrate that the underlying methodology does not require very large data194

sets to be of practical use.195

We hope that our results encourage authors to publish their failed and partially successful196

experiments. The fact that we only publish the successful recipes creates a bias in the197

literature, that makes predictions of the reaction conditions using machine learning more198

difficult.46 Of course, in our case, as we are using a robot, publishing the failed and partially199

successful conditions in addition to the successful recipe does not create an additional burden.200

Jablonka et al.46 outline some ideas on how the burden of reporting of all experimental results201

can be facilitated.202

Methods203

Characterization204

Powder X-ray diffraction (PXRD) patterns of all samples were collected on a Bruker D8205

Advance diffractometer at ambient temperature using monochromated Cu Kα radiation (λ206

= 1.5418 Å), with a 2θ step of 0.02° with different 2θ ranges. Simulated PXRD patterns207

were generated from the corresponding crystal structures using Mercury 3.0.208

The N2 adsorption isotherm measurements were performed at 77 K using a BELSORP209
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Mini (BEL Japan, Inc.). Prior to measurements, samples were activated at 180 °C for 12210

hours under dynamic vacuum. The N2 adsorption isotherm in the p/p0 range 0.06 – 0.25211

was fitted to the Brunauer–Emmett–Teller (BET) equation to estimate the surface area of212

the samples.213

Chemical synthesis214

Detailed protocols for each Al-PMOF synthesis performed in this study can be found in the215

supplementary information.216
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