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Electrolyte solutions play a fundamental role in a vast range of important industrial and biological
applications. Yet their thermodynamic and kinetic properties still can not be predicted from first
principles. There are three central challenges that need to be overcome to achieve this. Firstly, the
dynamic nature of these solutions requires long time scale simulations. Secondly, the long-range
Coulomb interactions require large spatial scales. Thirdly, the short-range quantum mechanical
(QM) interactions require an expensive level of QM theory. Here, we demonstrate a methodology
to address these challenges. Data from a short ab initio molecular dynamics (AIMD) simulation
of aqueous sodium chloride is used to train an equivariant graph neural network interatomic po-
tential (NNP) that can reliably reproduce the short-range QM forces and energies at a moderate
computational cost. This NNP is combined with a continuum solvent description of the long-range
electrostatic interactions to enable stable long time and large spatial scale simulations. From these
simulations, ion-water and ion-ion radial distribution functions (RDFs), as well as ionic diffusivities,
can be determined. The ion-ion RDFs are then used in a continuum solvent approach to calculate
the osmotic and activity coefficients. Good experimental agreement is demonstrated up to the sol-
ubility limit of sodium chloride in water. This result implies that classical electrostatic theory can
describe electrolyte solution over a remarkably wide concentration range as long as it is combined
with an accurate description of the short-range interactions. This approach should be applicable
to determine the thermodynamic and kinetic properties of many important electrolyte solutions for
which experimental data is insufficient.

INTRODUCTION

Our understanding of the liquid state lies far behind
that of the solid-state or gas phase. Perhaps nothing bet-
ter demonstrates this than the fact that we cannot even
predict how much simple table salt can be dissolved in
water.[1, 2] The prediction of important kinetic proper-
ties, such as diffusivities, is also not currently possible.[2]

One of the most fundamental, yet most difficult to cal-
culate properties of electrolyte solutions is their activ-
ity coefficients. The centrality of the activity coefficients
is highlighted by the fact that they can be directly re-
lated to many important properties such as the chemi-
cal equilibria, solubilities, osmotic pressure and reaction
rates.[3, 4]

While the fundamental importance of this problem
is obvious, it is also of immense direct practical con-
cern. Activity coefficients and diffusivities are essential
for modelling many important systems that involve elec-
trolyte solutions. These systems are ubiquitous through-
out chemistry, biology, geology and chemical engineering.
For example, batteries, mineral processing, CO2 capture
and conversion all rely centrally on electrolyte solutions.

The prediction of the properties of electrolyte solutions
has been a central and fundamental problem in the field
of physical chemistry for over a century. Debye-Hückel
theory, a continuum solvent model developed in 1923,
accurately predicts activity coefficients at very low con-
centrations where the known long-range electrostatic in-

∗ t.duignan@uq.edu.au

teractions dominate over the unknown short-range QM
interactions, which it neglects.[3] Efforts to model proper-
ties at higher concentrations rely on the use of adjustable
parameters. These parameters are invariably fitted to
reproduce experimental measurements.[5–7] The most
prominent example of this are the Pitzer equations.[8]
This is a crude solution as there are large gaps and un-
certainties in existing experimental databases.[9, 10] For
example, the activity coefficients of even relatively sim-
ple electrolyte solutions such as rubidium hydroxide and
lithium bicarbonate have never been measured to the
best of our knowledge.

The fundamental challenge associated with predicting
these quantities is that they require large scale well con-
verged molecular simulation to capture long-range elec-
trostatic interactions, combined with a high level of accu-
racy to capture the short-range interactions, only possi-
ble with sophisticated quantum chemical methods.[11–
13] Hence, ab initio nolecular dynamics (AIMD) sim-
ulations with density functional theory (DFT) are too
computationally expensive to reliably converge proper-
ties such as ion-ion radial distribution functions (RDFs)
or diffusivities at low concentrations. Additionally, the
density functional approximations (DFAs) used in AIMD
can have non-negligible errors.[14–17]

Recent exciting advances in the field of deep
learning,[18–20] and specifically neural network poten-
tials (NNPs) [21, 22] can enable a solution to this prob-
lem. NNPs are highly flexible functions that efficiently
map atomic coordinates to energies/forces. They are
trained to reproduce ab initio data and can then be used
to run much longer time scale molecular dynamics (MD)
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simulations than is possible with AIMD itself. It has re-
cently been demonstrated that the Neural Equivariant
Interatomic Potential (NequIP)[23] method requires re-
markably low training data requirements compared to
other NNP methods. This is attributable to the use of
an equivariant architecture, which encodes the known
rotational symmetries of space.[24] A potential limita-
tion of this approach is that it cannot currently describe
long-range interactions, which is a significant concern for
electrolyte solutions where long-range electrostatic in-
teractions are essential.[25] However, continuum solvent
models are known to provide a reliable description of
long-range electrostatic interactions, hence the success
of Debye-Hückel theory at low concentrations.

Here, we outline a new method of combining a con-
tinuum solvent theory description of long-range electro-
static interactions with NNP MD to describe the short-
range interactions, overcoming the respective limitations
of each approach. This method enables the prediction
of osmotic and activity coefficients and diffusivities of
sodium chloride from first principles with no empirically
fitted parameters using only moderate computational re-
sources.

METHODOLOGY

Fig. 1 presents a depiction of the overall workflow
used to compute the activity coefficients and diffusivities
of sodium and chloride in water. In brief, a 10 ps AIMD
simulation of 2.4 M NaCl in water is performed using
CP2K[26] with the strongly constrained and appropri-
ately normed (SCAN)[27] DFA including an additional
correction term to correct for the over stabilisation of hy-
drogen bonds associated with this DFA.[17] These correc-
tion terms are parametrised using MP2 level calculations
performed with ORCA[28] on small clusters extracted
from AIMD simulations. NequIP[23] is then used to train
a NNP using 2500 frames of coordinates and forces ex-
tracted from this short simulation to produce a map-
ping between the coordinates and the energies/forces. A
continuum solvent model description of the long-range
electrostatic interactions, i.e., long-range dielectrically
screened Coulomb interactions between the ions are com-
puted at every time step. These forces/energies are re-
moved from the training/validation data prior to training
the NNP. The long-range electrostatic Coulomb interac-
tions are computed separately and added to the forces
and energies predicted by the NNP to run much longer
time scale and larger spatial scale MD simulations. This
approach is a form of delta learning. These long simu-
lations can be used to compute properties that are in-
accessible with AIMD such as diffusivities and well con-
verged ion-water and ion-ion radial distribution functions
(RDFs). The validity of this method is demonstrated in
the computational details section where we show that it
adequately reproduces the ion-ion RDFs for a classical
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FIG. 1: A depiction of the workflow used to compute
electrolyte solution properties. Coordinates and

forces/energies from an AIMD simulation are used to
train a NNP. The NNP is used to run long time and
large spatial scale MD simulations. Correction forces
and long range Coulomb interactions are computed

separately and added to the simulations. The
coordinates from the MD simulations are used to

compute important experimental properties.

point charge water model.
An important caveat is that although the simulation

appears to be very stable for NaCl, while attempting to
generalise to other electrolytes and to increase the num-
ber of parameters in the model we have observed some
stability issues. This is a known issue for graph NNPs
[29] where it has been observed that stability does not
necessarily correlate with the mean error metrics. We
believe this is an important area of future research.
To further reduce computational demand, we use a new

continuum solvent approach to determine the behaviour
at many concentrations using MD simulation at a sin-
gle concentration. To do this we extract the short-range
non-electrostatic contribution to the ion-ion potential of
mean force (PMF)[30, 31] using the modified Poisson-
Boltzmann equation (MPBE). In spherical coordinates,
this equation is given by:

−ϵrϵo
1

r2
d

dr
(r2 dϕ(r)

dr
) =∑

i

qiρi(r) (1)

where ϵrϵo gives the dielectric constant of water, r is
the distance from a central ion, ϕ(r) is the electrostatic
potential, qi is the charge on each species in solution
and ρi(r) is the density of ions as a function of distance
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FIG. 2: Sodium-water RDFs.

from a central ion. The density is approximated with the
following expression:

ρi(r) = ρi exp [−β (qiϕ(r) +WSR(r))] (2)

where ρi is the bulk concentration of ions, β is the ther-
modynamic beta ( 1

kBT
) and WSR(r) is the short-range

contribution to the potential of mean force between the
ions. Note if we set WSR(r) to be a hard sphere repul-
sion and linearise the exponential we arrive at classical

Debye-Hückel theory. As ρi(r)
ρi

is equivalent to the ra-
dial distribution function we use the RDFs from molecu-
lar simulation at one concentration (2.4 M) to determine
WSR(r) by self consistently solving MPBE equation un-
til the RDF predicted by MPBE matches the simula-
tion prediction of the RDF. Once this short-range non-
electrostatic PMF is determined, the MPBE equation can
be used to quickly compute the RDF at many concentra-
tions.

The osmotic coefficients over the whole solubility range
of NaCl are then computed using the virial approach.[31–
33] These are then converted to activity coefficients via
the Gibbs-Duhem equation. More detailed computa-
tional information regarding these calculations is pro-
vided in the computational details section below.

RESULTS AND DISCUSSION

The ion-water RDFs calculated from the 1 ns NNP
MD are shown in Fig. 2 and 3. The RDFs are very well
converged and agree well with previous work.[17, 36, 37]

The computed diffusivities of sodium and chloride ions
in water computed with the NNP MD simulation are con-
sistent with experiment, (Fig. 4) suggesting that the sim-
ulation can reproduce important experimental properties
of these ions in water without being trained to do so.

The ion-ion RDFs determined with NNP MD at 2.4
M are shown in Fig. 5. The NNP MD predicts similar
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FIG. 3: Chloride-water RDFs.
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FIG. 4: Sodium and chloride ion diffusivities computed
from NNP MD simulation compared with experimental

data. [34].
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FIG. 5: Sodium-sodium, sodium-chloride and
chloride-chloride RDFs computed from 1 ns NNP MD

simulation.
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FIG. 7: Osmotic coefficients calculated with MPBE and
the virial route compared with experiment. [3, 35]
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FIG. 8: Activity coefficients calculated from the
Gibbs–Duhem equation compared with experiment.

[3, 35]

peaks for the contact ion pair and solvent separated ion
pair. This is consistent with other AIMD simulations of
this system with several other DFAs.[38–40] While we
are not aware of any AIMD calculation of the Na-Na
RDF, the small shoulder has not been observed before in
classical MD, this may potentially be an artifact of the
larger mean error in the forces on the Na ions.

The short-range non-electrostatic contribution to the
ion-ion interactions are depicted in Fig. 6. These are cal-
culated using the self consistent solution of the MPBE
method as described below. These are the solvent aver-
aged interaction free energies of the ions in water with
the long range Coulomb interaction removed. They are
all close to 0 beyond 8 Å, confirming they are short range
and the simulation cell is sufficiently large. The desol-
vation barrier associated with removing the water from
around the sodium ion is clearly visible in the Na-Na and
Na-Cl PMF.

Fig. 9a, 9b and 9c show the ion-ion RDFs computed
with the MPBE at 0.1 M, 2.4 M and 4.9 M concentra-
tions. They show the increasing importance of the long-
range Coulomb interaction at low concentrations, which
become increasingly damped at higher concentrations.
Converging these low concentration RDFs with MD sim-
ulations is difficult even with classical point charge MD
as it requires very large box sizes, hence the need for
the MPBE approach. At higher concentrations, elec-
trostatic screening significantly reduces this long-range
interaction. The short-range PMF was determined self
consistently to reproduce Fig. 5, hence it agrees perfectly
with Fig. 9b.

The osmotic coefficients are then calculated from the
PMFs and RDFs using the MPBE equation and the virial
approach as described below. Fig. 7 shows the resulting
good experimental agreement.[3, 35] These can be con-
verted to activities using the Gibbs-Duhem relation as
shown in Fig. 8. Remarkably, experimental agreement
extends up to the solubility limit of NaCl (5.4 M.) We do
not rely on a concentration-dependent dielectric constant
to achieve this agreement. This means no experimental
parameters are required for this work except for the di-
electric constant of pure water. It should be noted that
these properties are notoriously sensitive to small varia-
tions in the interaction potentials.[31] They are therefore
an excellent demonstration of the accuracy of this ap-
proach.

The consistency of our computational results with ex-
periment throughout this section means that we can
have confidence this method is accurately reproducing
the structure of aqueous sodium chloride solutions. The
fact that we achieve agreement using the MPBE equa-
tion implies that the simple classical electrostatic theory
is remarkably reliable as long as it is combined with an
accurate description of short-range interactions.

Future work should focus on extending this methodol-
ogy to other ions, particularly important ions that have
never had their activities measured such as lithium bi-
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FIG. 9: Sodium-sodium, sodium-chloride and chloride-chloride RDFs computed with MPBE at three concentrations.

carbonate. Further effort to improve the accuracy of this
method also needs to be undertaken. For instance the er-
ror in the force on the sodium ion is substantially larger
than the other species in the solution as shown below.
Additionally, it should be feasible to use a higher level of
theory such as density corrected SCAN[41] or the random
phase approximation[42] to generate the training data.

CONCLUSION

We have demonstrated a methodology for computing
the solvation structure, the activity and osmotic coeffi-
cients as well as the diffusivities of aqueous sodium chlo-
ride from first principles using equivariant graph neu-
ral network interatomic potentials to describe the short-
range interactions combined with continuum solvent the-
ory to describe the long-range interactions. While, some
challenges remain, primarily associated with the accu-
racy of the DFAs and the stability of the NNPs, this
work outlines a pathway for solving a century old prob-
lem at the heart of physical chemistry. It demonstrates
that a classical electrostatic description of electrolyte so-
lutions is remarkably reliable as long as it is combined
with an accurate description of short-range interactions.
Critically, this approach requires only moderate compu-
tational resources. This methodology should in princi-
ple be applicable to a much wider class of solutes and
solvents allowing the prediction of many important ther-
modynamic and kinetic properties of electrolyte solutions
from first principles. This approach should enable a tran-
sition away from the current reliance on limited and un-
reliable experimental databases for the determination of
the properties of electrolyte solutions. It also demon-
strates the potential of equivariant graph NNPs to accel-
erate accurate molecular simulations and provide answers
to many long-standing important scientific questions.

COMPUTATIONAL DETAILS

AIMD (CP2K)

We used Born-Oppenheimer ab initio molecular dy-
namics simulations within a constant volume NVT
(300 K) ensemble with periodic boundary conditions.
The CP2K simulation suite (http:www.cp2k.org) contain-
ing the QuickStep module for the DFT calculations [43]
was used with a 0.5 fs time step. We used a double
ζ basis set that has been optimized for the condensed
phase[44] in conjunction with GTH pseudopotentials [45]
optimised for SCAN[27, 46] and a 1200 Ry cutoff.[40, 47]
A Nosé-Hoover thermostat was attached to every degree
of freedom to ensure equilibration. [48] The energies were
accumulated for ≈ 10 ps after 2 ps of equilibration. The
simulation consisted of 4 sodium ions 4 chloride ions and
80 water molecules in a box of fixed dimensions of 13.923

Å3 giving an electrolyte concentration of 2.4 M.

Hydrogen bond correction (ORCA)

An exponential repulsive correction to the hydrogen
bond interaction between the oxygen atoms and the
neighbouring hydrogen atoms is added as described in
a previous publication[49] as a minimal bias[50] to re-
duce the error in the water structure. This correction
was included in the CP2K simulation using the multi-
ple force evaluation option with the FIST method. This
correction was fitted to remove the error in the water
dimer interaction computed with MP2 level as outlined
in Ref. 49 and is given by:

A exp−br (3)

With A = 0.06 and b = 1.3 in atomic units.
It is also known that SCAN has a similar issue with

describing the interaction of anions with water.[16] We
therefore also add an exponential repulsion between the
chloride anion and neighbouring hydrogen atoms. In or-
der to determine the parameters for this correction we
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follow Ref. 17 and optimise them to minimise the er-
ror in the radial component of the force on eight water
molecules surrounding a central chloride anion. The pa-
rameters are given by A = 0.04 and b = 0.7 in atomic
units. The radial error is computed from the projection
of the error of the total force on the water molecule in
the rClH direction and is shown in Fig. 10 along with the
correction force used to remove this error. The torque on
the water molecules was also computed to confirm that
this correction potential also removes a significant error
there too.

ORCA[28] was used to calculate the cluster forces at
the MP2 level of theory. 50 clusters of 8 water molecules
surrounding a chloride anion were used in the cluster
correction calculation using the same trajectories as in
Ref. 17. The aug-cc-pVDZ basis set was used for the
oxygen, hydrogen and chloride atoms.[51] Similarly, the
cc-pCVDZ basis set was used for the sodium ion [52].
Frozen cores were used for the MP2 calculations. For
the SCAN cluster energy calculations, CP2K was used
with the periodicity none option and a larger cell size
to remove any box size dependence. Otherwise, the same
parameters, basis sets and pseudo-potentials as in the
simulation described above were used.

NNP fitting (NequIP)

Forces and energies from 2000 frames extracted from
CP2K were used to train the NNP with NequIP. 500
frames were held out as a validation set. Coulomb in-
teractions screened by the dielectric constant of water
(78.3) between all the ions were subtracted before train-
ing. These were calculated with LAMMPS by placing
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FIG. 11: Learning curve for the root mean square error
on the forces predicted by NequIP.

appropriately screened charges on the ions to reproduce
dielectric screening of 78.3 and with the particle-particle
particle-mesh method.[53] An equal weighting on forces
and energies was used in the default loss function.[23] We
decrease the initial learning rate of 0.01 by a decay factor
of 0.5 whenever the validation RMSE in the forces has
not seen an improvement for five epochs. A radial cutoff
distance of 5 Å was used. Two interaction blocks were
used with the maximum l set to one each with 8 features.
Only even parity was used. All the other parameters were
set to the defaults. Fig. 11 shows the learning curve.
RMSE on the validation set was 128 meV/Å for the

forces and 0.341 meV/atom for the energies. Note it was
possible to achieve a significantly lower mean error by
increasing the number of parameters in the model. How-
ever, we observed counter-intuitively, this would usually
decrease the stability of the simulation. This is consistent
with other research showing that lower mean error does
not necessarily correlate with better stability. [29] Fig. 12
shows the correlation between the forces calculated using
the ab inito method with CP2K from the origianl 10 ps
trajecory compared with the predictions with NequIP. It
is clear the biggest source of error by far is the force on
the sodium ion. Understanding and reducing the magni-
tude of this error is an important future research goal.

NNP MD (NequIP/LAMMPS)

The NequIP plugin for LAMMPS was used to perform
NVT simulations at 300 K for 1 ns. A Nosé-Hoover ther-
mostat was attached to every degree of freedom to ensure
equilibration [48]. The chloride hydrogen bond exponen-
tial correction term was added to the NNP MD simu-
lation using tabulated data as this correction was not
included in the original CP2K SCAN simulations. The
long-range Coulomb interactions were added to the sim-
ulation using LAMMPs hybrid overlay method. Without
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SPC/E water model and an NNP simulation using the
protocol outlined.

this correction, we observed strong over stabilisation of
cation-anion pairs. The reliability of this method was
verified by training on forces and energies from a clas-
sical MD run and demonstrating that the NNP MD re-
produced the ion-ion RDFs with reasonable accuracy as
shown in Fig. 13. No initial data was discarded as the
initial frame was taken from the end of the AIMD sim-
ulation. A dielectric constant of 70.7 is used to better
match the dielectric constant of SPC/E water, although
this has a minimal effect.

We use constant volume simulations with a simple ap-
proximation using the ion size to estimate the box size to
avoid relying on experimental information. However, we
have repeated these simulations at the exact experimen-
tal density of sodium chloride to confirm that the RDFs
remain unaltered. A cell size of 20.243 Å3 was used which
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FIG. 14: Comparison of Na-Cl RDFs obtained from a
20.243 Å3 and a 13.923 Å3 NNP MD simulation.

was larger than the the cell size used for the AIMD sim-
ulation data (13.923 Å3). To demonstrate that this was
reliable we performed simulations in the smaller cell size,
which shows that within the cell the agreement is good,
(Fig. 14) however the larger cell size is needed as there is
still significant oscillation beyond 7 Å.
VMD[54] was used to create the RDFs and images in

Fig. 1.

Modified Poisson-Boltzmann Equation (MPBE)

To compute WSR(r) we first assume it is 0 and then
solve the MPBE equation to determine the electrostatic
potential and then determine a new estimate for WSR(r)
using this rearrangement of the expression for the den-
sity:

βWSR(r) = −βqiϕ(r) − ln
ρi(r)
ρi

(4)

where ρi(r)
ρi

is the RDF taken from the NNP MD simu-
lations. This procedure is repeated iteratively until the
RDFs predicted with the MPBE (Eq. 1) and Eq. 2 agree
well with the ones obtained from the NNP MD simula-
tions. The boundary conditions used to solve the MPBE
are the electric field of a point charge at 2 Å and the elec-
tric potential of 0 at large separations (60 Å). These set-
tings ensure reliable numerical solutions are found using
the shooting method implemented in Mathematica.[55]
Smoothing of the nearest 5 points (0.05 Å) was applied
to improve the convergence of the numerical differential
equation solution. The ionic density is integrated to con-
firm a net counter charge of +/- 1 as required to satisfy
the electroneutrality condition. The RDF is fitted up
to 8.8 Å which ensures a smooth transition to the long-
range only region of the RDF. A fixed dielectric constant
of water of 78.3 is used throughout.
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Note that there are two ways to solve the MPBE one
with the cation as the central ion and one with the an-
ion. Fig. 15 shows the cation-anion short-range PMF
extracted using this approach for both cases indicating
minimal difference based on this assumption.

Activities and osmotic coefficients calculation

Once the short-range contributions to the PMF
(WSR(r)) have been determined we can use the MPBE
to calculate the RDF at many concentrations including
down to infinite dilution with minimal computational de-
mands. WSR(r) can then be input into the virial expres-
sion for the osmotic coefficients to estimate them at many
concentration.[31–33]

ϕ(ρ) = 1 − π

3
ρ∑

i,j
∫
∞

0
gij(r)

dWij(r)
dr

r3dr (5)

where Wij(r) is the ion-ion infinite dilution PMF, i.e.,
WSR(r) plus the Coulomb interaction. We solve the
MPBE and compute osmotic coefficients with both chlo-
ride and sodium as the central ion taking the average of
the two approaches for the final prediction.

This gives reasonable agreement with osmotic coef-
ficients as shown in the main text. A more accu-
rate approximation can be obtained with the Hyper-
Netted Chain (HNC) closure of the Ornstein–Zernike
(OZ) equation,[31, 33] which incorporates ion correlation
effects. However, the relative consistency of the PMF
methods using the cation or the anion as the central
molecule (Fig. 15) indicates that this effect can plausi-
bly be neglected. And extracting the correct short-range
PMF to use in the OZ equation is very difficult without
the MPBE method used here.

We do not use a concentration-dependent dielectric
constant as this would require the method to be empir-
ically parameterised and this effect will be incorporated
into the PMF which is fitted to reproduce the RDF.
The Gibbs-Duhem relationship between osmotic and

activity coefficients is used to convert osmotic coefficients
into activities:

lnγ = ϕ − 1 + ∫
m

0

ϕ(m) − 1
m

dm (6)

Experimental densities[56–58] were used to convert
theoretical osmotic coefficients from the McMillan-Mayer
to the Lewis-Randal level to enable the correct thermo-
dynamic comparison.[59, 60] Experimental values are ob-
tained from the Pitzer equations and converted to mo-
larity again using experimental densities.[35]

Diffusion coefficients calculation

Diffusion coefficients were computed from the mean
squared displacements (MSD) of sodium and chloride
ions in our NNP MD trajectories. This conversion was
carried out using the diffusion coefficient-MSD relation-
ship described below:

D = MSD

6t
(7)

The results were finally adjusted by finite size correc-
tions [61]. Here, we have used the experimental value for
the viscosity of pure water when determining the finite
size correction. Experimental values [34] for the value
of sodium and chloride ion diffusivities in a 2.4 M NaCl
solution were used to validate the results.
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