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Via G. Moruzzi 13, 56124 Pisa, Italy

This paper proposes the first linear scaling implementation for the domain decompo-

sition approach of the polarizable continuum model (ddPCM) for the computation of

the solvation energy and forces. The ddPCM-equation consists of a (non-local) inte-

gral equation on the van der Waals (vdW) or solvent accessible surface (SAS) of the

solute’s cavity resulting in a dense solution matrix and, in turn, one matrix-vector

multiplication has a quadratic arithmetic complexity with respect to the number

of atoms of the solute molecule. The use of spherical harmonics as basis functions

makes it natural to employ the fast multipole method (FMM) in order to provide

an asymptotically linear scaling method. In the present paper, we employ the FMM

in a non-uniform manner with a clusterization based on a recursive inertial bisec-

tion. We present some numerical tests illustrating the accuracy and scaling of our

implementation.
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I. INTRODUCTION

The numerical computation of the energy, forces and properties based on derivatives of the

energy of a given molecule is key in computational chemistry. However, most of the studied

phenomena and reactions happen in the condensed phase implying that it is important to not

only account for the studied molecule itself but also for the surrounding environment as the

latter has a significant impact on the former. Within this setting, multiscale models, where

the molecule of interest is described accurately and where the remaining part consisting of

the environment is presented by a less accurate but cheaper description, are very effective in

capturing all the important effects in a numerically efficient way for certain specific classes

of problems.

Polarizable continuum solvation models (PCSMs)7,12,27,38,39, as one class of multiscale

models, have become a standard tool in computational chemistry. The polarizable contin-

uum model (PCM)28 that is considered in this article is one of such PCSMs. Of course,

PCM is not the only polarizable continuum model. Indeed, the (linearized or non-linear)

Poisson-Boltzmann model5,10 is a generalization thereof formulated decades earlier taking

the ionic strength of the solvent into account and the COSMO (model)17,18 is a simplifica-

tion of PCM for highly polar solvents. Implementations of PCSMs are routinely available in

quantum chemistry codes and are widely used for diverse applications. However, polarizable

continuum models, and thus also PCMs, can only be employed if such a homogeneous bulk

environment can accurately model all effects of the solvent and the applicability is thus

restricted to suitable cases.

The polarizable continuum solvation model (PCM) describes the electrostatic contribu-

tion to the solvation energy38 by replacing the environment with a homogeneous, polarizable

and continuum medium which fills all the space except the region occupied by the solute

molecule. The environment is then characterized by its macroscopic bulk properties such as

the dielectric permittivity. Given their characteristics, PCMs are particularly suited for the

description of solvated molecules, where the environment indeed can be properly described

by an average property such as the bulk dielectric permittivity. The PCMs present some

numerical advantages over explicit descriptions of the environment: firstly PCMs depend on

few parameters and can be easily employed, secondly they naturally take into account a sta-

tistical sampling over all the degrees of freedom of the environment, which on the contrary
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has to be taken into account when using explicit descriptions.

The classical electrostatic problem of PCMs can be formulated as a partial differential

equation (PDE) on the entire domain R3 or by an equivalent boundary integral equation

(BIE) on the boundary of the solute molecule which is also known as the integral equation

formulation of PCM (IEF-PCM)3. The IEF-PCM has to be approximated and solved to

determine the apparent surface density on the surface of the cavity due to the solvent polar-

ization caused by the solute’s density. Several numerical methods as direct discretizations

of the IEF-PCM have been proposed6,20,21,34,35.

This paper builds on the existing (meshless) domain decomposition paradigm for PCM36,

the derivation of analytical gradients9 and its coupling to quantum mechanical models for

the solute31. The domain decomposition paradigm first applies a domain decomposition of

the computational domain and then discretizes each subdomain, combined with coupling

conditions between the subdomains. While the previous contributions were focused on gen-

eralizing the method to a wider range of possible applications, a performant implementation

was not yet considered. The discretization of the PCM boundary integral equations, such as

the one used in ddPCM, has the following drawback: the corresponding matrices of result-

ing linear systems are dense leading to a natural quadratically scaling with respect to the

number of atoms of the solute as reported in9,31, in contrast to the ddCOSMO-method4,25,37

which leads to a sparse solution matrix. In this paper we present, for the first time, a

fast and efficient linearly scaling implementation of the ddPCM based on the fast multipole

method (FMM) for the computation of solvation energies and analytical gradients.

The ddPCM is a part of the domain-decomposition paradigm that started with the lin-

early scaling ddCOSMO method4,25 for the computation of the energy and forces and that

has been successfully coupled to different models of the solute23,24,37. Besides the extension

to the ddPCM that is discussed in this article, the domain decomposition framework has

also been developed for the linearized Poisson-Boltzmann model33 and a PCM32 with vari-

able dielectric constant that accounts for the Solvent Excluded Surface (SES) as separation

between the solute and the solvent.

This paper is organized as follows. Without going into the derivation of the ddPCM-

method, Section II sheds light on the quadratically scaling (with respect to the number

of atoms) parts of the ddPCM-method and formalizes different operations that need to be

computed by the FMM. Section III explains how our implementation achieves linear scaling
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in the computation of the ddPCM-energy and analytical forces using an adaptive binary

treecode-based FMM. Section IV provides numerical tests that benchmark our implementa-

tion, while Section V is left for the conclusions.

II. THE DOMAIN DECOMPOSITION METHOD FOR THE PCM AND

THE QUADRATICALLY SCALING BOTTLENECK

The domain decomposition approach for the polarized continuum solvent model (the

ddPCM31) is an extension of the domain decomposition approach for the conductor-like

screening solvent model (the ddCOSMO24): whereas the ddPCM allows a description of the

solvent using an arbitrary, and possibly low, value of the bulk dielectric permittivity, the

ddCOSMO restricts the cases to high conducting dielectrics as it is based on an infinite

dielectric constant, as for a conducting material, as an approximation. This generalization

comes with a price: while the ddCOSMO scales linearly with the number of atoms of the

solute molecule for proteins for both energy and forces calculations, the ddPCM contains

a quadratically scaling asymptotic bottleneck in terms of the complexity of the numerical

method. This is due to the fact that the ddPCM-equations are non-local boundary integral

equations on the solute’s surface, which results in dense matrices after discretization.

Since the ddPCM numerical method for the computation of the energy and forces has

already been reported in the literature9,31,36, we only provide a brief introduction of the

essential parts of the algorithm required for the subsequent discussion. In the following, we

will highlight and discuss the additional steps compared to the ddCOSMO that are required

for the ddPCM and which are of quadratic complexity, but we first need some basic notions

to be defined.

We assume that the solute molecule consists of M atoms, each endowed of a partial

charge qj and located at a position xj. We also assume that the solute is placed in a cavity

composed of interlocked balls which is characterized by the dielectric permittivity of the

vacuum, whereas the rest of the environment is characterized by a dielectric permittivity of

ε. Each ball Ωj = Brj(xj) has a radius rj and is centered on a corresponding atom j. The

total cavity of the molecule is defined as Ω =
⋃M
j=1 Ωj, and depending on the values used as

radii, it can be a van der Waals (vdW) cavity or a solvent accessible (SAS) cavity.
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A. Solvation Energy

A high level description of how to compute the solvation energy by the ddPCM is pre-

sented in Algorithm 1, and we refer to 31 for a precise definition of the different quantities.

Steps 3 and 4 are marked as the ddPCM steps, which are required to be performed by the

ddPCM approach in addition to the linearly scaling ddCOSMO method. These two steps

scale quadratic with respect to the number of atoms but, in the case of the ddCOSMO where

ε =∞ and thus Rε = R∞, they vanish due to invertibility of R∞ implying Φε = Φ.

Algorithm 1 ddPCM computation of a solvation energy. The steps marked with

“[ddPCM]” are specific of ddPCM, whereas those marked with “[ddCOSMO]” are common

to both ddPCM and ddCOSMO.
1: [ddCOSMO] Compute the molecular potential at external grid points

2: [ddCOSMO] Perform the Lebedev quadrature to assemble Φ

3: [ddPCM] Compute Φ∞ = R∞Φ {quadratic complexity}

4: [ddPCM] Solve RεΦε = Φ∞ {quadratic complexity}

5: [ddCOSMO] Solve LX = −Φε

6: [ddCOSMO] Compute Ψ

7: [ddCOSMO] Obtain the energy 1
2Ψ>X

While step 3 requires only a single matrix-vector multiplication, step 4 requires several

of them to solve the linear system iteratively. Assuming that the amount of iterations does

not grow with the number of atoms M (which is observed in practice), the quadratic scaling

arises then from the matrix-vector products involving the matrices Rε and R∞.

B. Forces

Like in the previous subsection, Algorithm 2 presents a sketch of how to compute the

forces as analytical gradients of the energy from the initial paper31.
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Algorithm 2 ddPCM computation of analytical gradients. The steps marked with

“[ddPCM]” are specific of ddPCM, whereas those marked with “[ddCOSMO]” are common

to both ddPCM and ddCOSMO.
1: Execute algorithm 1 to acquire Ψ,Φ and Φε

2: [ddCOSMO] Solve L>S = Ψ

3: [ddPCM] Solve R>ε Y = S {quadratic complexity}

4: [ddPCM] Assemble Q = S − 4π
ε−1Y {linear complexity}

5: [ddCOSMO] Expand S at Lebedev grid points

6: [ddPCM] Assemble g = Φε − Φ {linear complexity}

7: for i = 1, . . . ,M do

8: [ddCOSMO] Contract S>(∇iL)X

9: [ddPCM] Contract Y >(∇iRε)g {quadratic complexity}

10: [ddCOSMO] Contract −Q>∇i(ΦA + ΦB)

11: [ddCOSMO] Contract (∇iΨ)>X

12: end for

Since the linear complexity of the forces calculations corresponding to ddCOSMO has

already been reported in 25 and the derivation of the forces of ddPCM in detail in 9,31, we

focus here again only on the quadratically scaling parts of the method:

• Step 3: requires the solution of the dense adjoint linear system involving the trans-

posed/adjoint matrix R>ε ,

• Step 9: contains M contractions with different sparse 3-dimensional tensors ∇iRε each

one with O(M) non-zero entries.

Note that the other ddPCM-related steps 4 and 6 are not mentioned, as they consist only

of a subtraction of vectors of a length proportional to M .

C. The quadratically scaling bottlenecks

The quadratically scaling parts identified in Sections II A and II B are related to matrix-

vector multiplications involving R∞ and Rε and the contraction of two vectors with ∇iRε for
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all i. To further discuss the quadratic complexity of the mentioned parts, we need additional

details which are first presented in the following.

The surface of the cavity is denoted by Γ = ∂Ω and for each atom j, the set Γe
j = Γj ∩ Γ

denotes the external part of Γj while Γi
j = Γj ∩ Ω consists of the internal part of Γj.

Further, the set {(sn, ωn)}Ng

n=1 of Ng grid points sn ∈ S2 and weights ωn > 0 defines

the Lebedev quadrature rule22, which is used in ddCOSMO and ddPCM to numerically

approximate integrals on the spheres.

On each Γi, the function Ui(x) is a regularized characteristic function of Γe
i defined on

Γi that depends on the positions and radii of all atoms. We define the external grid points

as those Lebedev quadrature points where the characteristic function Ui is non-zero, i.e.,

Ui(xi + risn) > 0, and the switching area grid points are those Lebedev points where the

gradient of the regularized characteristic function is non-zero, i.e., ∇xj
Ui(xi + risn) 6= 0 for

some j.

The discretization is based on real-valued L2-orthonormal spherical harmonics as basis

functions and the discretization parameter `max denotes their maximal degree (to which we

also refer to as the degree of the modelling harmonics). The spherical harmonics Y m
` (s)

with ` = 0, . . . , `max and m = −`, . . . , ` is defined for a point s ∈ S2 on the unit sphere with

spherical coordinates (θ, ϕ) as

Y m
` (s) =


(−1)m

√
2
√

2`+1
4π

√
(n−m)!
(n+m)!

Pm
` (cos θ) cos(mϕ), m > 0,√

2`+1
4π
P 0
` (cos θ), m = 0,

(−1)m
√

2
√

2`+1
4π

√
(n−|m|)!
(n+|m|)!P

|m|
` (cos θ) sin(|m|ϕ), m < 0.

(1)

We further introduce by P`m(x, y; r) the (single layer) potential generated by the spherical

harmonic Y m
` on the (source) sphere of radius r centered at the (source) point y and evaluated

at the (target) point x outside the ball Br(y):

∀x ∈ R3 \Br(y) : P`m(x, y; r) =
4π

2`+ 1

(
r

|x− y|

)`+1

Y m
`

(
x− y
|x− y|

)
. (2)

It is then convenient to define Y j
`m(x) := Y m

`

(
x−xj

|x−xj |

)
, r`j(x) :=

(
|x−xj |
rj

)`
to shorten notation

of the potential P`m:

∀x ∈ R3 \ Ωj : Pj`m(x) := P`m(x,xj; rj) =
4π

2`+ 1
r
−(`+1)
j (x)Y j

`m(x). (3)
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Additionally, we introduce the following notation

`max∑
`m

=
`max∑
`=0

∑̀
m=−`

(4)

to further shorten all the upcoming equations. We are now ready to summarize the quadratic

operations in this formalism.

1. Operation 1: The primal linear system

Let us note, that both R∞ and Rε are M×M block matrices with (`max+1)2×(`max+1)2

blocks and a difference Rε − R∞ = 4π
ε−1I is just a scaled identity matrix. Hence, a matrix-

vector product can be split into a linearly scaling diagonal and quadratically scaling off-

diagonal parts. Let us therefore denote the matrix R as the matrix identical to R∞ and Rε

for the off-diagonal blocks and with zero diagonal blocks:

R :=


0 R12 . . . R1M

R21 0 . . . R2M

...
...

. . .
...

RM1 RM2 . . . 0

 . (5)

An element on the (`,m)-multi-indexed row and the (`′,m′)-multi-indexed column of the

off-diagonal block Rij of the i-th block row and the j-th block column of R is defined as

follows:

[Rij]
mm′

``′ = −
Ng∑
n=1

ωnY
m
` (sn)Ui(xi + risn)`′[Pnij]m

′

`′ = −
Ng∑
n=1

[wni ]m` `
′[Pnij]m

′

`′ (6)

with

[wni ]m` := ωnY
m
` (sn)Ui(xi + risn) (7)

and

[Pnij]m
′

`′ := Pj`′m′(xi + risn). (8)

Hence, a matrix-vector product of the matrix R by some vector v becomes:

[(Rv)i]
m
` =

M∑
j=1
j 6=i

`max∑
`′m′

[Rij]
mm′

``′ [vj]
m′

`′ = −
Ng∑
n=1

[wni ]m` P i(xi + risn;v`), (9)
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where

∀x ∈ Γe
i : P i(x;v`) :=

M∑
j=1
j 6=i

`max∑
`′m′

[(v`)j]
m′

`′ P
j
`′m′(x), (10)

and

[(v`)j]
m′

`′ := `′ [vj]
m′

`′ . (11)

The quantity P i(x;v`) can be interpreted as the single layer potential at the given point x

on the exterior part Γe
i = Γi ∩ ∂Ω of the i-th sphere generated by the charge distributions

with moments `′[vj]
m′

`′ on all other spheres j 6= i. Thus, the matrix-vector product can be

divided into 3 subsequent steps:

1. Scale the input coefficients of spherical harmonics to obtain v` as is described in (11).

This step is linear by M in arithmetic complexity.

2. Compute the potential following equation (10) for every external grid point, i.e., for

every i and n such that Ui(xi + risn) > 0. This step requires O(M2) operations.

3. On each sphere i, sum (i.e., numerically integrate) the obtained potentials along with

the local quantity [wnj ]m` according to (9). Each (numerical) integral is local resulting

in O(M) operations.

2. Operation 2: The adjoint linear system

In correspondence to the equation (6) the adjoint off-diagonal matrix-vector product

reads:

[(R>z)j]
m′

`′ =
M∑
i=1
i 6=j

`max∑
`m

[Rij]
mm′

``′ [zi]
m
` = −`′

M∑
i=1
i 6=j

Ng∑
n=1

[Pnij]m
′

`′ (wz)
n
i , (12)

where

(wz)
n
i :=

`max∑
`m

[wni ]m` [zi]
m
` . (13)

By introducing further notation for the adjoint potential

∀j, `′,m′ : Pj(`′,m′;wz) =
M∑
i=1
i 6=j

Ng∑
n=1

[Pnij]m
′

`′ (wz)
n
i (14)
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we can simplify the adjoint off-diagonal matrix-vector product as follows:

[(R>z)j]
m′

`′ = −`′Pj(`′,m′;wz). (15)

Thus, the adjoint matrix-vector product can be divided again into 3 following steps:

1. For every i, assemble the vector (wz)i by the equation (13). The complexity of this

step for all i together is linear in M .

2. Compute the adjoint potentials following (14) for every j, `′,m′. Due to the sum over

all spheres, each adjoint potential needs O(M) operations. Hence, the accumulated

number of operations over all atoms is O(M2).

3. Scale the result by the corresponding degree `′ of the harmonics in accordance to (15).

This step scales linearly by the number of atoms M .

3. Operation 3: Contraction of differential matrices

Further, the contraction of ∇kRε with any two vectors z and v is given by

z>(∇kRε)v =
M∑
i=1

M∑
j=1
j 6=i

`max∑
`m

`max∑
`′m′

[zi]
m
` [(∇kRε)ij]

mm′

``′ [vj]
m′

`′

=
M∑
i=1

M∑
j=1
j 6=i

`max∑
`′m′

Ng∑
n=1

∇k


(
`max∑
`m

[zi]
m
` [wni ]m`

)
︸ ︷︷ ︸

(wz)ni

[Pnij]m
′

`′

 [(v`)j]
m′

`′ .
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Using the product rule for differentiation, we then obtain three contributions

z>(∇kRε)v =
∑
i∈Nk

Ng∑
n=1

∇k(wz)
n
i

 M∑
j=1
j 6=i

`max∑
`′m′

[Pnij]m
′

`′ [(v`)j]
m′

`′


︸ ︷︷ ︸

Pi(xi+risn;v`)

(16)

+

Ng∑
n=1

(wz)
n
k

 M∑
j=1
j 6=k

`max∑
`′m′

∇k[Pnkj]m
′

`′ [(v`)j]
m′

`′


︸ ︷︷ ︸

∇kPk(xk+rksn;v`)

(17)

+
`max∑
`′m′

[(v`)k]
m′

`′

 M∑
i=1
i 6=k

Ng∑
n=1

∇k[Pnik]m
′

`′ (wz)
n
i


︸ ︷︷ ︸

∇kP
k
(`′,m′;wz)

(18)

where Nk denotes the set of neighbouring/intersecting spheres of the k-th sphere (excluding

itself). Such a set of contractions is computed for every k = 1, . . . ,M . As one can notice,

the quadratic complexity of obtaining all contractions together comes from the potentials

P i, the gradients of the potentials ∇kPk as well as the gradients of the adjoint potentials

∇kP
k
. All other operations are local on each atom, and we thus have:

1. Compute the potentials P i(xi+risn;v`) and their gradients∇iP i(xi+risn;v`) at every

external grid point as well as the gradients of the adjoint potentials ∇jP
j
(`′,m′;wz)

for all modeling harmonics, i.e., for every j, `′,m′. The complexity of this step is

O(M2).

2. Compute, for every k, the vectors (v`)k and (wz)k following equations (11) and (13)

respectively resulting in O(M) operations for all possible k.

3. For every atom k, loop through the intersecting spheres i ∈ Nk and contract the

acquired potentials at external grid points in the switching area of the i-th sphere

with the gradient of the local entity ∇k(wz)
n
i in order to obtain the right hand side

of (16). By the nature of matter, the total number of intersecting pairs of spheres is

O(M). It makes the computational complexity of the entire step linear in M .

4. For every atom k, contract the acquired gradients of the potentials ∇kPk with the
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vector (wz)k and the gradients of adjoint potentials ∇kP
k

with the vector (v`)k in

order to obtain (17) and (18). For all k together, this step requires O(M) operations.

4. Summary

The quadratically scaling bottlenecks in Operations 1–3 can be formalized as the com-

putation of the following quantities:

1. The computation of the potentials

P i(xi + risn;v`) (19)

and their gradients

∇iP i(xi + risn;v`) (20)

at all external grid points.

2. The computation of the adjoint potentials

P i(`,m;wz) (21)

and their gradients

∇iP
i
(`,m;wz) (22)

for every modeling harmonic function Y i
`m.

In order to achieve the linear scaling of these operations with respect to the number of

atoms M , we will approximate the computations of the above quantities by fast summation

techniques. We will use the fast multipole method (FMM) which will be discussed in the

next section.

III. IMPLEMENTATION OF THE LINEARLY SCALING DDPCM

A. Overview of the FMM

As the Fast Multipole Method (FMM)11 is a well-known and well-reported algorithm, we

present only its basic overview without any in-depth discussion. First, the original FMM
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computes the Coulomb potentials for a given set of N point-charges. In three dimensions,

it is equivalent to finding the following sums:

∀i = 1, . . . , N : pi =
N∑
j=1
j 6=i

qj
|xi − xj|

, (23)

where xj and qj are a location and a charge of the j-th particle respectively and pi is the

Coulomb potential at a location of the i-th particle generated by all other point-charges. A

straightforward evaluation of such potentials requires O(N2) floating point operations.

In the 3-dimensional case, the FMM uses spherical harmonic expansions to separate the

variables of the Coulomb potential f(x, y) = 1
|x−y| of a set of source point-charges in a ball

Bry(y0) of a radius ry with a center y0 and a set of distant target locations in a ball Brx(x0) of

a radius rx with a center x0. Such expansions around the source Bry(y0) and inside the target

Brx(x0) areas are called the multipole and the local expansions, respectively. For a pair of a

source and a target balls that are geometrically well-separated, i.e., far from each other, all

the corresponding potentials from the sources at the target locations are called the far-field

potentials/interactions. The far-field interactions can be approximated by truncating the

multipole and the local expansions at controllable loss of accuracy. The number of terms of

the expansion does not depend neither on a number of the source point-charges nor on a

number of the target locations but on the separation distance of the two balls. On the other

hand, if the source and the target balls are close enough to each other, or even intersect, then

such a separation of the variables is impossible. In this case, all the potentials are called the

near-field potentials/interactions and must be evaluated directly. The arithmetic complexity

of the far-field interactions depends on the sum of the number of sources and the number

of targets, and the number of operations required to calculate the near-field interactions is

the product of the number of sources and targets. The FMM partitions all the interaction-

potentials into either far-field or near-field interactions. The sets of sources and targets

are decided by a partitioning of the space and, furthermore, a hierarchical partitioning (a

cluster tree) is employed to improve the efficiency: when the targets and sources are farther

apart, a coarser clustering is used which reduces the number of potentials to be evaluated,

while retaining the same accuracy. In this way, an approximated result is acquired in O(N)

operations. Generally speaking, the fewer potentials are classified as near-field interactions,

the lower the arithmetic complexity is. The following Algorithm 3 summarizes schematically
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all the major points of the FMM.

Algorithm 3 The FMM

Require: N particles with locations {xi}Ni=1 and charges {qi}Ni=1.

Ensure: Potentials {pi}Ni=1 at all locations {xi}Ni=1.

1: Build a hierarchical cluster tree.

2: Particles-to-multipole (P2M) step: compute the multipole expansion coefficients for each leaf

node of the cluster tree.

3: Multipole-to-multipole (M2M) step: obtain the multipole expansions coefficients hierarchically

in a bottom-to-top pass through the cluster tree.

4: Multipole-to-local (M2L) step: transfer the multipole expansions coefficients to the local ex-

pansions coefficients for the far-field interactions.

5: Local-to-local (L2L) step: pass the local expansions coefficients to the node leaves of the cluster

tree in a top-to-bottom manner.

6: Local-to-particles (L2P) step: translate the local expansion of each leaf node into the potential

of the corresponding particles.

7: Particle-to-particle (P2P) step: evaluate potentials from all the near-field interactions.

B. Adaptive tree-based FMM for ddPCM

The main distinguishing features of our implementation with respect to the classical 3-

dimensional FMM are summarized in TABLE I. In the following subsections we emphasize

details on how we construct a cluster tree, partition it into the far-field and the near-field

interactions and implement the M2M, M2L and L2L operations. We would also like to

stress out, that both the ddPCM and the FMM rely on spherical harmonics, and thus on

a truncation parameter. However, these harmonics serve different purposes, and therefore

we distinguish them as `max for the maximal degree of the discretization to represent the

unknowns within ddPCM, and pmax for the maximal degree used in the FMM.
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Proposed approach Original FMM

sources distribution on spheres point-charges

targets points on input spheres input points

cluster tree binary, adaptive octree, uniform

radii of harmonics variable unit

TABLE I: Main differences between the proposed approach and the original FMM.

1. Recursive inertial bisection

Since the spheres building the cavity of the solute’s molecule are arranged according to

a non-uniform distribution, we are motived to use an adaptive cluster tree, in a recursively

bisected form, as an alternative to the standard octree. A uniform clusterization has an

obvious advantage — namely that M2M, M2L and L2L steps are identical among all nodes

of a single level of a cluster tree. For a non-uniform tree, all M2M, M2L and L2L translations

have different transformation matrices which need to be computed at each node separately.

On the other side, a non-uniform tree better adapts to the non-uniform distribution of the

spheres (and its integration points) and thus theoretically leads to a smaller amount of

operations. Therefore, it is a fine weighing of advantages and disadvantages that justifies

our choice.

The inertial bisection is a naive approach of dividing a set of point-masses by a hyperplane

into two subgeometries by minimizing the moment of inertia. This approach cuts perpen-

dicularly to the principal axis through the center of mass and thus interprets a non-uniform

distribution of points better than any coordinate-based subdivision method. Applying the

bisection further to the subgeometries in a recursive manner defines the recursive inertial

bisection. A simple comparison of the recursive inertial bisection with a quadtree, which is

standard for the FMM on a plane, is schematically presented in the FIG. 1. As is illustrated,

the quadtree for a set of equally weighted points aligned on the diagonal or a circle has many

empty nodes/boxes while the recursive inertial bisection reflects the one-dimensional struc-

ture. To construct the cluster tree, we assume all the atom centers {xi}Mi=1 have a unit mass

and apply the recursive inertial bisection to this set until each leaf node contains only a

single point. Our approach is formalized in Algorithm 5 of Appendix A.
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(a) Quadtree. (b) Recursive inertial bisection.

(c) Quadtree. (d) Recursive inertial bisection.

FIG. 1: Comparison of a quadtree and a recursive inertial bisection for a line and a circle

of equally-weighted particles.

Once the cluster tree is constructed, we have to define the domains of convergence of the

multipole and the local expansions of each node. Like in the FMM, we use bounding spheres

for this purpose: every leaf node contains only a single input atom by the construction and

thus the bounding sphere of every leaf node is simply the corresponding input sphere itself,

while the bounding sphere of a non-leaf node is the sphere of a minimal radius that contains

both bounding spheres of its two children nodes. This construction method is formalized in

Algorithm 6 of Appendix A.

When all the bounding spheres are constructed, the partitioning into the far-field and the

near-field interactions is done recursively. This process requires one last item — an admis-

sibility condition. For our numerical tests, we used the following condition: two bounding

spheres are admissibly far, i.e., geometrically well-separated, if the distance between them

is not smaller than the maximum of their radii. The partitioning is done with the help of

a list of test pairs, which is initialized by the pair {(R,R)} with R denoting the root node

of the tree. The result is given as two lists: a list of admissibly far pairs of nodes and a

list of admissibly near pairs of nodes. While the test list is non-empty, each pair is checked

for the admissibility condition. If it is satisfied, then the pair is moved to the list of all

admissibly far pairs. If it is not satisfied and both nodes are non-leaf nodes, then the test

list is expanded by all possible combinations of pairs of children nodes. Otherwise, the pair

is moved to the list of all admissible near pairs. These steps are formalized in Algorithm 7

of Appendix A.

The recursive inertial bisection leads to a possibly unbalanced tree, where some leaf nodes

do not belong to the bottom level of the tree. Such an example is presented in the FIG. 2a,
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R

N1 L1

N2 L2

L3 L4

(a) Unbalanced tree

R

N1 X1

N2 X2 X3

L3 L4 L2 L1

(b) Balanced tree

FIG. 2: Balancing a cluster tree by adding mock nodes X1, X2 and X3. For the balanced

tree, all the leaf nodes are on the bottom level, which implies a smaller amount of the

near-field interactions and thus lowers the total complexity of the FMM matrix-vector

product.

where N1 and N2 denote non-leaf nodes and L1, L2, L3 and L4 denote leaf nodes. In this

case, the disadvantage is the increased amount of the near-field interactions. However, it is

possible to count some of them as the far-field interactions simply by adding mock nodes

with the help of Algorithm 8 presented in Appendix A. An example of the balanced tree is

presented in the FIG. 2b, where mock nodes X1, X2 and X3 are added to the previously

unbalanced tree.

The entire procedure of building the cluster tree with partitioning into the far-field and

the near-field interactions is presented in Algorithm 4.

Algorithm 4 Construction and partitioning of a cluster tree.

Require: Set of M spheres with centers {xj}Mj=1 and radii {rj}Mj=1

Ensure: Cluster tree T with lists of near N and far F admissible pairs.

1: Construct the binary cluster tree T by the Algorithm 5

2: Compute bounding spheres of all nodes of T by the Algorithm 6

3: Add mock nodes by the Algorithm 8

4: Generate lists of far F and near N admissible pairs by the Algorithm 7

2. Scaled Solid Harmonics and representation of the potential

The original FMM works with solid harmonics with a provided convergence radius that

defines an area of validity of the expansion. The potential of a multipole expansion caused

by real normalized spherical harmonics of maximal degree `max, with coefficients [M̂j]
m
` , a
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center xj and a convergence radius rj outside a ball Brj(xj) is given by:

∀x /∈ Brj(xj) : P(x) =
`max∑
`m

4π

2`+ 1

[M̂j]
m
`

|x− xj|`+1
Y j
`m(x). (24)

The potential of a corresponding local expansion caused by harmonics of degree up to pmax,

with coefficients [L̂j]
m
` inside the ball Brj(xj) is defined as follows:

∀x ∈ Brj(xj) : L(x) =

pmax∑
`m

4π

2`+ 1
[L̂j]

m
` |x− xj|`Y j

`m(x). (25)

Note that we used the maximal degree `max for the multipole expansion as it is connected with

the modeling harmonics (discretization) and the maximal degree pmax for the local expansion

as it is related to the potential that is approximated by the FMM. These equations, combined

with the finite machine precision, cause a series of overflow and underflow in the evaluation

of the expressions |x − xj|−`−1 and |x − xj|`, which actually limits the maximum allowed

degree of spherical harmonics. To overcome the problem, we rewrite equation (24) with a

relative distance to the ball Brj(xj) as follows:

∀x /∈ Brj(xj) : P(x) =
`max∑
`m

[Mj]
m
` P

j
`m(x), [Mj]

m
` =

[M̂j]
m
`

r`+1
j

, (26)

where potential Pj`m(x) was previously defined in the equation (3). We apply the same

technique to the local expansion of the equation (25):

∀x ∈ Brj(xj) : L(x) =

pmax∑
`m

[Lj]
m
` L

j
`m(x), [Lj]

m
` = [L̂j]

m
` r

`
j, (27)

where

∀x ∈ Ωj : Lj`m(x) := L`m(x,xj; rj) =
4π

2`+ 1
r`j(x)Y j

`m(x), (28)

and

∀x ∈ Br(y) : L`m(x, y; r) :=
4π

2`+ 1

(
|x− y|
r

)`
Y m
`

(
x− y
|x− y|

)
. (29)

Hence, the representation of the unit (equations (24) and (25)) and the scaled (equations (26)

and (27)) solid harmonics of the same degree differ only by a scalar factor for both, for

the multipole and the local expansions. This implies that we can use the original FMM

by applying proper scaling of the solid harmonics before and after each translation of the

expansions.
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3. FMM-operators

Let us now formally define the M2M translation. First of all, this is a linear operator

with bounded maximal degree of harmonics, so it can be represented simply by a matrix.

Therefore, we denote the M2M translation from the source spherical harmonics of a radius

RS located at the point x to the target spherical harmonics of a radius RT at the origin

as M2M(x,RS, RT ). Such an explicit representation is used in the next section, where we

compute its gradient. To be more specific, a translation of the spherical harmonic Y m
` of

a unit weight from the source sphere into the weight of the spherical harmonic Y m′

`′ on the

target sphere is denoted as [M2M(x,RS, RT )]m
′m

`′` . Generally, the value [M2M(x,RS, RT )]m
′m

`′`

is non-zero for all possible indices `,m, `′ and m′, which leads to O(p4max) operations for each

M2M translation.

As is well known, there are different techniques to reduce the complexity of the FMM

translations. In this paper, we focus on a rotation-based approach that first rotates the

system of coordinates to align the centers of the source and target spherical harmonics

along the OZ axis, then applies a corresponding translation along the the OZ direction and

finally finishes by applying the backward rotation. Such an approach is formalized as a

product of three matrices of identical size (pmax + 1)2 × (pmax + 1)2:

M2M(x,RS, RT ) = Q(x, pmax)
> ·M2M(‖x‖ez, RS, RT ) ·Q(x, pmax), (30)

where Q(x, pmax) denotes the rotation matrix of coefficients of harmonics of a degree up

to pmax, corresponding to the rotation of the vector x to the vector ‖x‖ez = [0, 0, ‖x‖]>.

A rotated spherical harmonic Y m
` is a linear combination of harmonics Y m′

`′ with the same

degree `′ = ` and different orders m′ = −`, . . . , `. Hence, the matrix Q(x, pmax) is a block

diagonal matrix with O(p3max) non-zero elements. The M2M translation is easy to adapt to

the case of the M2L translation:

M2L(x,RS, RT ) = Q(x, pmax)
> ·M2L(‖x‖ez, RS, RT ) ·Q(x, pmax), (31)

and to the case of the L2L translation:

L2L(x,RS, RT ) = Q(x, pmax)
> · L2L(‖x‖ez, RS, RT ) ·Q(x, pmax). (32)

Our implementation of Q(x, pmax) consists even of 2 elementary rotations: first, we rotate

around the OZ axis and then rotate around the OY axis to align the centers along the OZ
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axis. The first rotation requires only O(p2max) operations as each pair of harmonics Y m
` and

Y −m` is transformed into itself. The second rotation, however, consists of O(p3max) floating

point operations: for any given degree `, the set of harmonics Y m
` with a non-negative

order m ≥ 0 and a set of harmonics Y m
` with a negative order m < 0 are transformed into

themselves. Transformations of the second rotation are computed in a recursive manner, as

it is proposed in 14 and 15. The backward rotation is the adjoint of the forward rotation and

is therefore performed as the OY rotation followed by the OZ rotation, both in backward

directions.

Following the theorems for the translation operations described in 1, we derive the OZ

translation of the M2M step over a distance ρ as a matrix-vector product. Considering a

scaled spherical harmonics of radius RS as the source, and a scaled spherical harmonics of

radius RT as the target, the matrix M2M(ρez, RS, RT ) reads:

[M2M(ρez, RS, RT )]m
′m

`′` =


0, m 6= m′ or ` > `′,

R`+1
S ρ`

′−`

R`′+1
T

A0
`′−`

Am
`

Am
`′

√
2`′+1
2`+1

, otherwise,
(33)

where the multiindices (`,m) and (`′,m′) are the source and the target harmonic indices

respectively and Am` is defined as

Am` =
1√

(`−m)!(`+m)!
. (34)

In the same manner, we derive the matrix of the OZ translation of the M2L step as

[M2L(ρez, RS, RT )]m
′m

`′` =


0, m 6= m′,

(−1)`+m
R`+1

S R`′
T

ρ`′+`+1

Am
` A

m
`′

A0
`′+`

√
2`′+1
2`+1

, otherwise.
(35)

And, finally, the L2L step operation along the OZ axis is given by

[L2L(ρez, RS, RT )]m
′m

`′` =

0, m 6= m′ or ` < `′,

(−1)`+`
′ R`′

T ρ
`−`′

R`
S

A0
`−`′A

m
`′

Am
`

√
2`′+1
2`+1

, otherwise.
(36)

All of the above provided OZ translation matrices are sparse with O(p3max) non-zero elements.

Since the OZ translation of the M2M step is non-zero only for m = m′, a single element

of a general M2M matrix can be written as follows:

[M2M(x,RS, RT )]m
′m

`′` =
∑̀
k=−`

[Q(x, `′)>]m
′k

`′`′ [Q(x, `)]km`` (37)

× [M2M(‖x‖ez, RS, RT )]kk`′`. (38)
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Since it is clear how to generate the corresponding formulae for the M2L and the L2L

operators, we omit such representations.

4. Gradients of the multipole and the local expansions

Gradients of the multipole expansions are essential if forces are to be computed which

require the comptuation of (20) and (22). It is obvious that the gradient of the multipole

expansion with respect to the source of the expansion is the negative gradient of the same

expansion with respect to the target location due to the symmetric nature of the Coulomb

potential. One of the possible ways to compute such gradients is just to differentiate the

potentials based on the explicit formula. However, we propose to use a different approach

which is explained in detail in Appendix B. Indeed, the derivative of a general potential of

the form
∑`max

`m [M]m` P`m(t, s; r) with respect to s can be expressed as

∇s

`max∑
`m

[M]m` P`m(t, s; r) =
1

r

`max+1∑
`m

[dPM]m` P`m(t, s; r), (39)

where dPM ∈ R3×(`max+2)2 represents the concatenation of three matrix-vector products

with the same vector M ∈ R(`max+1)2 and whose definition is given in Appendix B.

In the same manner, the derivative of a general local expansion of the form
∑pmax

`m [L]m` L`m(t, s; r)

with respect to s can be expressed as

∇s

pmax∑
`m

[L]m` L`m(t, s; r) =
1

r

pmax−1∑
`m

[dL L]m` L`m(t, s; r). (40)

Again, dL L ∈ R3×(pmax)2 represents the the concatenation of three matrix-vector products

with the same vector L ∈ R(pmax+1)2 and whose details are given in Appendix B.

C. Eliminating the quadratically scaling bottlenecks

The FMM allows to compute not only potentials at any given target point, but the

entire potential field around them, which is represented by the sum of the near-field term

and the far-field term. For the sake of simple notation of the far-field term, let us denote

the successive application of tree-wise M2M, M2L and L2L operators that approximate the

far-field term as a single combined operator:

LM = L2L ◦M2L ◦M2M, (41)
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which transforms an input vector of coefficients of spherical harmonics of all input atoms

of a degree up to `max into an output vector of weights of spherical harmonics of all input

atoms of a degree up to pmax:

LM : M × (`max + 1)2 −→M × (pmax + 1)2. (42)

The input coefficients correspond to the multipole expansions while the output coefficients

are related to the local expansions. The adjoint operator L>M applies the adjoint M2M,

adjoint M2L and adjoint L2L in reversed order:

L>M = M2M> ◦M2L> ◦ L2L>, (43)

with the input and the output of the following sizes:

L>M : M × (pmax + 1)2 −→M × (`max + 1)2. (44)

Due to the linear nature of the M2M, M2L and L2L operators that consist of a chain of

matrix-vector products, both the primal LM and the adjoint L>M are linear operators.

Following the notation of Algorithm 7, presented in Appendix A, we introduce Ni as

the list of all input spheres that form the near admissible pair with the i-th input sphere

excluding the i-th sphere itself. The value |Ni| represents the number of elements of the

list Ni.

1. The potentials

The potential P i(x;v`) in the vicinity of the i-th ball at every required external grid point

xi + risn is approximated as the sum of the near-field and the far-field potentials:

∀i, n : P i(xi + risn;v`) =
M∑
j=1
j 6=i

`max∑
`m

[(v`)j]
m
` P

j
`m(xi + risn) (45)

≈
∑
j∈Ni

`max∑
`m

[(v`)j]
m
` P

j
`m(xi + risn) (46)

+

pmax∑
`m

[(LM(v`))i]
m
` Li`m(xi + risn). (47)

It is worth noting that the term

Li`m(xi + risn) =
4π

2`+ 1
r`i (xi + risn)Y i

`m(xi + risn) =
4π

2`+ 1
Y m
` (sn)
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in the far-field potential does not depend on the index i. In turn, we denote it as follows:

[Ln]m` = Li`m(xi + risn), (48)

and rewrite the approximation of the potential as:

P i(xi + risn;v`) ≈
∑
j∈Ni

`max∑
`m

[(v`)j]
m
` [Pnij]m` (49)

+

pmax∑
`m

[(LMv`)i]
m
` [Ln]m` . (50)

Finally, to calculate potentials at all the external grid points we need to:

A1. Compute LMv` by the FMM in O(Mp3max) operations,

A2. Account all the near-field potentials for every atom (49) in O(|Ni|Ng`
2
max) operations

per i-th sphere,

A3. Add up approximation of the far-field potentials (50) in O(Ngp
2
max) operations for

each atom.

The total arithmetic complexity of the potentials scales linearly with the number of atoms

M of the molecule.

2. The gradients of the potentials

Let us remind, that we also require the vector of the gradients of all the potentials

P i(x,v`) at appropriate external grid points:

∀i, n : ∇xi
P i(xi + risn;v`) =

M∑
j=1
j 6=i

`max∑
`m

[(v`)j]
m
` ∇P

j
`m(xi + risn) (51)

≈
∑
j∈Ni

`max∑
`m

[(v`)j]
m
` ∇P

j
`m(xi + risn) (52)

+

pmax∑
`m

[(LMv`)i]
m
` ∇Li`m(xi + risn). (53)

A way of computing gradients

∇Pj`m(t) = ∇tP`m(t,xj; rj) = −∇xj
P`m(t,xj; rj) (54)
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and

∇Li`m(t) = ∇tL`m(t,xi; ri) = −∇xi
L`m(t,xi; ri) (55)

for all possible pairs (`,m) was already discussed in the previous Section III B 4. Hence we

utilize the operators dP and dL to obtain the gradients in a fast way:

∀i, n : ∇xi
P i(xi + risn;v`) ≈−

∑
j∈Ni

1

rj

`max+1∑
`m

[dP ((v`)j)]
m
` [Pnij]m` (56)

− 1

ri

pmax−1∑
`m

[dL ((LMv`)i)]
m
` [Lni ]m` . (57)

Note that the matrix-vector products dP ((v`)j) and dL ((LMv`)i) are defined in Appendix B

by (79) and (87) respectively. Assuming that the vector LMv` is already computed in

O(Mp3max) operations, the following steps are needed to obtain all necessary gradients for

each atom:

B1. Compute dP((v`)j) in O(`3max) operations,

B2. Account for the near-field interactions (56) in O(|Ni|Ng`
2
max) operations,

B3. Acquire dL(LMv`)i in O(p3max) operations,

B4. Approximate the gradient of the far-field interactions by the equation (57) in

O(Ngp
2
max) operations.

Due to locality of the above steps, total complexity of computing the gradients of the po-

tentials for all spheres together is again linear in the number of atoms M .

3. The adjoint potentials

The adjoint potential Pj takes values of potentials at external grid points and translates

them into spherical harmonics:

Pj(`′,m′;wz) =
M∑
i=1
i 6=j

Ng∑
n=1

Pj`′m′(xi + risn)(wz)
n
i , (58)

where the vector (wz)
n
i was previously defined in equation (13). Due to linearity of the

primal potential P i(xi+risn;v`), its adjoint can be computed by applying its suboperations

adjointly in the reversed order. While it is easy to acquire adjoints of the near-field potentials,
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the far-field potentials require certain additional operations. The computation of the primal

far-field potentials requires two steps: (A1.) the evaluation of LMv` with the linear operator

LM and (A3.) the matrix-matrix product by the matrix L. Thus, the adjoint far-field

potentials can be accounted for also in two steps: the adjoint matrix-matrix product by the

matrix L followed by applying the adjoint operator L>M. The first operation (adjoint of A3.)

can be shortly represented by introducing the following auxiliary matrix ŵz:

∀i : [(ŵz)i]
m
` =

Ng∑
n=1

(wz)
n
i [Ln]m` , (59)

such that the entire adjoint potential becomes

Pj(`′,m′;wz) ≈
∑
i∈Nj

Ng∑
n=1

[Pnij]m
′

`′ (wz)
n
i +

[(
L>Mŵz

)
j

]m′
`′
. (60)

Hence we summarize the cost of computing the adjoint potentials:

C1. Precompute the adjoint matrix-matrix product (59) in O(MNgp
2
max) operations,

C2. Calculate the near-field term of the adjoint potentials (60) in O(|Nj|Ng`
2
max) oper-

ations per atom,

C3. Execute the adjoint far-field operator L>M in O(Mp3max) operations to take into

account the far-field term of the adjoint potentials (60).

Steps C1. and C3. are shared among all the atoms and, hence, are processed only once,

while the step number C2. is local to each sphere. Therefore the computation of the adjoint

potentials Pj(`′,m′;wz) for all possible values of j, `′ and m′ scales linearly with the size M

of the molecule.

4. The gradients of the adjoint potentials

The gradient over the center of the j-th atom of the adjoint potential is as follows:

∇xj
Pj(`′,m′;wz) =

M∑
i=1
i 6=j

Ng∑
n=1

∇xj
P`′m′(xi + risn,xj; rj)(wz)

n
i . (61)

By contracting it with the vector (v`)j and taking into account equation (40), we get:

`max∑
`′m′

[(v`)j]
m′

`′ ∇xj
Pj(`′,m′;wz) =

1

rj

`max+1∑
`′m′

[dP ((v`)j)]
m′

`′ P
j
(`′,m′;wz). (62)
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This simply implies that to compute the entire term of the analytical forces, presented in the

equation (18), we just need to contract a vector of the adjoint potentials, which is already

precomputed, with the gradient of the corresponding multipole coefficients. Therefore, the

arithmetical complexity of obtaining the gradients of the adjoint potentials is also linear in

the size of the molecule.

IV. NUMERICAL EXPERIMENTS

In order to demonstrate that our implementation of the FMM-accelerated ddPCM is

accurate and linearly scaling, we present benchmark results in this section. More precisely,

we report the relative errors of the solvation energies and the forces, the scaling of a single

matrix-vector product of the ddPCM and the ddCOSMO linear systems as well as the scaling

of the entire algorithm for computing the energies and the forces with respect to the number

of atoms.

The ddCOSMO and the ddPCM linear systems are solved iteratively using a Jacobi/DIIS

approach both for the FMM-accelerated and the baseline implementations with a relative

stopping criterion based on the tolerance τ = 10−8. All molecular structures, details and

parameters used for the numerical tests are presented in Appendix C for the purpose of

reproducibility. For each computation, we present the relative errors of the energy and the

forces given by |Ê−E|
E

and ‖F̂−F‖
‖F‖ , where E and F denote the reference energy and forces

while Ê and F̂ denote the approximated values and ‖ ·‖ stands for the Frobenius norm. The

meaning of the reference values are explicitly noted for each plot.

All numerical tests are based on a scaled van der Waals (vdW) cavity of the solute

molecules, in which each vdW radius taken from ref.2 is scaled by 1.1. We also set the

dielectric permittivity of the environment to 2.0, a value which corresponds to an apolar

solvent. The choice is motivated by the fact that for low values of ε the COSMO approx-

imation is not accurate anymore, and to get the correct solvation energy one has to use

PCM.

To begin with, we compare our FMM-based approach with the FMM harmonics of a

degree as large as pmax = 20 against the non-accelerated (quadratically scaling) ddPCM

implementation on small molecular structures in order to verify the correctness of the im-

plementation. The corresponding relative errors of the solvation energy and the forces for
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the modeling harmonics `max equal to 6, 8, 10 and 12 are presented in FIG. 3 on the left

panel. The right panel of the same FIG. 3 represents the speedup of the FMM-accelerated

code with the same value pmax = 20, which is measured as a ratio of the total computational

time in seconds of the FMM-accelerated code against the baseline non-accelerated imple-

mentation. We observe that the relative error in energy and forces is at most 10−7. We

therefore deduce the correctness of our FMM-accelerated implementation.

Since the initial ddPCM scales quadratically, it becomes exhaustively time-consuming

to perform any tests for molecules with more than 1000 atoms. Hence, we use our FMM-

accelerated approach with the large value of pmax = 20 as a baseline method that provides

reference energies and forces for larger molecules as presented in the FIG. 4, and benchmark it

against computations using a lower pmax. This figure shows that the accuracy of the solvation

energies and forces can be systematically controlled by increasing the FMM maximal degree

pmax. Even more, the relative errors decay exponentially with the growth of the parameter

pmax. The presented errors of the energies are much lower compared to errors of the forces

and the reason can be explained as follows: we only approximate the off-diagonal part of

the solution matrix, while the diagonal part is taken as it is. Provided with the value

ε = 2 of the bulk dielectric permittivity, our linear systems of interest are heavily diagonally

dominant. Therefore, the overall impact of the off-diagonal part for the energies is more or

less negligible. For the forces, on the other hand, the dominant diagonal constant vanishes

and the accuracy drops to the level of the FMM-approximation.

In terms of the algorithmic complexity, we show first the average time of a single matrix-

vector product by the primal and the adjoint PCM and COSMO linear systems in the FIG. 5.

As can be seen, the FMM makes every single matrix-vector product by the PCM system

linearly scaling, roughly one order of magnitude more expensive with respect to ddCOSMO

(when using the very high pmax = 20).

As reported in FIG. 6 (left),the total number of iterations required for the ddPCM step

is the more or less constant regardless of the molecular system, whereas the number of

iterations required for the ddCOSMO step slightly increases when going to larger systems,

but despite this it reaches a plateau at around 75–80 iterations. FIG. 6 (right) reports the

total run time, which again is linear scaling, and hence, using the FMM accelerated ddPCM

it is possible to run calculations on very large systems.
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FIG. 4: Relative error of the solvation energy (left) and the forces (right) of the

FMM-accelerated ddPCM solver with different pmax against the FMM-accelerated ddPCM

solver with pmax = 20.

V. CONCLUSION

We presented a FMM-based acceleration of the baseline ddPCM approach yielding lin-

ear scaling for the computation of the ddPCM-solvation energy and forces. Numerical

experiments show that the accelerated version outperforms the baseline method in terms of

execution time both for large and small molecules with a controllable error. Our code is

publicly available within the ddX-library that combines implementations of the ddCOSMO,

28



16
6

46
3

93
7

19
22

39
32

5
94

1
87

99

20
47

9

46
94

9

10
35

87

62
49

00

Number of atoms

10−2

10−1

100

101

102

103

104

T
im

e,
se

co
n
d
s

y = 7 · 1
0
−3 · x

Average (primal+adjoint)
PCM matvec time

pmax = `max

6

8

10

12

16
6

46
3

93
7

19
22

39
32

59
41

87
99

20
47

9

46
9
4
9

1
03

5
8
7

6
24

90
0

Number of atoms

10−2

10−1

100

101

102

103

104

T
im

e,
se

co
n
d
s

y = 1 · 1
0
−3 · x

Average (primal+adjoint)
COSMO matvec time

`max

6

8

10

12

FIG. 5: Average time of a single PCM-related (left) and COSMO-related (right)

matrix-vector product.

16
6

46
3

64
2

93
7

1
92

2

3
93

2

5
94

1

7
88

7

8
79

9

2
04

7
9

4
69

4
9

10
35

8
7

6
24

9
00

Number of atoms

0

20

40

60

80

100

N
u
m

b
er

of
it

er
at

io
n
s

Primal+adjoint iteration
for PCM and COSMO systems

pmax = `max

6

8

10

12

PCM

COSMO

16
6

46
3

93
7

19
22

39
32

59
41

87
99

20
47

9

46
94

9

10
35

87

62
49

00

Number of atoms

101

102

103

104

105

T
im

e,
se

co
n
d

s

Total time

pmax = `max

6

8

10

12

FIG. 6: The number of iterations to solve both the primal and the adjoint PCM and the

COSMO linear systems (left) and the total time (right) of the entire execution.

ddPCM and ddLPB. Our FMM-implementation is modular and can be easily adapted to

new kernels such as the Yukawa-kernel that is required for the linearized Poisson-Boltzmann

equation, which is subject to ongoing work to achieve linear scaling for ddLPB. We have

several further possible extensions to the current state of research in our minds: to sup-
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port Solvent Excluded Surfaces (SES) of cavities, to enable parallelism for shared-memory

systems to reduce wall execution time for large molecules and to provide a priori or a poste-

riori strategy of choosing the maximal degree of the FMM harmonics, which is currently a

user-chosen internal parameter of the new ddPCM. A different direction of improvement is

testing alternative, coarse-grained, cavity definitions, which use a lower number of spheres

with respect to the one-to-one correspondence used in this and in the preceding works. Us-

ing coarse grained cavities, where one sphere contains several atoms, on one side lowers the

computational cost and on the other side allows for more physically accurate shapes.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Zenodo at

http://doi.org/10.5281/zenodo.6656429, which includes the implementation of ddPCM in

the ddX-library, the data and scripts to run the results and the jupyter notebook to create

the plots. Further, we provide some details, including on the hardware, in Appendix C.
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APPENDIX A: ALGORITHMS

Algorithm 5 Recursive inertial bisection of the input atoms.

Require: Set of centers {xj}Mj=1 of the input M atoms.

Ensure: Binary cluster tree T with a single sphere in each leaf node.

1: Init the root node by indexes of all spheres R = {1, . . . ,M}

2: Init a temporary list of nodes L = {R}

3: while L 6= ∅ do

4: p = pop(L)

5: if |p| > 1 then {do not divide clusters with a single input sphere}

6: Compute the center of mass: c = 1
|p|
∑|p|

j=1 xpj .

7: Form the 3× |p| matrix Y with shifted coordinates: Y:,j = xpj − c.

8: Get the first right singular vector v of the matrix Y .

9: Let n = arg(v < 0) {set of indices of negative values of v}

10: Let n = {1, . . . , |p|} \ n {set of indices of non-negative values of v}

11: Extend set L by two subsets: {pni}
|n|
i=1 and {pni}

|n|
i=1

12: end if

13: end while
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Algorithm 6 Computing bounding spheres of a binary cluster tree

Require: Binary cluster tree T .

Ensure: Bounding spheres for all nodes of the tree T .

1: Let h = height(T ) be a number of levels

2: for i = h, . . . , 1 do {from the bottom of the tree to the top}

3: for all leaf nodes p of the level i of the tree T do

4: Use the input sphere of the node p as its bounding sphere

5: end for

6: for all non-leaf nodes p of the level i of the tree T do

7: Let (c1, r1) and (c2, r2) be bounding spheres of children nodes of p

8: Let d = ‖c1 − c2‖ {Euclidean distance between the spheres}

9: if r1 ≥ r2 + d then {The 2nd sphere is inside the 1st one}

10: (c, r) = (c1, r1) {Use the 1st sphere}

11: else if r2 ≥ r1 + d then {The 1st sphere is inside the 2nd one}

12: (c, r) = (c2, r2) {Use the 2nd sphere}

13: else

14: Let r = (r1 + r2 + d)/2

15: Let c = c2 + (d− r2) c1−c2d

16: end if

17: Use a sphere (c, r) as the bounding sphere of the node p

18: end for

19: end for
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Algorithm 7 Partitioning of a cluster tree into admissible pairs of nodes.

Require: Cluster tree T with the root node R.

Ensure: Lists of far F and near N admissible pairs of nodes.

1: Initialize N = ∅ and F = ∅.

2: Initialize the test list L = {(R,R)}.

3: while L 6= ∅ do

4: (p1, p2) = pop(L) {Get the first pair of nodes to be tested}

5: Let (c1, r1) and (c2, r2) be bounding spheres of p1 and p2 respectively

6: Let d = ‖c1 − c2‖ {Distance between centers of spheres}

7: if d− r1 − r2 ≥ max(r1, r2) then {Check the admissibility condition}

8: Push the pair (p1, p2) into the set F .

9: else if p1 and p2 are leaf nodes of the bottom level of the tree T then

10: Push the pair (p1, p2) into the set N .

11: else {Check all possible pairs of children nodes}

12: for all c1 ∈ children(p1) do

13: for all c2 ∈ children(p2) do

14: Push the pair (c1, c2) into the set L.

15: end for

16: end for

17: end if

18: end while

Algorithm 8 Balancing a cluster tree by adding mock nodes

Require: Unbalanced cluster tree T .

Ensure: Balanced cluster tree T .

1: Let h = height(T ) be a number of levels

2: for i = 1, . . . , h− 1 do {top to bottom, except the bottom of the tree}

3: for all leaf nodes p of the level i of the tree T do

4: Add child to the node p with the same input atom and bounding sphere.

5: end for

6: end for
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FIG. 7: Computing the directional derivative along the direction ns of the multipole

expansion at t due to a multipole located at s with the help of the M2M translation from

the sphere at the center s+ δns to the one centered at s.

APPENDIX B: GRADIENT COMPUTATIONS OF THE POTENTIAL AND

ADJOINT-POTENTIAL

We will show how we compute gradients of multipole expansions

`max∑
`m

[M]m` P`m(t, s; r)

and local expansions
pmax∑
`m

[L]m` L`m(t, s; r)

with respect to the position of the source point s. Here, t denotes the target point of the

potential induced by the multipole expansion from the source sphere at the center s with

radius r.

We first consider the directional derivative of each mode P`m(t, s, r) of the multipole ex-

pansion centered at s with respect to a given normalized direction ns which can be expressed

as the following limit:

∂

∂ns
P`m(t, s; r) := lim

δ→0

P`m(t, s+ δns; r)− P`m(t, s; r)

δ
. (63)

The source s+ δns of the potential P`m(t, s+ δns; r) can be translated back to the original

(fixed) location s using the M2M operation:

P`m(t, s+ δns; r) =
∞∑
`′m′

P`′m′(t, s; r)[M2M(δns, r, r)]
m′m
`′` , (64)
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where [M2M(δns, r, r)]
m′m
`′` is the M2M translation of a solid harmonics of degree (`,m) with

scaling radius r from the point δns to the solid harmonics of degree (`′,m′) of the same

radius r at the origin.

By substituting equation (64) twice in the equation (63) we get

∂

∂ns
P`m(t, s; r) =

∞∑
`′m′

P`′m′(t, s; r) (65)

× lim
δ→0

[M2M(δns, r, r)]
m′m
`′` − [M2M(0, r, r)]m

′m
`′`

δ
. (66)

This principle is illustrated in FIG. 7.

The M2M operation can now be rewritten in the form of a rotation, OZ translation and

a backward rotation as in equation (37):

∂

∂ns
P`m(t, s; r) =

∞∑
`′m′

P`′m′(t, s; r)
∑̀
k=−`

[Q(ns, `
′)>]m

′k
`′`′ [Q(ns, `)]

km
`` (67)

× lim
δ→0

[M2M(δez, r, r)]
kk
`′` − [M2M(0, r, r)]kk`′`
δ

. (68)

The M2M translation over the OZ axis was previously introduced in equation (33). Every

element of this translation is a polynomial function of ρ = δ and we substitute the limits of

the differences by the derivative:

lim
δ→0

[M2M(δez, r, r)]
kk
`′` − [M2M(0, r, r)]kk`′`
δ

=
d

dδ

(
[M2M(δez, r, r)]

kk
`′`

)
δ=0

. (69)

The values of such derivatives are easy to obtain from equation (33):

d

dδ

(
[M2M(δez, r, r)]

kk
`′`

)
δ=0

= 0, if `′ 6= `+ 1, (70)

and in the case `′ = `+ 1 we have

d

dδ

(
[M2M(δez, r, r)]

kk
(`+1)`

)
δ=0

=

√
(`+ 1− k)(`+ 1 + k)(2`+ 3)

r
√

2`+ 1
. (71)

As is clearly seen, every pair of indices (`, k) yields only a single non-zero derivative of the

OZ translation part of the M2M operation. Then, the directional derivative of the single
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mode of the multipole expansion can be simplified as follows:

∂

∂ns
P`m(t, s; r) =

1

r

`+1∑
m′=−`−1

P(`+1)m′(t, s; r) (72)

×
∑̀
k=−`

[Q(ns, `+ 1)>]m
′k

(`+1)(`+1)[Q(ns, `])
km
`` (73)

×
√

(`+ 1− k)(`+ 1 + k)(2`+ 3)√
2`+ 1

. (74)

It is important to note that in the case ` = `max, the backward rotation is performed for

harmonics of a degree `max +1. Let us introduce the following sparse (`max +2)2×(`max +1)2

matrix:

[ΛP ]k
′k
`′` =

0 if (`′, k′) 6= (`+ 1, k),
√

(`+1−k)(`+1+k)(2`+3)
√
2`+1

if (`′, k′) = (`+ 1, k).
(75)

Then, the directional derivative of the single mode of degree ` of the multipole expansion is

just a linear combination of all modes of degree `+ 1 of the same multipole expansion, i.e.

∂

∂ns
P`m(t, s; r) =

1

r

`+1∑
m′=−`−1

P(`+1)m′(t, s; r)[Q(ns, `max + 1)>ΛPQ(ns, `max)]
m′m
(`+1)`. (76)

Therefore, the directional derivative of the entire multipole expansion of degree up to `max

is the multipole expansion of maximal degree `max + 1:

∂

∂ns

`max∑
`m

[M]m` P`m(t, s; r) =
1

r

`max+1∑
`m

[dP(ns)M]m` P`m(t, s; r), (77)

where the matrix dP(ns) ∈ R(`max+2)2×(`max+1)2 is the following product of three matrices:

dP(ns) := Q(ns, `max + 1)>ΛPQ(ns, `max), (78)

and [dP(ns)M]m` the (`,m)-th coefficient of the matrix-vector product between dP(ns) and

M. It is natural to extend such a notation to a case of the gradient:

dP = [dP(ex), dP(ey), dP(ez)]
> ∈ R3×(`max+2)2×(`max+1)2 , (79)

which is useful to represent the gradient of the multipole expansion:

∇s

`max∑
`m

[M]m` P`m(t, s; r) =
1

r

`max+1∑
`m

[dPM]m` P`m(t, s; r), (80)
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where dPM ∈ R3×(`max+2)2 with

[dPM]m` =
[
[dP(ex)M]m` , [dP(ey)M]m` , [dP(ez)M]m`

]>
∈ R3. (81)

On the other hand we also need to obtain gradients of the local expansions with harmonics

of a degree up to pmax. It is intuitive to repeat all the above multipole-related steps of

computing the gradient to the case of the local expansion. The only difference is that the

derivative of the L2L translation over the OZ axis is zero in the case where the target degree

`′ being not equal to the source degree ` minus one:

d

dδ

(
[L2L(δez, r, r)]

kk
`′`

)
δ=0

= 0, if `′ 6= `− 1. (82)

In the case `′ = `− 1, the derivative equals the following expression:

d

dδ

(
[L2L(δez, r, r)]

kk
(`−1)`

)
δ=0

= −
√

(`− k)(`+ k)(2`− 1)

r
√

2`+ 1
. (83)

Effectively, this implies that the directional derivative of the single mode of degree ` of

the local expansion is a linear combination of all modes of degree ` − 1 of the same local

expansion. Therefore, we introduce the following sparse p2max × (pmax + 1)2 matrix:

[ΛL]k
′k
`′` =

0 if (`′, k′) 6= (`− 1, k),

−
√

(`−k)(`+k)(2`−1)
√
2`+1

if (`′, k′) = (`− 1, k).
(84)

Now, we can formally define the operator dL(ns) : R(pmax+1)2 → Rp2max as follows

dL(ns) := Q(ns, pmax − 1)>ΛLQ(ns, pmax). (85)

Once again, it is natural to define a gradient-related tensor dL ∈ R3×p2max×(pmax+1)2 :

dL = [dL(ex), dL(ey), dL(ez)]
>, (86)

with a tensor-vector product dL L defined as

[dL L]m` =
[
[dL(ex)L]m` , [dL(ey)L]m` , [dL(ez)L]m`

]>
. (87)

In the end, the gradient of the local expansion is rewritten in a short form:

∇s

pmax∑
`m

[L]m` L`m(t, s; r) =
1

r

pmax−1∑
`m

[dL L]m` L`m(t, s; r), (88)

which is analogous to its multipole counterpart (80).

By the construction of the operators dP and dL, their arithmetic complexities are O(`3max)

and O(p3max) respectively since both are based on rotations and diagonal scaling of harmonics.
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APPENDIX C: REPRODUCIBILITY

For reproducibility, we provide all examples publicly in 29, which includes the implemen-

tation of ddPCM in the ddX-library, the data and scripts to run the results and the jupyter

notebook to create the plots. Further, we provide some details in the following:

• Our software: ddX library, https://github.com/ACoM-Computational-Mathematics/

ddX commit 524668e8033c6c9c53809b81e04e4739ac289950

• Other software.

– Operating system: CentOS Linux 7, kernel 3.10.0-1160.59.1.el7.x86 64,

– Compilers: GNU Fortran and gcc 8.3.0

– Third-party libraries: BLAS 3.4.2, LAPACK 3.4.2

– Miscellaneous executables: CMake 3.22.1,

• Hardware. Only a single cluster node with the following specification was used:

– Motherboard: Dell Inc. 04DK47 A06,

– CPU: 2 x AMD EPYC 7282 16-Core Processor @ 2.30GHz,

– Memory: 512 GB,

• Inputs. For each of the input molecules we prepared a VdW surface by scaling the Van

der Waals radii by 1.1. The list of test molecules is the following (number of atoms,

name, pdb code):

1. M = 166, chignolin, 2rvd13

2. M = 463, melittin monomer, 2mlt

3. M = 642, crambin, 1ejg16

4. M = 937, melittin complete, 2mlt

5. M = 1922, ubiquitin A subunit, 2qho19

6. M = 3932, ubiquitin AB subunits, 2qho19

7. M = 5941, ubiquitin ABC subunits, 2qho19
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8. M = 7887, ubiquitin ABCD subunits, 2qho19

9. M = 8799, ubiquitin complete, 2qho19

10. M = 20479, hydroxynitrile lyase, 3gdp8

11. M = 11827, green fluorescent protein, 2gx230

12. M = 103587, hydrolase, 3gdp26

13. M = 624900, Ljungan virus, 3jb440

• Other ddPCM parameters:

– Number of the Lebedev grid points: Ng = 590,

– Dielectric permittivity of the solute: ε = 2.0,

– Relative stop criterion for the Jacobi iterative solver: 10−8,

– Number of DIIS extrapolation points: 25.

43



(a) Quadtree. (b) Recursive inertial bisection.

(c) Quadtree. (d) Recursive inertial bisection.

FIG. 1: Comparison of a quadtree and a recursive inertial bisection for a line and a circle

of equally-weighted particles.
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(b) Balanced tree

FIG. 2: Balancing a cluster tree by adding mock nodes X1, X2 and X3. For the balanced

tree, all the leaf nodes are on the bottom level, which implies a smaller amount of the

near-field interactions and thus lowers the total complexity of the FMM matrix-vector

product.

166 463 642 937

Number of atoms

10−4

10−6

10−8

10−10

10−12

10−14

R
el

at
iv

e
er

ro
r

FMM-accelerated (pmax = 20) vs dense ddPCM

`max

6

8

10

12

Error

energy

forces

166 463 642 937

Number of atoms

2.5

5.0

7.5

10.0

12.5

15.0

S
p

ee
d

u
p

FMM-accelerated (pmax = 20) vs dense ddPCM

`max

6

8

10

12

FIG. 3: Relative error of the solvation energy and the forces (left) and the speedup (right)

of the FMM-accelerated (pmax = 20) ddPCM solver against the dense (non-accelerated)

ddPCM solver. Relative stopping criterion is τ = 10−8.
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FIG. 4: Relative error of the solvation energy (left) and the forces (right) of the

FMM-accelerated ddPCM solver with different pmax against the FMM-accelerated ddPCM

solver with pmax = 20.
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FIG. 5: Average time of a single PCM-related (left) and COSMO-related (right)

matrix-vector product.
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COSMO linear systems (left) and the total time (right) of the entire execution.
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FIG. 7: Computing the directional derivative along the direction ns of the multipole

expansion at t due to a multipole located at s with the help of the M2M translation from

the sphere at the center s+ δns to the one centered at s.
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