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Antimicrobial peptides (AMPs) represent a potential solution to the growing problem of antimicro-
bial resistance, yet their identification through wet-lab experiments is a costly and time-consuming
process. Accurate computational predictions would allow rapid in silico screening of candidate AMPs,
thereby accelerating the discovery process. Kernel methods are a class of machine learning algorithms
that utilise a kernel function to transform input data into a new representation. When appropriately
normalised, the kernel function can be regarded as a notion of similarity between instances. However,
many expressive notions of similarity are not valid kernel functions, meaning they cannot be used
with standard kernel methods such as the support-vector machine (SVM). The Krĕın-SVM represents
generalisation of the standard SVM that admits a much larger class of similarity functions. In this
study, we propose and develop Krĕın-SVM models for AMP classification and prediction by employing
the Levenshtein distance and local alignment score as sequence similarity functions. Utilising two
datasets from the literature, each containing more than 3000 peptides, we train models to predict
general antimicrobial activity. Our best models achieve an AUC of 0.967 and 0.863 on the test sets
of each respective dataset, outperforming the in-house and literature baselines in both cases. We
also curate a dataset of experimentally validated peptides, measured against Staphylococcus aureus
and Pseudomonas aeruginosa, in order to evaluate the applicability of our methodology in predict-
ing microbe-specific activity. In this case, our best models achieve an AUC of 0.982 and 0.891,
respectively. Models to predict both general and microbe-specific activities are made available as
web applications.

1 Introduction
Kernel methods are a class of machine learning algorithms that
incorporate a kernel function in order to model non-linear re-
lationships. Standard kernel methods assume that a given ker-
nel function is positive-definite. Those kernel functions which
do not satisfy this assumption are known as indefinite kernels.
The assumption of positive-definiteness is restrictive, as it lim-
its the number of applicable functions. Recent developments in
the theory of learning with indefinite kernels have now removed
this requirement, allowing a much broader class of functions to
be incorporated into kernel methods1–3. Leveraging these devel-
opments, we study the effectiveness of learning with established
sequence-similarity functions for the classification of antimicro-
bial peptides (AMPs) based on their amino acid sequences. We
evaluate the ability of the proposed methodology to predict both
general and species-specific antimicrobial activity.

AMPs, also known as host defense peptides, are a class of evolu-
tionary conserved molecules that form an important component
in the innate immune system4–6. These molecules are usually
made of 12 to 50 amino acid residues, and they typically pos-
sess certain properties, including cationicity, 30-50% hydropho-
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bicity, and amphiphilicity. They exhibit good antimicrobial ac-
tivity against a broad range of bacteria, viruses, fungi, and par-
asites. In addition, they have an inherent low risk of develop-
ing antimicrobial resistance (AMR), largely attributed to their
underlying rapid membrane permeabilising activity4,7,8. Such
broad-spectrum and rapid antimicrobial activity has prompted re-
searchers to consider AMPs as a potential remedy to the grow-
ing problem of AMR, which is a major global health threat9,10.
Nonetheless, there has so far been a lack of success in translat-
ing AMP-based therapy to clinical use, due to challenges such as
complex structure-activity relationship (SAR), drug toxicity, insta-
bility in host and infective environment, and low financial incen-
tives11,12. Owing to the complex SAR and the costly and time-
consuming process of wet-lab experiments associated with AMP
investigations, many researchers have proposed computational
approaches, including molecular dynamics (MD) simulations and
machine learning (ML) algorithms, to accelerate the discovery
and development of potential AMPs for clinical use13–19.

Several studies have highlighted the promise of ML algorithms
in predicting the antimicrobial activity, dissecting the complex
SAR, and informing the drug design of AMPs13–15. A wide range
of ML algorithms have been utilised, including random forests20,
support vector machines (SVMs)20–24 and artificial neural net-
works20–22,25,26. Many of these algorithms are used in combina-
tion with a carefully selected set of peptide features, which can be
divided into two categories: compositional and physicochemical.
The amino acid composition is the simplest example of a composi-
tional feature, which is a vector containing counts of each amino
acid in a given peptide. There are various extensions, such as the
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reduced amino acid composition27 and the pseudo amino acid
composition28. When computing the reduced amino acid com-
position, a peptide is represented in a reduced alphabet in which
similar amino acids are grouped together. The pseudo amino acid
composition accounts for composition as well as sequence-order
information, as this is not considered in the standard amino acid
composition. The set of physicochemical features include pep-
tide properties such as the charge, hydrophobicity and isoelectric
point20,24,29. These features are typically average values of the
respective properties calculated over the length of the peptide.

Classical sequence alignment algorithms, such as the Smith-
Waterman30 and Needleman-Wunsch31 algorithms, are computa-
tionally intensive and do not scale well to large problems. Many
papers have advocated the use of alignment-free methods to de-
termine sequence similarity19,32–35. The success of these endeav-
ours notwithstanding, sequence alignment functions are effective
notions of biological-sequence similarity that can reflect ances-
tral, structural or functional similarity and therefore should not
be overlooked. Several studies have utilised sequence alignment
functions for AMP prediction. For example, Wang et al. 36 and Ng
et al. 37 utilised the BLAST algorithm38 in a classification model.
Whilst these approaches led to accurate models, the BLAST algo-
rithm is a heuristic method that finds only approximate optimal
alignments. Hence, it is interesting to consider whether the same
approaches using the optimal alignment score would improve the
models.

The SVM is a well-known ML algorithm for classification and
can incorporate a kernel function in order to learn non-linear
classification boundaries. The kernel function greatly influences
the performance of the resulting classification model. When ap-
propriately normalised, a kernel function can be regarded as a
similarity function. A useful kernel function should produce simi-
larities that are relevant to the problem. Many expressive notions
of similarity are not valid kernel functions39–42, in that they are
indefinite, meaning they cannot be used with an SVM. Recent de-
velopments have now alleviated this problem, facilitating a much
larger class of similarity functions to be used in conjunction with
an SVM. Loosli et al. 1 present an algorithm for learning an SVM
with indefinite kernels. Their approach relies on a method of sta-
bilisation, meaning there is no guarantee of global optimality. On
the other hand, the Krĕın-SVM3 is an algorithm for learning an
SVM with indefinite kernels that is guaranteed to find a globally
optimal solution.

In this work, we utilised the Krĕın-SVM algorithm to assess the
effectiveness of sequence alignment functions for AMP classifi-
cation. We performed an empirical comparison of both the lo-
cal alignment score and Levenshtein distance43,44 on two AMP
datasets from the literature. Furthermore, we tested the ability
of our approach to detect species-specific activity on a dataset of
experimentally validated peptides measured against both Staphy-
lococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC
27853, henceforth referred to as S. aureus ATCC 29213 and P.
aeruginosa ATCC 27853. Our trained models are made available
as web applications at http://comp.chem.nottingham.ac.uk/
KreinAMP, for the prediction of both general and species-specific
activities.

2 Methods
AMP prediction models were developed using the Krĕın-SVM al-
gorithm in conjunction with sequence alignment functions, which
we formally define in this section. We initially describe the more
familiar SVM, before moving on to the Krĕın-SVM. We then define
the Levenshtein distance44 and the local alignment score. Finally,
we describe our computational and microbiological methodology.

2.1 SVM and Krĕın-SVM

2.1.1 SVM.

The SVM is a ML algorithm used for classification. The result of
training an SVM is a hyperplane whose distance to the closest
training instance, in either class, is maximal. Furthermore, in-
stances from each class are required to reside on separate sides
of the hyperplane. New instances are classified based solely on
which side of the hyperplane they are located. The distance
from the hyperplane to the closest training instance is known as
the margin. The hyperplane that maximises the margin is the
maximum-margin hyperplane and this is what is produced when
training an SVM.

The decision surface associated to a hyperplane is inherently
linear, which can be restrictive when the two classes are not lin-
early separable. This issue is mitigated through the use of a kernel
function, which implicitly maps the instances into a new space.
The space in which the instances are mapped to is known as a
reproducing kernel Hilbert Space (RKHS), and every kernel func-
tion is uniquely associated to a RKHS. When incorporating a ker-
nel function, the SVM finds the maximum-margin hyperplane in
the associated RKHS and this can correspond to a non-linear de-
cision surface in the original space. Equation (1) presents the
optimisation problem that is solved when training an SVM with
L2 loss, commonly known as an L2-SVM. We opted for an L2-
SVM as greater penalisation is placed on instances which violate
the constraints.

argmin
f∈H,ξ∈Rn

n

∑
i=1

ξ
2
i +λ∥ f∥2

H,

subject to yi f (xi)≥ 1−ξi, i = 1, . . . ,n.

(1)

We denote by xi the i−th training instance and by yi its corre-
sponding label. Furthermore, H denotes the RKHS from which
a solution is found. The solution is a function f ∈ H and a vec-
tor of slack variables ξ which minimise the objective function,
subject to the constraints. The constraint yi f (xi)≥ 1−ξi imposes
that the i−th instance lies on the correct side of the hyperplane
and that its distance to the hyperplane is greater than or equal to
the margin. An instance x j which does not satisfy this constraint
contributes a value of ξ 2

j to the objective function, where ξ j is
the distance between x j and the margin. The ∑

n
i=1 ξ 2

i term in the
objective function is the total contribution of all instances which
do not satisfy the constraints. The ∥ f∥2

H term is the norm of the
considered function and acts as a regulariser. The hyperparame-
ter λ can be tuned to provide a balance between the number of
instances that violate the constraints and the regulariser.
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2.1.2 Krĕın-SVM.

The Krĕın-SVM is a classification algorithm that is defined to in-
corporate a much broader class of kernel functions, known as in-
definite kernel functions. Similarly to a standard kernel function,
an indefinite kernel function implicitly maps instances into a new
space. However, the space associated to an indefinite kernel func-
tion is known as a reproducing kernel Krĕın Space (RKKS). Whilst
operating in different spaces, the SVM and Krĕın-SVM are concep-
tually similar. Both algorithms incorporate a kernel function, find
the maximum-margin hyperplane in the associated space and are
capable of learning non-linear decision surfaces.

argmin
f∈K,ξ∈Rn

n

∑
i=1

ξ
2
i +λ+∥ f+∥2

H+
+λ−∥ f−∥2

H−
.

subject to yi f (xi)≥ 1−ξi, i = 1, . . . ,n.

(2)

Equation (2) presents the optimisation problem that is solved
when training the Krĕın-SVM with L2 loss. We denote by K the
associated RKKS. Similarly to the SVM, the solution is a function
f ∈K and a vector of slack variables ξ which minimise the objec-
tive function. The first term in the objective function, as well as
the constraints, have the same interpretation as in eq. (1). The
only notable difference to the SVM is the method of regularisa-
tion. Any RKKS K can be expressed as a direct sum of the form

K=H+⊕H−,

where H± are RKHSs. This means that any function f ∈ K can
be decomposed as f = f+ ⊕ f−, where f± ∈ H±. Hence, regu-
larisation in eq. (2) is performed by separately regularising each
component of the decomposition. The hyperparameters λ± can
be tuned to provide a balance between the number of instances
that violate the constraints and the regularisation of each decom-
position component.

2.2 Sequence Similarities and Distances

We now proceed to define the sequence similarities used through-
out this work. This section closely follows the works of Setubal
and Meidanis 45 and Yujian and Bo 43 . First, we clarify our termi-
nology.

2.2.1 Notation and Terminology.

Let Σ be a finite alphabet, Σn ⊆ Σ be the set of all strings of length
n from Σ and Σ∗ the set of all strings from that alphabet. A string
s ∈ Σ∗ of length n is a sequence of characters that can be indexed
as s = s1 . . .sn. Given a string s ∈ Σn, we say that u ∈ Σm is a sub-
sequence of s if there exists a set of indices I = {i1, . . . , im} with
1 ≤ i1 ≤ . . . ≤ im ≤ n, such that u j = si j for j = 1, . . . ,m. We write
u = s[I] for short. We say that v ∈ Σl is a substring of s if v is a sub-
sequence of s with index set J = { j1, . . . , jl} such that jr+1 = jr +1
for r = 1, . . . , l − 1. That is, v is a subsequence consisting of con-
secutive characters of s.

2.2.2 Global Alignments.

The goal of a sequence alignment is to establish a correspondence
between the characters in two sequences. In the context of bioin-

formatics, a pairwise alignment can indicate ancestral, structural
or functional similarities between the pair of sequences. In this
section, we provide a formal review of global sequence alignment.

Definition 2.1 (Global Alignment). Let Σ be an alphabet and let
s ∈ Σn and t ∈ Σm be two strings over Σ. Define Σg = Σ∪{“− ”}
as the extension of Σ with the gap character “ − ”. The tuple
α(s, t) = (s′, t ′) is a global alignment of sequences s and t if and
only if

1. s′, t ′ ∈ Σ∗
g

2. |s′|= |t ′|= l, such that max(n,m)≤ l ≤ m+n,

3. The subsequence of s′ obtained by removing all gap charac-
ters is equal to s,

4. The subsequence of t ′ obtained by removing all gap charac-
ters is equal to t,

5. {i|s′i = “− ”}∩{i|t ′i = “− ”}=∅.

Definition 2.1 provides a formal definition of global alignment.
Whilst many possible alignments exist for two strings, the goal of
sequence alignment is to find an alignment that optimises some
criterion. A scoring function, presented in definition 2.2, can be
used to quantify the “appropriateness" of an alignment. An opti-
mal global alignment is then one which is optimal with respect to
a given scoring function, as shown in definition 2.3.

Definition 2.2 (Scoring Functions). Let Σ be an alphabet, Σg =

Σ∪{“− ”} be the extension of Σ with the gap character “− ” and
p : Σg ×Σg →R be a function defined over the elements of Σg. We
say p is a similarity scoring function over Σg if, for all x,y ∈ Σ, we
have

1. p(x,x)> 0,

2. p(x,x)> p(x,y),

3. p(x,y) = p(y,x),

4. p(x,“− ”)≤ 0.

Similarly, we say p is a distance scoring function over Σg if, for all
x,y,z ∈ Σ, we have

1. p(x,x) = 0,

2. p(x,y)> 0,

3. p(x,y) = p(y,x),

4. p(x,“− ”)> 0,

5. p(x,z)≤ p(x,y)+ p(y,z)

Definition 2.3 (Optimal Global Alignment). Let Σ be an alphabet,
Σg = Σ∪{“−”} be the extension of Σ with the gap character “−”
and consider two strings s ∈ Σn, t ∈ Σm. Let α(s, t) = (s′, t ′) be a
valid global alignment of s and t (valid in the sense that it satisfies
the conditions of definition 2.1), p : Σg × Σg → R be a scoring
function over Σg and A(s, t) be the space of all valid alignments of
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s and t. The score Sp(α(s, t)) of α(s, t) with respect to the scoring
function p is defined as

Sp(α(s, t)) =
l

∑
i=1

p(s′i, t
′
i ).

If p is a similarity scoring function, then the optimal global
alignment α∗(s, t) with respect to p is defined as

α
∗(s, t) = argmax

α(s,t)∈A(s,t)
Sp(α(s, t)).

Similarly, if p is a distance scoring function then the optimal
global alignment α∗(s, t) with respect to p is defined as

α
∗(s, t) = argmin

α(s,t)∈A(s,t)
Sp(α(s, t)).

Since an alignment is optimal with respect to a given scoring
function, it is natural to consider which scoring function to use in
order to obtain the most meaningful alignments. In the context
of biological sequences, researchers have been considering this
problem for many years. A number of families of scoring matrices
have been designed to encode useful notions of similarity. In this
work, we only considered the BLOSUM62 scoring matrix46, as it
is a standard choice when performing sequence alignment.

2.2.3 Levenshtein Distance.

The string edit distance defines a useful notion of distance be-
tween a pair of strings. It is informally defined as the minimum
number of edit operations required to transform one string into
another. The Levenshtein distance is a variant of the string edit
distance that allows the operations of substitution, deletion and
insertion of characters, and these are defined in definition 2.4.

Definition 2.4 (Elementary Edit Operations). Let Σ be an alpha-
bet. For two characters a,b ∈ Σ, we denote by a → b the elemen-
tary edit operation that substitutes a with b. Denoting by ε the
null character (the empty string), we can define the elementary
edit operations of insertion and deletion as ε → b and a → ε, re-
spectively.

In order to define more complex transformations, one can con-
sider the consecutive application of a sequence of elementary edit
operations. Of special interest to the Levenshtein distance are
those sequences of operations that transform one string into an-
other. Such a sequence is known as an edit path and its length
is defined as the number of operations in the sequence. The Lev-
enshtein distance between two strings is defined as the length of
the minimum length edit path, as seen in definition 2.5.

Definition 2.5 (Levenshtein Distance). Let Σ be an alphabet and
consider two strings s ∈ Σn and t ∈ Σm from Σ. An edit path from s
to t is denoted by Ps,t and represents a sequence of elementary edit
operations that transforms s into t. Denote by |Ps,t | the number of
operations contained in Ps,t and by Ps,t the space of all edit paths
from s to t. The Levenshtein distance dL(s, t) between s and t is
defined as

dL(s, t) = min
Ps,t∈Ps,t

|Ps,t |.

Definition 2.5 shares some interesting similarities with defini-
tion 2.3. Both problems solve a combinatorial optimisation prob-
lem and, indeed, the Levenshtein distance can be realised as a
special case of global alignment. More specifically, consider the
distance scoring function p : Σg ×Σg →{0,1} defined as

p(x,y) =

{
0, if x = y

1, otherwise.

For two strings s ∈ Σn and t ∈ Σm, let their optimal global align-
ment with respect to p be equal to α∗(s, t) = {s′, t ′}. Define the set
U as

U = {i | s′i ̸= t ′i}.

Then the score Sp(α
∗(s, t)) of α∗(s, t) with respect to p is equal

to the cardinality of U . This is exactly equal to the Levenshtein
distance between s and t.

2.2.4 Local Alignments.

A global alignment produces an alignment which spans the whole
length of a pair of strings. It is based on the assumption that the
strings are related in their entirety. This assumption can be re-
strictive, since it is often the case that certain substrings exhibit
high similarity whilst others do not. A local alignment produces
an alignment that finds those high similarity substrings. That is,
it finds the highest scoring global alignment from all possible sub-
strings of the pair of strings. We formalise this notion in defini-
tion 2.6.

Definition 2.6 (Optimal Local Alignment). Let Σ be an alphabet,
Σg = Σ∪{“−”} be the extension of Σ with the gap character “−”
and p : Σg ×Σg → R be a similarity scoring function. For a string
s∈ Σn, let Is be the space of all index sets such that for any Is ∈ Is,
s[Is] is a valid substring of s. Similarly, for a string t ∈ Σm, let It be
the space of all index sets such that for any It ∈ It , t[It ] is a valid
substring of t. For any Is ∈ Is and It ∈ It , denote by α∗(s[Is],s[It ])
the optimal global alignment of s[Is] and t[It ] with respect to p.
The optimal local alignment α∗

L(s, t) of s and t with respect to p is
defined as

α
∗
L(s, t) = argmax

Is∈Is,It∈It

Sp(α
∗(s[Is], t[It ])).

2.3 Computational Methodology

This section discusses the setup of our computational evaluation,
as well as the datasets used.

2.3.1 Computational Setup.

To assess the usage of learning with sequence alignment func-
tions, we performed a series of computational experiments on a
number of AMP datasets. In each of our evaluations, we tested
both the local alignment score (LA) and the Levenshtein distance
(LEV) in conjunction with the Krĕın-SVM algorithm. We com-
pared against a baseline SVM using the gapped k-mer kernel.
This is a positive-definite kernel function that has produced ac-
curate models in a number of biological-sequence classification
tasks47–49 and hence makes for a useful baseline. When applica-
ble, we also compared our models with AMP identification tools

4 | 1–10



(a) (b)

Fig. 1 The distribution of peptide lengths for (a) the AMPScan and (b) DeepAMP datasets.

from the literature. The parasail package50 was used to com-
pute local alignment scores. We only considered normalised vari-
ants of the local alignment score and Levenshtein distance, with
the normalisation performed according to Schölkopf et al. 51 and
Yujian and Bo 43 , respectively. We report the accuracy and the
area under the receiver operating characteristic curves (AUC) to
compare models. The accuracy is defined as the proportion of
correctly classified instances and the AUC as the probability that
a classifier will score a randomly chosen positive instance higher
than a randomly chosen negative instance52. In order to allow
for a fair comparison, all models used the same training and test
splits. The optimal hyperparameters were selected by perform-
ing an exhaustive grid search over the training set, using 10-fold
cross validation. The λ hyperparameter of the SVM algorithm, as
well as the λ+ and λ− hyperparameters of the Krĕın-SVM algo-
rithm, were selected from {0.01,0.1,1,10,100}. The Levenshtein
distance has no hyperparameters to control and we used the de-
fault values for the hyperparameters of the local alignment score.
The gapped k-mer kernel has two hyperparameters g and m and
is quite susceptible to their values. The optimal value of g was
selected from {1,2,3,4,5} and the optimal value of m was se-
lected from {1,2,3, . . . ,10}. It is required that g > m, so only valid
combinations of the two were considered. In our nested cross-
validation experiments, we used 10 inner and 10 outer folds and
the reported results are averaged over the outer fold test sets.

2.3.2 General Antimicrobial Datasets.

We selected two AMP classification datasets from the literature,
which we refer to as AMPScan26 and DeepAMP25, in order to
test the ability of approach to predict general antimicrobial ac-
tivity. Detailed discussions on the creation of these datasets can
be found in the original studies. The AMPScan and DeepAMP
datasets contain 3556 and 3246 instances, respectively. Each
dataset also contains a 50:50 ratio of AMPs to non-AMPs, allowing

us to avoid issues that result from class imbalance. Associated to
each dataset is a specific test set, and reporting results on this set
allows comparison with the authors’ proposed models. Despite
being of similar size, one major differentiating factor between the
two datasets is the length of peptides. Figure 1 displays the em-
pirical distribution of peptide lengths for both datasets. DeepAMP
contains generally shorter peptides than AMPScan. Indeed, the
DeepAMP dataset was curated since short-length AMPs have been
shown to exhibit enhanced activity, lower toxicity and higher sta-
bility as opposed to their longer counterparts53,54. More impor-
tantly, synthesis is cheaper for the short AMPs than the full-length
AMPs, which increases the potential for clinical translation and
commercialisation12.

2.3.3 Species-Specific Datasets.

To test the ability of our methodology to identify species-specific
activity, we have utilised an external dataset of 16 peptides with
minimum inhibitory concentration (MIC) measured against S. au-
reus ATCC 29213 and P. aeruginosa ATCC 27853. To make this
dataset suitable for classification, we label a peptide as active if
its MIC < 100µg/mL and inactive otherwise. Further details of the
microbiological experimentation used to construct this dataset
can be found in section 2.4.

Vishnepolsky et al. 55 have shown that, given an appropriate
training dataset, predictive models of peptide activity against spe-
cific species can be constructed. This involves training a separate
model for each species of interest. Their model predicting activity
against E. coli ATCC 25922 achieved a balanced accuracy of 0.79,
which was greater than a number of common AMP prediction
tools55. Furthermore, models to predict activity against S. aureus
ATCC 25923 and P. aeruginosa ATCC 27853 were made publicly
available as web-tools.

We follow the methodology of Vishnepolsky et al. to construct
useful training datasets for our problem. We utilised the Database

1–10 | 5



Table 1 Descriptive statistics of the SA29213, SA25923 and PA27853
datasets

Dataset Size Class Ratio

SA29213 463 0.644
SA25923 808 0.646
PA27853 686 0.547

of Antimicrobial Activity and Structure of Peptides (DBAASP) as a
source of data. DBAASP contains peptide activity measurements
against a wide-range of species56, including those of interest to
us. We extracted from DBAASP all peptides with activity mea-
sured against S. aureus ATCC 29213, S. aureus ATCC 25923 or
P. aeruginosa ATCC 27853 subject to the following conditions: i)
peptide length in the range [6, 18], ii) without intrachain bonds,
iii) without non-standard amino acids and iv) MIC measured in
µg/mL or µM. Condition i) was imposed as that is the range of
peptide lengths in our external test set. Conditions ii) and iii)
were imposed following the recommendation of the Vishnepolsky
et al. and condition iv) was imposed as conversion from µM to
µg/mL is possible by estimating the molecular weight of a given
sequence. Since no web-tool to predict activity against S. aureus
ATCC 29213 was available, we collected data for peptides active
against S. aureus ATCC 25923. This allowed us to compare our
models with the state of the art provided by Vishnepolsky et al.

Three seperate datasets of peptides with activity measured
against S. aureus ATCC 29213, S. aureus ATCC 25923 and P.
aeruginosa ATCC 27853 were created using the data collected
from DBAASP. We refer to these datasets as SA29213, SA25923,
and PA27853, respectively. Each dataset is constructed from highly
active peptides (MIC ≤ 25µg/mL) and inactive peptides (MIC ≥
100µg/mL). A peptide with 25µg/mL < MIC < 100µg/mL would
not be included in our training dataset. This large interval allows
us to account for experimental errors, which in turn increases the
confidence in our class labels. In the case that a peptide was
associated to multiple activity measurements, the median value
was taken to represent its activity. As shown in table 1, the three
training datasets are all relatively small and contain slightly more
active peptides than inactive peptides.

2.4 Microbiological experiments
A previously established dataset of 16 peptides was used to test
the ability of the developed ML algorithms in predicting species-
specific antimicrobial activity7. A brief summary of the microbio-
logical experiments in relation to this dataset is described in this
section.

2.4.1 Synthesis of peptides.

All 16 peptides were commercially synthesised by Mimotopes
(Mulgrave Victoria, Australia) via solid phase Fmoc synthesis
method7. All the synthetic peptides were purified by reverse-
phase high performance liquid chromatography (RP-HPLC) to
>95% purity and characterised by mass spectrometry. The design
of the peptides was based on the native templates of human beta-
defensins (HBD)-1 to -3 and human cathelicidin (LL-37), which

are important components of AMPs.

2.4.2 Range of organisms used.

Two laboratory strains of bacteria were obtained from the Amer-
ican Type Culture Collection (ATCC; Virginia, U.S.A.), namely S.
aureus ATCC SA29213 and P. aeruginosa ATCC PA27853, to ex-
amine the antimicrobial efficacy of the 16 synthetic peptides. The
notation following species name indicates the specific strain of
that species. For instance, S. aureus ATCC SA29213 and S. aureus
ATCC SA25923 are two different strains of S. aureus.

S. aureus (a Gram-positive bacteria) and P. aeruginosa (a Gram-
negative bacteria) were chosen for this study as they represent
two of the important ESKAPE pathogens, which consist of Ente-
rococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacte-
ria baumannii, P. aeruginosa, and Enterobacter spp. This group
of pathogens have been recognised to be largely responsible for
life-threatening nosocomial infections and are the key culprits in
AMR-related systemic and non-systemic infections, including in-
fectious keratitis9,57–60.

2.4.3 Minimum inhibitory concentration (MIC) assay.

The antimicrobial activity of the 16 peptides was examined using
the Clinical and Laboratory Standards Institute (CLSI)-approved
MIC assay with broth microdilution method. Briefly, the microor-
ganisms were cultured on Tryptone Soya Agar (TSA) and incu-
bated overnight for 18-21 hours at 37 °C. Three to five bacterial
colonies were obtained from the agar plate and inoculated into
an Eppendorf tube containing 1 mL of cation-adjusted Muller-
Hinton broth (caMHB). The bacterial suspension was adjusted to
achieve a turbidity equivalent to 0.1 OD600 or 0.5 MacFarland,
containing 1.5× 108 colony-forming unit (CFU)/mL, which was
then further diluted in 1:150 in caMHB to reach a final bacte-
rial concentration of 1×106 CFU/mL. The peptide was prepared
in 1:2 serial dilution in a 96-well polypropylene microplate, with
a starting concentration of 200 µg/mL and decreasing to 0.78
µg/mL. 50 µl of 1× 106 CFU/mL bacteria was added into each
well containing of equal volume of peptide. The MIC values, de-
fined as the lowest concentration of the antimicrobial agent that
inhibits any visible bacterial growth, were determined after 24
hours of incubation with treatment.

3 Results

In section 3.1, we discuss the ability of our models to identify gen-
eral antimicrobial activity. We observe that our proposed models
consistently outperform the baseline and, in some cases, the mod-
els proposed in the literature. One shortcoming of any computa-
tional model that identifies general antimicrobial activity is that
it cannot be used to identify activity against specific species. We
address this shortcoming in section 3.2, by training our models to
identify species-specific activity against S. aureus ATCC 29213 and
P. aeruginosa ATCC 27853 on an experimentally validated dataset
of 16 peptides, for which the proposed approach produces accu-
rate models.
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Table 2 Quality of the predictions on the AMPScan and DeepAMP datasets. The average accuracy and AUC are reported (standard deviation in
parentheses), computed over the outer fold test sets of the nested cross-validation procedure. Results are presented for the Krĕın-SVM with local
alignment score (LA-KSVM), the Krĕın-SVM with Levenshtein distance (LEV-KSVM) and the SVM with Gapped k-mer kernel (GKM-SVM)

AMPScan DeepAMP

Model Accuracy AUC Accuracy AUC

LA-KSVM 0.920 (0.017) 0.969 (0.006) 0.760 (0.025) 0.821 (0.028)
LEV-KSVM 0.910 (0.021) 0.966 (0.010) 0.756 (0.032) 0.819 (0.029)
GKM-SVM 0.899 (0.015) 0.957 (0.007) 0.751 (0.032) 0.817 (0.029)

3.1 Identifying General Antimicrobial Activity

3.1.1 Nested Cross-Validation

The performance of the AMP classifiers on the considered datasets
is reported in table 2. The results are averaged over the multiple
test sets generated by nested-cross validation. On both datasets,
the proposed models achieve a greater average accuracy and AUC
than the baseline, with the local alignment score achieving the
best values in all cases. The Welch t-test61, with p = 0.05, is
used to compare the test set AUC of our proposed models against
the baseline across the outer folds of nested cross-validation. Ad-
justing for the testing of multiple hypotheses with the Bonferroni
correction, we observe a significant difference between the mean
AUC of the local alignment score and that of the baseline on the
AMPScan dataset. All other comparisons, including those on the
DeepAMP dataset, are not significant. The performance of all
models is greater on the AMPScan dataset than on the DeepAMP
dataset.

3.1.2 Predefined Test Set.

Table 3 reports the results of all models on the predefined test set
associated with each dataset. For the sake of completeness, we
also include the performance of the neural network-based classi-
fiers proposed by the authors of each dataset. As for the nested
cross-validation results, we observe that all models perform better
on the AMPScan dataset than the DeepAMP dataset. Considering
the former, the local alignment score achieves the largest accu-
racy and AUC, and is followed closely by the literature model.
On the DeepAMP dataset, the performance is similar among all
methods. The local alignment score achieves the best AUC but
the Levenshtein distance achieves the best accuracy. However,
the Levenshtein distance outperforms the literature model both
in terms of accuracy and AUC. On both datasets, the baseline is
the least predictive model. It is encouraging to observe that the
sequence alignment functions can produce classifiers that match,
and also outperform, the neural network-based classifiers.

3.2 Identifying Species-Specific Activity

In this section, we highlight the ability of our models to identify
AMPs that are active against specific species, particularly S. aureus
ATCC 29213 and P. aeruginosa ATCC 27853. Table 4 displays the
accuracy on the external test set for models trained on the AMP-
Scan and DeepAMP datasets. Once again, we also include the
performance of the neural-network-based classifiers proposed by
the authors of the AMPScan and DeepAMP datasets. We observe
that the performance of all models is very poor. We noticed in our

Table 3 Quality of the predictions on the AMPScan and DeepAMP
datasets. The accuracy and AUC are reported, computed on the pre-
defined test sets. Results are presented for the Krĕın-SVM with local
alignment score (LA-KSVM), the Krĕın-SVM with Levenshtein distance
(LEV-KSVM) and the SVM with Gapped k-mer kernel (GKM-SVM). Re-
sults from the respective neural network-based classifiers25,26 proposed
by the authors of each dataset are also presented, denoted by Literature

AMPScan DeepAMP

Model Accuracy AUC Accuracy AUC

LA-KSVM 0.911 0.967 0.761 0.863
LEV-KSVM 0.904 0.960 0.798 0.860
GKM-SVM 0.900 0.954 0.782 0.838
Literature 0.910 0.965 0.771 0.853

investigations that the majority of models predicted active for a
large proportion of the peptides. This general poor performance
is to be expected. We attribute it to the fact that these models
have been trained to recognise if a peptide exhibits antimicrobial
activity against any type of species. It is therefore unreasonable to
assume that they are able to discriminate activity against specific
species.

Table 4 Predictive accuracy of the Krĕın-SVM with local alignment score
(LA-KSVM), the Krĕın-SVM with Levenshtein distance (LEV-KSVM)
and the SVM with Gapped k-mer kernel (GKM-SVM) on the species-
specific test sets of 16 peptides. Results from the respective neural
network-based classifiers25,26 proposed by the authors of each dataset
are also presented, denoted by Literature. The dataset column indicates
which dataset a model was trained on. The heading S. aureus indicates
the model was predicting activity against S. aureus ATCC 29213 and the
heading P. aeruginosa indicates the model was predicting activity against
P. aeruginosa ATCC 27853

Model Dataset S. aureus P. aeruginosa

LA-KSVM
AMPScan 0.312 0.312
DeepAMP 0.250 0.250

LEV-KSVM
AMPScan 0.312 0.312
DeepAMP 0.312 0.312

GKM-SVM
AMPScan 0.312 0.312
DeepAMP 0.375 0.375

Literature
AMPScan 0.250 0.250
DeepAMP 0.438 0.438
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Table 5 displays the accuracy on the external test set for models
trained on the species-specific datasets. We also present the per-
formance of the web-tools provided by Vishnepolsky et al. 55 As
mentioned in section 2.3.3, at the time of publication, there is no
web-tool to predict activity against S. aureus ATCC 29213. Hence,
we also provide results for models trained on SA25923 and tasked
with predicting activity against S. aureus ATCC 29213. There is
clearly a general improvement over the models trained on the
AMPScan and DeepAMP datasets, indicating that the models have
much greater discriminative power. On the SA29213 dataset, all
models achieve the same accuracy. The baseline achieves the
greatest AUC, but is closely followed by the Levenshtein distance.
Considering the SA25923 dataset, the Levenshtein distance pro-
duces a model with the same accuracy as the web-tool but with
a larger AUC. It is interesting to note that the models trained on
SA25923 can still make accurate predictions on S. aureus ATCC
29213. Whilst these are two different strains, the findings sug-
gest that the antimicrobial susceptibility to the AMPs is similar
for both strains, implying similar mechanisms work in the same
species. Considering the PA27853 dataset, we find that the lo-
cal alignment score, Levenshtein distance and baseline produce
equally accurate models, all of which are more accurate than the
web-tool. However, the AUC of the local alignment score and Lev-
enshtein distance are considerably higher than that of the base-
line. Whilst it is difficult to make any strong conclusions on such
a small dataset, it is still encouraging to observe that our models
achieve similar, and sometimes greater, accuracy than both the
baseline models and web-tools.

4 Conclusions
We have assessed the capabilities of sequence alignment functions
coupled with the Krĕın-SVM as AMP classification models. Our
investigations indicate that the proposed methodology produces
accurate classifiers of both general and species-specific antimicro-
bial activity of AMPs. The utility of our methodology is twofold.
Firstly, since sequence alignment algorithms operate directly on
amino acid sequences, these methods do not explicitly require
the use of peptide features. This removes the need for the prac-
titioner to decide which features to use, which is often a detailed
and time-consuming process. Secondly, in all of our experiments,
we used the local alignment score with its default hyperparame-
ters. Having achieved such promising results, it prompts the ques-
tion of whether more accurate models could be attained by also
tuning the various hyperparameters of the local alignment score,
such as the choice of scoring function, which we will explore in
future work.

As the chemical space of natural peptides is extremely large,
the development of highly accurate classifiers will help acceler-
ate the discovery and development of novel de novo AMPs. In
addition, the promising results generated from this study open a
number of possible avenues for further work. Our identification of
species-specific activity could be improved using a larger external
test set, allowing us to draw stronger conclusions. Furthermore,
the methodology we have presented is not specific to the classifi-
cation of AMPs. We suspect that the Krĕın-SVM coupled with se-
quence alignment functions could be applied to other biological-

sequence classification tasks. Our computational findings demon-
strate not only the feasibility of the proposed approach but more
generally the utility of the Krĕın-SVM as a classification algorithm.
Its use of indefinite kernel functions provides a means for practi-
tioners to learn from domain-specific similarity functions without
the concern of verifying the positive-definite assumption. This is
beneficial since it is often well beyond the expertise of the practi-
tioner to verify this assumption. Whilst we have explored its use
when combined with sequence alignment functions, there exist
many more indefinite kernel functions with which the Krĕın-SVM
could be combined. Furthermore, the theoretical insight of sepa-
rately regularising the decomposition components of a function in
a Krĕın space could be applied to develop other indefinite kernel-
based learning algorithms. A notable example that relates to the
current study would be to extend the One-Class SVM62 to incor-
porate indefinite kernel functions. The One-Class SVM is a kernel-
based learning algorithm that performs anomaly detection63. It
has previously been applied to identify the domain of applicabil-
ity of virtual screening models64. An indefinite kernel extension
of the One-Class SVM could be directly applied to estimate the
domain of applicability of our models.
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Table 5 Quality of the predictions of the Krĕın-SVM with local alignment score (LA-KSVM), the Krĕın-SVM with Levenshtein distance (LEV-KSVM)
and the SVM with Gapped k-mer kernel (GKM-SVM) on the test sets of 16 peptides. Results from the DBAASP Web-tools are also presented55,56.
The headings in the third to fifth columns indicate which dataset the models were trained on. The models trained on both SA29213 and SA25923
were tasked with predicting activity against S. aureus ATCC 29213. The models trained on PA27853 were tasked with predicting activity against P.
aeruginosa ATCC 27853

Model Evaluation Metric
Training Dataset

SA29213 SA25923 PA27853

LA-KSVM
Accuracy 0.688 0.688 0.750
AUC 0.873 0.909 0.891

LEV-KSVM
Accuracy 0.688 0.875 0.750
AUC 0.927 0.982 0.855

GKM-SVM
Accuracy 0.688 0.688 0.750
AUC 0.945 0.891 0.655

DBAASP Web-tool
Accuracy - 0.875 0.688
AUC - 0.945 0.718
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