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ABSTRACT: The Fujiwara-Moritani reaction is a powerful tool for the olefination of arenes by Pd-catalyzed C–H activation. How-

ever, the need for superstoichiometric amounts of toxic chemical oxidants makes the reaction unattractive from an environmental and 

atom-economical view. Herein, we report the first non-directed and regioselective olefination of simple arenes via an electrooxidative 

Fujiwara-Moritani reaction. The versatility of this operator-friendly approach was demonstrated by a broad substrate scope that in-

cludes arenes, heteroarenes and a variety of olefins. Electroanalytic studies suggest the involvement of a Pd(II)/Pd(IV) catalytic cycle 

via a Pd(III) intermediate. 
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Transition metal-catalyzed C–H functionalization reactions 

have increasingly gained importance over the last few decades 

since they allow direct and rapid installation of functionality. 

Regardless of the undeniable synthetic value of such transfor-

mations, the need for superstoichiometric quantities of expen-

sive and hazardous oxidants (e.g., silver and copper salts) re-

mains a major drawback from a sustainable chemistry perspec-

tive.1,2 Additionally, chemical oxidants often lead to the for-

mation of byproducts, hindering purification and decreasing 

atom economy. To make chemical processes and transfor-

mations intrinsically sustainable, organic chemists re-discov-

ered synthetic electrochemistry as an environmental friendly 

approach.3-6 Electroorganic synthesis utilizes electric current to 

realize redox processes and thereby avoids the use of danger-

ous, expensive, and polluting chemical oxidizing or reducing 

agents. Precise control of electrochemical reaction parameters 

often leads to commendable reactivity and chemoselectivity, 

and hence to an improved atom economy. In addition, electro-

chemical processes fulfil the expectations of sustainability since 

electricity can be generated from renewable energy sources, 

such as wind, sunlight or biomass. Recent efforts in the field of 

electrochemical C–H activation resulted in significant progress 

towards efficient C–C and C–heteroatom bond formations.7-10 

Hence, the utilization of electric current as an alternative oxi-

dant in Pd-catalyzed C–H functionalizations is emerging as an 

attractive alternative to stoichiometric reagents.11-13 

The Fujiwara-Moritani reaction is one of the earliest known ex-

amples of Pd-catalyzed oxidative C−H functionalizations for 

C−C bond formation.14 This extraordinary C(sp2)−H alkenyla-

tion reaction avoids the use of prefunctionalized starting mate-

rials; however, it suffers from the drawbacks of regioselectivity, 

reactivity and use of excess arenes.15 Since its development, a 

number of modified strategies have been reported by different 

research groups to address the issue of reactivity and selectiv-

ity.16-21 In recent time, the ligand assisted oxidative C−H 

alkenylation of arenes without directing substituents has been 

established as one of the major strategies to overcome the reac-

tivity issue and to elaborate the substrate scope. 

Scheme 1. Recent approaches to sustainable C–H alkenyla-

tion reactions. 

 

However, the regioselectivity for most of the sterically and elec-

tronically unbiased arenes is still not up to the mark. The most 

recent studies on the non-directed oxidative C−H olefination of 

arenes were reported independently by Yu and van Gemmeren 

(Scheme 1). The Yu group employed electron-deficient 2-pyri-

done as a X-type ligand for the olefination of both electron-rich 

and electron-poor arenes including heteroarenes as the limiting 

reagent (Scheme 1a).18 The pyridone ligand improves the selec-

tivity in a non-directed approach as comparable to directed C−H 

olefination reaction by enhancing the influence of steric effects. 
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On the other hand, the van Gemmeren group utilizes two com-

plimentary ligands N-Ac-Gly-OH and a 6-methylpyridine de-

rivative in a 1:1 ratio to accomplish the non-directed olefination 

reaction of arenes (Scheme 1b).20 Despite the indisputable ad-

vances made by these research groups in the area of non-di-

rected oxidative C−H olefination of arenes, the use of super-

stoichiometric amounts of toxic and waste generating oxidants 

(Ag salts) deciphers into a strong call for an environmentally 

responsive and atom-economic protocol. 

In 2007, Jutand reported the directing group assisted Pd-elec-

trocatalyzed ortho-olefination of acetyl protected aniline in a 

divided cell by utilizing catalytic amounts of benzoquinone as 

a redox mediator (Scheme 1c).22a A Rh-catalyzed ortho-C–H 

olefination of benzamide was developed through an electrooxi-

dative pathway by the Ackermann group (Scheme 1d).22b Sim-

ple arenes that bear no directing groups are cheap, easily avail-

able and very desirable starting materials. However, such arenes 

are significantly more challenging for selective functionaliza-

tion as transformations often result in the formation of complex 

product mixtures. With no report of an electrooxidative Pd-cat-

alyzed C(sp2)-H alkenylation of simple arenes present, we wish 

to present such a variant of the Fujiwara-Moritani reaction 

(Scheme 1e). The developed method proceeds through a non-

directed pathway and is controlled by stereoelectronic factors. 

This protocol does not require additional chemical oxidizing 

agents and is executed using an operator-friendly undivided cell 

setup.  

Table 1. Optimization of the non-directed Pd-catalyzed elec-

trooxidative olefination of simple arenesa 

 
Entry Alteration from 

standard conditions 

Yield 

of 1 

(%) 

Selectivity 

( :α) 

1 none 70 >25:1 

2 Co(OAc)2•4H2O in-

stead of Pd(OAc)2 

9     1:1 

3 [Ru(p-cymene)Cl2]2 

instead of Pd(OAc)2 

NR       

4 Pd(OAc)2 (5 mol%) 51 >25:1 

5 Pd(OAc)2 (20 mol%) 71 >25:1 

6 L2 instead of L1 45     8:1 

7 L3 instead of L1 59   20:1 

8 L4 instead of L1 19     5:1 

9 L5 instead of L1 8     1:1 

10 Benzoquinone 

(10 mol%) 

68 >25:1 

11 PivOH (1.0 equiv.) 61   20:1 

12 Ni foam instead of Pt 64 >25:1 

13 GF instead of Pt 49   15:1 

14 Steel instead of Pt 31   13:1 

15 6 mA/cm2 instead of  

2.5 mA/cm2 

27   11:1 

16 24 h reaction time 47    20:1 

17 12 h reaction time  56    21:1 

18 no electricity NR - 

19 no Pd(OAc)2 NR - 

 

a Standard reaction conditions: undivided cell, GF anode, Pt cath-

ode, j = 2.5 mA/cm2, naphthalene (0.2 mmol), n-butyl acrylate 

(0.5 mmol), Pd(OAc)2 (10 mol%), L1 (20 mol%), TBAPF6 

(0.5 equiv.), DCE (3 mL), 15 h, under air. b Yield determined by 
1H-NMR. NR = no reaction; TBAPF6 = tetra-n-butylammonium 

hexafluorophosphate. GF = graphite felt. Surface area of electrodes 

dipped in solution = 0.7 cm x 0.7 cm, current = 1.225 mA and cur-

rent density = 2.5 mA/ cm2 (electrochemical surface area = 1.23 

cm2). 

To start our study, naphthalene was chosen as a challenging 

substrate because of its ability to form α- and ꞵ-products. We 

examined various reaction conditions for the desired Pd-cata-

lyzed electrooxidative C–H alkenylation in a simple undivided 

cell setup (Table 1, and see Supporting Information Tables S1-

S8) with n-butyl acrylate acting as the coupling partner. After 

rigorous optimization, we found that naphthalene reacts with n-

butyl acrylate in dichloroethane (DCE) in the presence of 

Pd(OAc)2 (10 mol%), ligand L1 (20 mol%), and the electrolyte 

tetra-n-butylammonium hexafluorophosphate (TBAPF6, 0.5 

equiv.) while employing a graphite felt anode and a platinum 

cathode maintaining constant current electrolytic conditions 

(j = 2.5 mA/cm2, Table 1, entry 1).  The desired -olefinated 

product was formed in 70% yield and with > 25:1 regioselec-

tivity (:α). Other transition metal catalysts such as 

Co(OAc)2•4H2O or [Ru(p-cymene)Cl2]2 as substitutes for 

Pd(OAc)2 were found to be completely ineffective (entries 2 

and 3). Changes in the catalyst loading were not found to be 

beneficial (entries 4 and 5).  

Notably, in the present transformation the ligand has a major 

influence on the reactivity and selectivity aspects (see Support-

ing Information, Table S4). After studying a series of 2-pyri-

done, pyridine and amino acid-based ligands L2–L5 it was 

found that L1 is the optimal ligand since it provided superior 

yield and selectivity (entries 6–9). Addition of catalytic 

amounts of p-benzoquinone as a redox mediator (entry 10) or 

pivalic acid as an additive (entry 11, Table 1) had minimal in-

fluence on the reaction outcome. While nickel foam as cathode 

material shows similar efficiency, the use of a carbon felt or a 

steel cathode led to lower reactivity and selectivity   



 

Scheme 2. Evaluation of simple arenes and heteroarenes in 

the electrochemical olefinationa 

 
aReaction conditions: undivided cell, GF anode, Pt cathode, j = 2.5 

mA/cm2 or j = 1.5 mA/cm2, corresponding arenes or heteroarenes 

(0.2 mmol), n-butyl acrylate (0.5 mmol), Pd(OAc)2 (10 mol%), L1 

(20 mol%), TBAPF6 (0.5 equiv.), DCE (3 mL) or 5:1 ration of di-

chloroethane (DCE) and 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP), 15 h, under air. bYields of isolated products are reported.  

(entries 12–14). Increasing the electric current density (j = 6 

mA/cm2) was detrimental since it provided the desired product 

in low yield (27%) and with decreased :α-selectivity (11:1; en-

try 15). Additionally, longer and shorter reaction times resulted 

in lower yields of the olefinated product 1 (entries 16 and 17). 

Finally, control experiments confirmed that both electric poten-

tial and Pd(OAc)2 are essential to furnish the reaction products 

(entries 18 and 19, Table 1).  

With optimized reaction conditions in hand, reaction generality 

was explored by testing a range of substituted arenes and het-

eroarenes with n-butyl acrylate (Scheme 2). Following the ole-

fination of naphthalene (69%, > 25:1 :α selectivity), 1,2,3,4-

tetrahydronaphthalene was successfully reacted (52%, 11:1 

:α-selectivity). Next, we applied our standard reaction condi-

tions to benzene and found them not to be equally effective as 

only 25% of the olefinated product 3 was obtained. As a result, 

further optimizations of electric current density and solvent 

were carried out to enhance the yield (see Supporting Infor-

mation, Table S9). To our satisfaction, the yield of product 3 

increased to 63% when the electrolysis was carried out with an 

electric current density of j = 1.5 mA/cm2 and in a solvent mix-

ture of DCE/HFIP (5:1). These modified reaction conditions 

were applied for the electrosynthesis of all other olefinated 

products 4–22 (Scheme 2). The olefination of 1,3,5-trimethox-

ybenzene and mesitylene with n-butyl acrylate proceeded 

smoothly under the revised reaction conditions to afford prod-

ucts 4–6 in up to 65% yield. The regioselectivity issue was more 

prominent for arenes bearing two or more electronically similar 

C–H bonds. (e.g., electron-rich arenes: ortho vs. para). Di-

methoxy benzene gives -selective olefinated product 6 (:α; 

7:1). While toluene was converted with para-selectivity (7:1) to 

7, phenol afforded olefinated product 8 with ortho-selectivity 

(o:others; 9:1, Scheme 2). On the other hand, subjecting 

TBDMS (tert-butyldimethylsilyl) protected phenol to the estab-

lished protocol furnished 9 with 8:1 para-selectivity (Scheme 

2). The TBDPS (tert-butyldiphenylsilyl) protected phenol af-

forded exclusively the para-olefinated product 10 which might 

be due to the steric repulsion caused by the bulky protecting 

group. Conversion of 2,6-diiso-propylphenol provided ole-

finated product 11 as a single para-olefinated isomer with 67% 

yield. Anisole and ethoxybenzene both reacted smoothly to pro-

duce 12 (72%, 15:1) and 13 (70%, 10:1) with ortho-selectivity 

(Scheme 2). The compatibility of the present transformation 

was further showcased by the olefination of N,N-dimethyl ani-

line in 70% yield (14) and 8:1 ortho-selectivity. Similarly, me-

thyl ferrocene carboxylate and biologically active caffeine re-

acted smoothly with n-butyl acrylate to produce olefinated 

products 15 and 16 in good yields (Scheme 2). Moderately elec-

tron-withdrawing arenes such as a phenyl acetic acid derivative 

(17, 51%, o:others = 7:1), a homoveratric acid derivative (18, 

48%, o:others = 15:1) or 4-methoxy acetophenone (19, 59%, 

m:others = 7:1) gave the corresponding products in satisfactory 

yields. The coupling of unsubstituted thiophene and furan with 

n-butyl acrylate afforded the olefinated products 20 and 21 

(64% and 68%) with synthetically useful C2 and C3 selectivity, 

respectively (C2:others; 18:1 and C3:others; 19:1, Scheme 2). 

In contrast, thiophenes bearing a substituent in C2 position such 

as 2-phenylthiophene and 1-(4-(thien-2-yl)phenyl)ethan-1-one 

reacted with high C5-selectivity (> 25:1) to the arylated α,-un-

saturated esters 22 and 23 (76% and 73% yield). Conversion of 

2-(2-nitrophenyl)thiophene delivered the desired product 24 in 

64% yield with exclusive C5-selectivity. A C3-substituted thi-

ophene also reacted with the acrylate to 25 in 72% yield 

(C5:others; 6:1 selectivity). Heteroarenes bearing electron-

withdrawing substituents such as 2-acetyl thiophene (26) af-

forded the C5-olefinated product in moderate yield and selec-

tivity (64%, C5:others = 8:1). However, aromatic ring bearing 



 

strong electron-withdrawing groups (-NO2, -CHO, -CF3, -F 

etc.) are not compatible under our present reaction conditions.   

Scheme 3. Evaluation of other α,-unsaturated systems in 

the electrochemical olefination of arenes 

  
aReaction conditions: undivided cell, GF anode, Pt cathode, j = 2.5 

mA/cm2 or j = 1.5 mA/cm2, corresponding arenes or heteroarenes 

(0.2 mmol), activated olefins (0.5 mmol), Pd(OAc)2 (10 mol%), L1 

(20 mol%), TBAPF6 (0.5 equiv.), DCE (3 mL) or 5:1 ratio of di-

chloroethane (DCE) and 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP), 15 h, under air. bYields of isolated products are reported.  

Next, we investigated the applicability of other olefins by react-

ing them with simple arenes (Scheme 3). In addition to other 

acrylates (methyl 27, ethyl 28 and tert-butyl 29), acrylic acid 

was successfully converted with naphthalene to its arylated 

product 30. Moderate yields (54–60%) and moderate to high 

:α-selectivities (up to >25:1) were obtained for all reactions. 

Coupling of methyl acrylate with benzene under adjusted elec-

trochemical conditions (j = 1.5 mA/cm2; DCE/HFIP mixtures) 

gave 62% of olefinated product 31. Other activated olefins such 

as methyl vinyl sulfone, and acrylonitrile were also amenable to 

the present olefination protocol. Subjecting these substrates in 

combination with different arenes to our protocol led to a vari-

ety of arylated products 32–35 in good yields and regioselectiv-

ities. α,-Unsaturated ester derivatives of bioactive molecules 

such as -tocopherol and cholesterol were efficiently reacted 

with naphthalene to the arylated products 36–37 in moderate 

yields. To further elaborate the scope of present protocol un-

activated olefins such as aliphatic olefins and styrene deriva-

tives were tested. However, none of them afford olefinated 

products under our reaction conditions. To monitor the scalabil-

ity of the present transformation, two reactions were performed 

with the model reaction at scales of 0.504 g (46%, β:α = 7:1) 

and 1.08 g (41%, β:α = 7:1; see Supporting Information 4.2). 

To gain insights into the catalytic mode of action, electrochem-

ical and spectroelectrochemical experiments were performed. 

Cyclic voltammetry (CV) on Pd(OAc)2 in DCE revealed two 

oxidation waves at +1.42 V vs. NHE (Normal Hydrogen Elec-

trode) and at +2.47 V vs. NHE (Figure 1a) which might refer to 

the redox conversion of Pd(II/III) and Pd(III/IV).23 Figure 1b 

shows CVs of naphthalene (substrate), ligand L1, n-butyl acry-

late, and Pd(OAc)2. In comparison to the Pd(II/III) redox pair, 

a significantly higher oxidation potential (+2.16 V vs. NHE) 

was observed for naphthalene, which suggests that substrate ac-

tivation is potentially induced by a Pd species with an oxidation 

state greater than +II (Figure 1b). CVs of other substrates fol-

lowed the same pattern (see Supporting Information, Figure 

S2). According to an electrochemical study on approximate 

ranges of standard redox potentials for Pd intermediates in cat-

alytic reactions, the oxidation of Pd(II) to Pd(IV) is usually ob-

served in the range of +1.00 – 2.00 V (vs. Fc/Fc+ = Ferrocene) 

or 1.63 – 2.63 V (vs. NHE).23 The CV profile of Pd(OAc)2 in 

the negative scan revealed two reduction waves at -0.23 V and 

at -1.06 V vs NHE (Figure S6) which might refer to the redox 

conversion of Pd(II/I) and Pd(I/0). Taking these results into ac-

count, involvement of a Pd(II/IV) catalytic cycle during the pre-

sent transformation appears to be likely as the negative scan 

rules out a Pd(II/0) cycle.23d, 23e 

In order to obtain further evidence for this hypothesis, we ex-

amined the reaction mixture at a constant potential of +2.61 V 

(vs. NHE) spectroelectrochemically (SEC) to check any 

changes in optical features during the reaction. This in-situ UV-

Visible analysis of the reaction mixture revealed the gradual de-

crease of an absorption band at 379 nm and a new peak (~350 

nm) appeared over time (Figure 1c). Similar behavior was ob-

served for the Pd-ligand complex as a blue shift of optical bands 

was found from 368 nm to 352 nm under the same potential of 

+2.61 V (vs. NHE, Figure 1d). The differences in the observed 

UV-vis peak positions are presumably due to a change in the 

geometry of the Pd-complex upon oxidation in the analyzed re-

action mixtures. 

To further consolidate this hypothesis, the same SEC experi-

ment was repeated with only Pd(OAc)2 which showed an ab-

sorption peak at 404 nm (Figure S3). Electrolysis of Pd(OAc)2 

at +2.61 V (vs. NHE) also resulted in a blue shift with a new 

peak appearing at almost the same wavelength of 349 nm (Fig-

ure S4). All these results led us to postulate that the new peak 

was associated with a change in oxidation state of the Pd(II) 

center. In order to further understand the nature of intermediates 

involved in the catalytic cycle, a series of electron paramagnetic 

resonance (EPR) experiments of the reaction mixture were con-

ducted at different time intervals employing optimized reaction 

conditions. The EPR spectra (273 K) after 1 h showed a strong 

peak at g = 2.005 which was presumably due to the formation 

of an organic radical (Figure 2a), however no naphthalene 

homo-coupled product was detected after different time inter-

vals or under different conditions. At longer time intervals (4 h 

and 7 h), weak peaks at gx = 2.139, gy = 2.081   



 

 

Figure 1. (a) Cyclic voltammogram of Pd(OAc)2  and L1-Pd(OAc)2 (1 mM, 100 mVs-1 scan rate, glassy carbon, potential vs. NHE, 0.1 M 

TBAPF6 in DCE); (b) Cyclic voltammogram of reactants (1 mM, 100 mVs-1 scan rate, glassy carbon, potential vs. NHE, 0.1 M TBAPF6 in 

DCE); (c) In-situ UV-vis spectroelectrochemical spectra of the reaction mixture during bulk electrolysis at +2.61 V vs. NHE; (d) In-situ UV-

vis spectroelectrochemical spectra of the Pd-ligand complex during bulk electrolysis at +2.61 V vs. NHE. 

and gz = 2.055 arose due to the asymmetry of the electronic dis-

tribution. The appearance of rhombic signals suggested the for-

mation of a Pd(III) intermediate having a d7 center (Figure 2a).24 

An enlarged version of the spectra for Pd(III) after 7 h is shown 

with simulated data in Figure 2b. Time-dependent EPR spectra 

highlight that the build-up of Pd(III) was concomitant with the 

decreased formation of an organic radical (PdIII–R to PdIIR
.
) as 

the corresponding peak diminished. This implied that the cata-

lytically active Pd(III) species got accumulated as the reaction 

approached towards completion. Furthermore, the EPR data in 

the absence of n-butyl acrylate (after 2 h) also revealed a very  

Figure 2. (a) EPR spectrum of the reaction mixture under the stand-

ard reaction conditions at different time intervals (273 K); (b) En-

larged EPR spectra of Pd(III) after 7 h of experiment at 273 K (ex-

perimental vs. simulated). 

strong peak at g = 2.005, hence the formation of a radical spe-

cies from the olefin was ruled out (Figure S5). 

Additionally, radical quenching experiments with TEMPO did 

not show any effects under the standard reaction conditions. 

Furthermore, electrochemical arene oxidation to generate or-

ganic radicals has been well reported in the literature.5f All these 

control experiments suggest that a phenoxy radical from L1 

(C’) might be formed from intermediate C (Scheme 4).  

All of the performed experiments give a strong indication that 

a Pd(II)/Pd(IV) cycle is involved in this electrochemical variant 

of the Fujiwara-Moritani reaction. Also, a palladium complex 

PdII(L1)4 was synthesized and characterized by X-ray crystal-

lography (Figure 3). This PdII(L1)4 complex was found to be a 

competent intermediate for the Pd-catalyzed electrooxidative 

olefination of arenes. 

 

Figure 3. Single X-ray crystal structure of Pd-complex [Pd(L1)4].25 



 

Based on these results and literature precedence,23 a plausible 

Pd(II/IV)-catalytic cycle is proposed for the electro-oxidative 

olefination of simple arenes (Scheme 4). The catalytic cycle 

starts with the anodic oxidation of the Pd(II) catalyst A to form 

a Pd (III) intermediate B. Arene C(sp2)–H bond activation de-

livers the organopalladium complex C which is converted to the 

Pd(IV) species D by anodic oxidation. Next, olefin coordination 

to form E followed by migratory insertion results in the for-

mation of another organopalladium intermediate F. Finally, 

-hydride elimination followed by reduction of Pd furnishes the 

olefinated product 1 and the Pd(II) catalyst A is regenerated. 

Scheme 4. Proposed catalytic cycle for the electrooxidative 

olefination of arenes 

 

In summary, we have demonstrated the first Pd-catalyzed elec-

trooxidative non-directed olefination of simple arenes. The de-

veloped transformation provides an alternative route to conven-

tional Fujiwara-Moritani reactions by substituting toxic chemi-

cal oxidants with electric current. The applicability of this non-

directed approach was proven by broad substrate scopes and 

high regioselectivities. Preliminary mechanistic investigations 

suggested the involvement of a Pd(II)/Pd(IV) catalytic cycle via 

a Pd(III) intermediate. Further investigations to expand the un-

derstanding of the reaction mechanism are currently underway 

in our laboratory. 
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