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Abstract: There is an increasing interest in cyclobutanes within the 
medicinal chemistry community. Therefore, methods to prepare 
cyclobutanes that contain synthetic handles for further elaboration are 
of interest. Herein, we report a new approach for the synthesis of 3-
borylated cyclobutanols via a formal [3+1]-cycloaddition using readily 
accessible 1,1-diborylalkanes and epihalohydrins or epoxy alcohol 
derivatives. 1-Substituted epibromohydrin starting materials provide 
access to borylated cyclobutanols containing substituents at three of 
the four positions on the cyclobutane core, and enantioenriched 
epibromohydrins lead to enantioenriched cyclobutanols with high 
levels of enantiospecificity (>98%). Finally, derivatization studies 
demonstrate the synthetic utility of both the OH and Bpin handles. 

Cyclobutanes are featured in a wide range of structurally 
interesting and biologically relevant natural products.1 Within the 
pharmaceutical industry, cyclobutanes have been gathering 
attention as they provide a rigid, sp3 rich, well-defined 3-
dimensional backbone that enables them to act as bioisosteres 
for aromatic rings,2a,b while also allowing researchers to “escape 
flatland”.2  

As interest in incorporating cyclobutanes into target molecules 
increases, so does the need to develop efficient methods for their 
synthesis. The preparation of borylated cyclobutanes is 
particularly desirable, as the boron moiety acts as a convenient 
synthetic handle for further elaboration via a range of C–C,3 C–
N,4 C–O,5 or C–X6 bond forming processes. Current strategies to 
synthesize borylated cyclobutanes typically fall into four broad 
categories: a) [2+2]-cycloadditions,7 b) strain release/increase 
reactions,8 c) C–H functionalizations,9 and d) borylmetalation of 
alkenes10 (Scheme 1a).11 While significant work has gone towards 
the development of these methods, the majority of them (b-d) rely 
on highly strained starting materials that already contain the 
cyclobutane core, with [2+2]-cycloadditions being the exception.  

We hypothesized that a formal [3+1]-cycloaddition using 1,1-
diborylalkanes and epoxy alcohol derivatives as stable and 
readily accessible starting materials could provide a convenient 
approach to borylated cyclobutanols while addressing some of 
the limitations with current methodologies (e.g. starting material 
synthesis). It has been known since the 1960s that, compared to 
boronic esters, 1,1-diborylalkanes are good nucleophiles upon 
activation with a Lewis base.11a This behaviour has been 
attributed to the second boronic ester being able to stabilize, 
through resonance, the negative charge resulting from Lewis 
base coordination and deborylation.11a We anticipated that adding 
lithiated 1,1-diborylalkanes to epihalohydrins or epoxy alcohol 
derivatives would result in a ring opening reaction to generate an 
alkoxide (A, Scheme 1b), which could then act as a Lewis base 

and trigger the cyclization reaction to form the desired product 
(Scheme 1b).12–18  

  

Scheme 1. (a) Conventional Methods to Access Borylated Cyclobutanes. (b) 
This work. 

Herein, we report the realization of this strategy and 
demonstrate that the resulting cyclobutanes, which contain two 
complementary heteroatom handles (OH and Bpin), can be 
readily derivatized to form a range of cyclobutane products.3k The 
reaction works well with substituted 1,1-diborylalkanes and alkyl 
C3-biselectrophiles and is, to the best of our knowledge, the only 
method to directly access 3-borylated cyclobutanols.  

Cyclobutanes are notoriously difficult to form via cyclization 
reactions: not only are they highly strained, with strain energies 
comparable to cyclopropanes (~27 kcal/mol),19 but substitutions 
to form cyclobutanes have high entropic and stereoelectronic 
barriers when compared to cyclopropane formation.20 With these 
challenges in mind, we began our studies by evaluating the 
reaction of 1a with epibromohydrin (2a) in the presence of various 
metal salts, solvents, and ligands (Table 1).  

 

 

R

borylmetalation

pinB R3
R1

R2

Li

strain release

DG

BpinR1

R2

C-H 
functionalization

functionalization of 
cyclobutane core

formal [3+1]
[2+2]-

cycloaddition

this work

R1 O pinB Bpin HO
R1

O Bpin
Livia

2. MXn (cat.)

1.

X

R2Li

R2
Bpin

R1 X
R2

Bpin

AX = Br, Cl, OMs, OTs

a) Approaches to access borylated cyclobutanes

b) This work

convenient access to valuable 3-borylcyclobutanols
rapid buildup of molecular complexity easily derivatized

·
· ·

Bpin
Bpin

OH



        

2 
 

 Table 1. Reaction Optimization with (Bpin)2CH(4-OMePh).a 

 

 
Notably, initial control reactions revealed that the reaction 

proceeds in the absence of a metal additive, however the addition 
of Zn salts was found to be beneficial for yield and reproducibility. 
Throughout optimization, side products resulting from direct 
substitution of the C–X bond (4a, Table 1), epoxide formation from 
intermediate A (4a), and semipinacol rearrangement from 
intermediate A (5a and 6a) were observed in yields ranging from 
approx. 5–30% depending on the reaction conditions employed. 
Using 20 mol % ZnCl2, 3a was obtained in 67% yield with a 4:1 
diastereoselectivity. Various ligands were also investigated, with 
bpy giving similar results to the reaction free of exogenous ligand, 
and TMEDA giving a modest improvement in yield. Moving to 
Zn(OTf)2 resulted in an improved 77% yield, however we found 
Zn(CN)2 to be particularly effective for this transformation, with 3a 
being obtained in 96% yield and a 6:1 d.r. Switching to a non-
polar, non-coordinating solvent such as toluene resulted in a 
complete shutdown of reactivity, however the addition of HMPA – 
which is known to facilitate substitution reactions in non-polar 
solvents21 – led to product formation, albeit in lower yield than 
when THF was used.  

 

Scheme 2. Scope of 1,1-Diborylalkanes.a  

We next explored the scope of the reaction (Scheme 2). 
Overall, 1-aryl-1,1-diborylalkanes led to borylated cyclobutanols 
in good to excellent yields. Phenyl-substituted 1,1-diborylmethane 
give 3b in 85% yield and 5:1 d.r. 4-, 3-, and 2-anisyl derivatives 
were all competent in this reaction, leading to products 3a, 3c, 
and 3d respectively, in good to excellent yields. The reaction was 
tolerant of substitution at the ortho position(s) of the aromatic ring, 
as demonstrated with products 3d, 3e, and 3f. A 1,1-diborylalkane 
bearing an electron poor 4-fluorophenyl group gave cyclobutanol 
3h in 92% yield and 5:1 d.r. In this case, ZnCl2 was found to be a 
more effective additive (cf. 44% yield with Zn(CN)2).22 Silyl and 
benzyl ether-protected phenol derivatives were compatible with 
the reaction conditions, leading to 3i and 3j in 74% and 51% yield, 
respectively. Using 1,1-diborylmethane as a starting material 
resulted in the non-substituted borylated cyclobutanol 3k in 72% 
yield and 3:1 d.r.; it should be noted that CuCl was required for 
this substrate. Currently, 1,1-diborylalkane starting materials 
bearing simple alkyl substituents (e.g. R = benzyl) do not 
efficiently undergo the transformation.23 The inclusion of directing 
groups such as ethers or thioethers can partially remedy this 
challenge, resulting in the formation of 3l and 3m in 30% and 47% 
yield, respectively, when 1.0 equivalent of CuCl is used. 

aYields and diastereomeric ratios determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as an internal standard. bToluene/HMPA ratio of 15/1 (v/v); HMPA 
(0.10 mL) was added to the reaction 10 minutes after adding the metal. For full details, 
see SI (Table S1). 
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Scheme 3. Scope of Electrophiles.a 

With respect to the 1,3-biselectrophile reaction partner, a 
range of different leaving groups were compatible with this 
chemistry (Scheme 3a). Along with epibromohydrins, 
epichlorohydrins were also efficient in this reaction, leading to 
product 3h in 87% yield and 5:1 d.r. Epoxy mesylates and 
tosylates were also competent, although the epoxy mesylate 
starting material benefited from the addition of one equivalent of 
LiBr. Substituted epibromohydrins were tolerated in this reaction, 
resulting in products (3n, 3o, 3p, and 3q) with at least one 
substituent at three of the four positions on the cyclobutane core 
(Scheme 3b,c). Notably, in all cases where substituted 
epibromohydrins were used, only a single diastereomer was 
isolated.  

The stereochemical relationship between the alcohol and the 
substituent at the 2-position of the cyclobutane core is determined 
by the stereochemical relationship of the starting epibromohydrin: 
syn-epibromohydrins result in trans products (3n, 3o, 3p), and 
anti-epibromohydrins result in cis products (3q) (Scheme 3c). 
Since a-boryl anions are able to planarize, we were curious to see 
if the C3 stereocenter was controlled by steric effects from the 

substituent at the 2-position or by the alcohol at the 1-position 
(through coordination). When diastereomers 2f and 2g were 
tested, we found that the relative stereochemistry at C3 was 
primarily controlled by the substituent at C2, presumably through 
steric effects (Table 4c). This may explain why substituted 
epibromohydrins result in a single diastereomer of product and 
non-substituted epibromohydrins or epoxy alcohol derivatives do 
not – when there is a substituent, the steric interactions become 
greater and therefore selectivity is improved.  

To further verify that the stereochemical information in the 
starting material was translated to the product, enantioenriched 1-
substituted epibromohydrin 2h was used as a substrate. The 
reaction was found to proceed with high enantiospecificity (>98% 
es, Scheme 4). This is significant because enantioenriched 
epibromohydrins can be readily accessed via the corresponding 
allylic alcohols, thereby providing a synthetically convenient 
approach to enantioenriched, polysubstituted borylated 
cyclobutanols. These examples further highlight how this method 
enables rapid buildup of complexity from readily accessible, 
stereochemically defined starting materials. 

  

Scheme 4. Stereospecificity using an Enantioenriched Epibromohydrin. 

The products of these reactions contain both an alcohol and 
a boronic ester as synthetic handles, priming them for 
derivatization. We focused our efforts on derivatizations that may 
be of particular interest to medicinal chemists. For the Bpin handle, 
initial TBS protection of the alcohol followed by Zweifel olefination 
efficiently yielded alkenylated products 3u and 3v, with 3v bearing 
a newly formed all-carbon quaternary stereocenter (Scheme 5a). 
The incorporation of heterocycles, such as furan, was possible 
using conditions reported by Aggarwal and coworkers, generating 
3w in 80% yield.3e Oxidation of the boronic ester using sodium 
perborate tetrahydrate cleanly yielded cyclobutanol 3x in 83% 
yield, and the presence of both a protected and an unprotected 
alcohol in this product should enable selective, orthogonal 
functionalization. Finally, a Matteson homologation resulted in the 
homologated product 3y in 50% yield.  

Functionalization of the alcohol handle was also explored 
(Scheme 5b). We found that esterification via DCC coupling 
efficiently produced 3z in 82% yield. Etherification and SNAr 
reactions proceeded smoothly and led to products 3aa and 3ab, 
respectively, in good to excellent yields. These transformations 
suggest that the alkoxide can act as an effective nucleophile 
despite its potential sequestration as a boronate complex.  

aReported yields are isolated yields of both diastereomers; d.r.’s were determined by 1H, 
19F NMR, or GC-MS analysis of the crude reaction mixtures. bLiBr (1.0 equiv.) added. 
cSingle diastereomer isolated. d(Bpin)2CH(4-FPh) used. e(Bpin)2CH(3-OMePh) used. 
f(Bpin)2CHPh used. 
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Scheme 5. Product Derivatization Studies.a 

Throughout our studies, we noticed different reactivity 
patterns depending on the 1,1-diborylalkane that was being used. 
These differences manifested in three main observations: i) both 
Zn and Cu salts effectively convert aryl substituted 1,1-
diborylalkanes [(Bpin)2CHAr] to the desired cyclobutanols, 
whereas only Cu salts were effective with alkyl- and non-
substituted starting materials; ii) the use of Cu salts led to a 
diminished d.r., and iii) aryl substituted 1,1-diborylalkanes lead to 
product in the absence of a metal additive, which was not the case 
for alkyl- and non-substituted 1,1-diborylalkanes. The observation 
that the reaction proceeds without the addition of a metal additive 
is noteworthy as it suggests that lithium-based Lewis bases can 
trigger boryl migration. In contrast, previous work has shown that 
in similar systems, Li alkoxides are rarely able to effectively 
promote C-to-O boryl-migrations in the absence of a transition 
metal.11e,18k Indeed, in their report detailing ring opening reactions 
and substitutions with allylic electrophiles using LiCH(Bpin)2, 
Meek and coworkers found that the use of CuCl was required, 
suggesting that Lewis base coordination alone was insufficient for 
the reaction to proceed.24 In this case, the additional stabilization 
provided by the aryl substituent may allow the transfer to occur, 
suggesting that this reaction proceeds through a simple Lewis 
base activation and does not require transmetalation.18k Further 
mechanistic studies are currently ongoing in our laboratory. 

In summary, we have developed a formal [3+1]-cycloaddition 
to generate 3-borylated cyclobutanols. This reaction takes 

advantage of epihalohydrins and epoxy alcohol derivatives as C3-
biselectrophiles and lithiated 1,1-diborylalkanes as C1-
bisnucleophiles. 1-Substituted epibromohydrins resulted in the 
formation of highly substituted borylated cyclobutanols, allowing 
for rapid buildup of molecular complexity within a single 
transformation. When 1-substituted epibromohydrins are used, a 
single diastereomer is obtained, with the stereochemistry at the 
C3 position being controlled by the substituent at C2. The reaction 
proceeded with high levels of stereospecificity, and when 
enantioenriched 1-substituted epibromohydrins were used, 
enantioenriched products were obtained. Finally, both the alcohol 
and the boronic ester were demonstrated to be orthogonal 
synthetic handles, allowing for convenient derivatization and 
elaboration of the products. We anticipate that these synthetic 
handles may alleviate some of the challenges regarding 
incorporation of cyclobutanes into more complex molecular 
scaffolds and are continuing to explore their potential in our 
laboratory. 
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