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Abstract.The biofabrication of structural proteins with controllable properties via amino acid
sequence design is interesting for biomedicine and biotechnology, yet design rules that link amino
acid sequence to material properties remain largely unknown. Molecular dynamics (MD) simula-
tions can aid in unveiling such rules, but the lack of a standardised framework to interpret the
outcome of those simulations hinders their predictive value for the design of de novo structural
proteins. To address this, we developed a model that unambiguously classifies a library of de novo
elastin-like polypeptides (ELPs) with varying numbers and locations of hydrophobic/hydrophilic
and physical/chemical-crosslinking blocks according to their thermoresponsiveness at physiological
temperature. Our approach does not require long simulation times or advanced sampling methods.
Instead, we apply (un)supervised data analysis methods to a dataset of molecular properties from rel-
atively short MD simulations (150 ns). We also investigate the rheological properties and microstruc-
ture of ELP hydrogels, revealing several handles to tune them: chain hydrophilicity/hydrophobicity
or block distribution control the viscoelasticity and thermoresponsiveness, whereas ELP concentra-
tion defines the network permeability. Our findings provide an avenue to accelerate the design of de
novo ELPs with bespoke material properties.

INTRODUCTION

Many natural materials like bone, silk cocoons, mus-
sel threads, or insect wings, consist of a self-assembling
biopolymeric scaffold formed by structural proteins such
as collagen, elastin, silk fibroin, or resilin [1]. These struc-
tural proteins display impressive mechanical, structural,
and biological traits from a materials science perspective,
such as the ability to combine toughness and strength in
a lightweight material, to interact with the environment,
or to promote cell adhesion [2, 3]. Those traits arise
from the collective effects of nanoscale features encoded
in the amino acid sequence of structural proteins, such
as the frequency and distribution of ordered/disordered,
hydrophobic/hydrophilic, charged/uncharged, or chemi-
cal/physical crosslinking blocks [4].

Structural proteins have inspired material scientists to
manufacture multifunctional materials for fields includ-
ing medicine [5], energy harvesting [6], and biosensing
[7]. However, harvesting structural proteins from nature
is inefficient and constrains us to using only biopolymers
selected for by evolution [8]. Luckily, developments in
bioprocess engineering and molecular and synthetic bi-
ology enable the use of microbial cultures for the bio-
fabrication of de novo structural proteins [3, 9]. This
allows us to rationally design new protein sequences that
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encode well-defined chain topologies and interactions to
control the mechanical, structural, and biological features
of these proteins.

Elastin is one of the most studied structural proteins
[10]. It is a key component of the extracellular matrix
of mammals, conferring elasticity to tissues like blood
vessels, skin, or lungs [11]. Its precursor, tropoelastin,
is rich in hydrophobic VPGVG blocks and displays a
lower critical solution temperature (LCST) behaviour:
it is water-soluble below the LCST, but it coacervates
and phase-separates above it [12]. This has inspired
the development of elastin-like polypeptides (ELPs) [13]
for the manufacture of dynamic and thermoresponsive
materials in fields like tissue engineering [14], drug de-
livery [15], microfluidics [16], and actuation [17]. Like
tropoelastin, ELP solutions also display LCST behaviour
[18, 19]. ELPs are intrinsically disordered and highly dy-
namic both below and above the LCST [20, 21]. Above
the LCST, ELP–ELP interactions become favoured over
ELP-solvent interactions, and thus the solution segre-
gates into ELP-rich and solvent-rich phases [21]. The
properties of ELP-based materials can be controlled by
sequence design (e.g., block arrangement or molecular
weight), or by processing conditions (e.g., protein concen-
tration or solution conditions) [22], and numerous studies
have shown the ability of ELPs to form a rich landscape
of sophisticated nanostructures above the LCST [23–25].

ELPs typically consist of repetitions of the pentapep-
tide building block VPGXG [18, 19], where X is referred
to as the guest amino acid and can be any amino acid
except proline [13]. De novo ELPs are designed fol-
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lowing a modular approach, in which variations of the
VPGXG building block are encoded into a polypeptide
chain that is produced via microbial fermentation. Early
research focused on elucidating the molecular origins of
the elasticity and LCST behaviour of ELPs [19, 26–28]
and on characterising selected ELP for the manufacture
of films [29], fibres [23], nanoparticles [30], or hydrogels
[31]. This unveiled the influence of parameters like guest
amino acid [32] or polypeptide molecular weight (MW)
[33]. Yet, precise heuristics that link sequence design
to macroscopic dynamic, mechanical, or structural fea-
tures for de novo ELPs remain largely unknown. It was
only recently that some studies started uncovering such
sequence–property relationships [34–37]. To that end,
molecular dynamics (MD) simulations can accelerate the
design of de novo ELPs by rapidly and simultaneously
screening multiple permutations of building blocks [38].
This holds promise to predict which sequences might dis-
play interesting material traits before synthesising them.

MD simulations have been used to study the elastic-
ity and LCST of ELPs [20, 26, 28, 35]. However, the
predictive power of MD simulations for the design de
novo ELPs is yet to be fully harnessed. It is generally
stated that simulation times in the microsecond range
[20] or advanced sampling methods like replica-exchange
[35] are needed to attain statistically converged sampling
of ELPs via MD simulations. Furthermore, the lack of a
standardised framework to interpret the outcome of MD
simulations has hindered their use for the design of de
novo ELPs. However, several studies have claimed that
MD simulations in the 10-100 ns range can capture the
LCST of different homopolymeric or multiblock ELPs.
This was achieved by monitoring molecular properties
like radius of gyration, intra-ELP hydrogen bonds, sec-
ondary structure, or water molecules in the hydration
layer of ELPs [20, 26, 28, 35, 39–41], all of which could
reflect the molecular collapse typically associated with
the LCST behaviour of ELPs [35].

Here we propose a different approach to develop a
predictive computational framework for the LCST be-
haviour of de novo ELPs. Our work draws inspira-
tion from quantitative structure-activity relationships
(QSAR) and quantitative structure-property relation-
ships (QSPR) approaches [42, 43], and uses relatively
short (150 ns per replica) fully atomistic MD simula-
tions. We validated the model using a library of eight
de novo ELPs, which sweeps varying numbers and loca-
tions of hydrophobic/hydrophilic and physical/chemical
crosslinking blocks. Two clusters were identified among
our library based on principal component analysis (PCA)
of a set of 27 molecular properties sampled from MD sim-
ulations. These clusters, but not the individual molecu-
lar properties, coincided with the presence or absence
of LCST behaviour at 37 °C, as determined experimen-
tally. Subsequently, we developed a regression model
that accurately discriminated de novo ELPs according
to their LCST behaviour based on data from MD simu-
lations. We also investigated the rheological properties,

secondary structure, and supramolecular microstructure
of our ELP library using experiments and theory. This
allowed us to bridge sequence-level features with nano-,
micro-, and macroscopic structural and mechanical prop-
erties, providing an avenue for the rational design of de
novo ELPs with bespoke material properties.

RESULTS

Predicting the LCST behaviour of an ELP library

A library of eight de novo ELPs with size-matched MW
(34.5-35.6 kDa) was designed (Table 1). All ELPs con-
tained 48 repeats of the VPGVG building block, while
the following molecular modulators were varied: guest
amino acid, location of the crosslinking blocks, and iden-
tity of the crosslinking block. For a given MW, the LCST
can be tuned by changing the amino acid in the X po-
sition [19, 32]. We hence compared a nonpolar guest
amino acid (isoleucine, I) versus an ionic one (glutamic
acid, E). Homopolymeric ELPs are known to form co-
alescing aggregates above the LCST, which segregate
from the aqueous phase [36]. To prevent segregation and
promote the formation of a bicontinuous hydrogel net-
work, we used physical (IPAVG, GAGAGS) or chemical
(VPGKG) crosslinking blocks. IPAVG blocks in EAE ,
EAI , EAE,triblock, and EAI,triblock can form kinetically
arrested gels [44]. GAGAGS blocks in SEE and SEI

were based on β-sheet-forming blocks from silk fibroin.
These blocks can arrest ELP segregation by forming β-
sheet structures [31, 37]. Finally, VPGKG blocks were
introduced in EKE and EKI to form covalent bonds be-
tween ELP chains via lysine (K) residues upon addi-
tion of glutaraldehyde [24]. To test how the positioning
of crosslinking blocks affects the LCST behaviour and
hydrogel functionality, we investigated multiblock (EAE

and EAI) and triblock arrangements (EAE,triblock and
EAI,triblock). The effect of these modulators can be vi-
sualised by the Kyte-Doolittle hydropathy scale [45] of
these ELPs (Figure 1a).

Previous research suggested that ELPs with as few as
10 VPGXG blocks manifested LCST behaviour in MD
simulations [41]. Therefore, to reduce the computational
cost of our MD simulations, we studied the ability to
undergo LCST at 37 °C of shorter multimers of our li-
brary equivalent to ELPs with 35 VPGXG blocks (Table
S1). Implicit solvent simulations were first run, starting
with the fully extended ELP chain, to achieve a folded
structure (Figure 1b). The resulting structure was then
solvated in explicit water and, when needed, its electri-
cal charges were adjusted to achieve charge neutrality.
The solvated system was then run in triplicate for 150
ns more for each ELP. After 100 ns, ELPs were stable in
terms of root mean square deviation (RMSD) of atomic
positions (Figure S1-S2), indicating that the system was
sufficiently equilibrated to begin data sampling. There-
after, we sampled 27 different molecular properties every
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Figure 1. ELP library design, MD simulations, and data analysis. a. Schematic representation of the distribution
of building blocks along the sequences of our ELP library, together with their hydropathy plots as calculated using the Kyte-
Doolittle scale. b. Screenshots of the folding process (in implicit solvent) and dynamic run (in explicit solvent) of MD
simulations for EAE,triblock. c. Principal component analysis (PCA) scores plot. Each dot represents a timepoint from the
last 50 ns of MD simulations (n=3) on principal component 1 (x-axis) and 2 (y-axis). A dashed line separates the two clusters
detected. d. Time evolution of the optical density for ELP solutions in milliQ water (15 wt %) at 37 °C (n=2). e. Predictions
of the LCST behaviour of our ELP library at 37 °C (as observed via optical density) with a partial least-squares regression
discriminant analysis (PLS-DA) model that uses molecular properties sampled from MD simulations as input data. The value
on the y-axis indicates the prediction of the LCST behaviour for each ELP. When the prediction is above 0.5 (dotted line), the
model predicts LCST behaviour. The error bars represent the 99% confidence intervals from the LCST predictions per ELP
during the double cross validation procedure.
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Table 1. Name, amino acid sequence, and theoretical and real (determined via LC-MS) MW (in kDa) of the ELP library.
Name Sequence Theoretical MW Experimental MW*
EAE [(IPAVG)(VPGVG)2(VPGEG)(VPGVG)2(IPAVG)]12 35.6 35.4
EAE,triblock (IPAVG)12[(VPGVG)2(VPGEG)(VPGVG)2]12(IPAVG)12 35.6 35.4
SEE [(GAGAGS)(VPGVG)2(VPGEG)(VPGVG)2(GAGAGS)]12 34.7 34.6
EKE (VPGKG)12[(VPGVG)2(VPGEG)(VPGVG)2]12(VPGKG)12 35.6 35.5
EAI [(IPAVG)(VPGVG)2(VPGIG)(VPGVG)2(IPAVG)]12 35.6 35.3
EAI,triblock (IPAVG)12[(VPGVG)2(VPGIG)(VPGVG)2]12(IPAVG12 35.4 35.3
SEI [(GAGAGS)(VPGVG)2(VPGIG)(VPGVG)2(GAGAGS)]12 34.5 34.4
EKI (VPGKG)12[(VPGVG)2(VPGIG)(VPGVG)2]12(VPGKG)12 35.4 35.3
*the error associated with this measurement is 0.5-1.0 Da .

0.2 ns for the next 50 ns. This yielded 250 data points
per molecular property and per replica. These proper-
ties include intrapeptide hydrogen bonding, radius of gy-
ration, RMSD, solvent accessible surface area (SASA),
secondary structure, or water molecules in the hydra-
tion layer, among others. Their selection was based on
prior studies showing their connection with the LCST
behaviour of specific ELP sequences [20, 35, 39, 41]. A
full list of all the molecular properties sampled can be
found in Table S2.

Individually, these 27 molecular properties did not re-
veal significant differences among the ELPs in our library
that would allow us to identify an LCST behaviour (Fig-
ures S3-S6). Inspired by QSAR and QSPR approaches
[42, 43], where a set of molecular descriptors (the molec-
ular properties obtained from MD simulations) are con-
nected with a property (presence or absence of LCST),
we decided to analyse these molecular properties collec-
tively, exploring their multidimensional variable space via
PCA. By analysing all data points, rather than averag-
ing them, we increased the statistical accuracy of our
study, while accounting for temporal fluctuations in the
molecular properties during the simulation. PCA sum-
marises the main features of a high-dimensional multi-
variate dataset (the output of our simulations) into a few
artificial variables, called principal components (PCs).
We found that the first two PCs accounted for 63% of
the variance observed in the 27-dimensional dataset. As
shown in Figure 1c, where each dot corresponds to a time
point in the MD simulations, the first two PCs divided
our ELPs into two distinct clusters: EAE , EAE,triblock,
EAI , and EAI,triblock (all of which contain IPAVG blocks)
on the one hand, and SEE , EKE , SEI , and EKI (which
contain GAGAGS or VPGKG blocks) on the other hand.

We then explored the connection between the PCA
clusters and the experimental LCST behaviour of our li-
brary. ELPs were heterologously expressed in E. coli.
Purification was performed by inverse temperature cy-
cling [46]. The correct transformation of plasmids con-
taining the ELP genes and the purity of the recovered
ELPs were confirmed by agarose (Figure S7) and sodium
dodecyl sulphate polyacrylamide gel electrophoresis (Fig-
ure S8), respectively. The resulting ELPs were within 2%
of the expected amino acid composition, as determined
by total amino acid analysis (Table S3). The correspon-

dence between the theoretical and experimental MW was
confirmed by intact LC-MS (Table 1). LCST is typ-
ically accompanied by a turbidity change for ELP so-
lutions [28]. Thus, we prepared cold (4 °C) 15 wt %
ELP solutions in milliQ water and monitored their op-
tical density when placed in a microplate reader at 37
°C (Figure 1d). Interestingly, ELPs divided into the
same clusters shown by PCA: EAE , EAI , EAE,triblock

and EAI,triblock polypeptides showed LCST behaviour,
whereas SEE , EKE , SEI , and EKI polypeptides did not.
This suggested that the collective evaluation via PCA of
multiple molecular properties obtained from short MD
simulations (150 ns) may be a suitable tool to predict
the LCST behaviour of ELPs.

PCA provides an unsupervised exploratory model but
does not make any predictions about the significance of
the two clusters identified. To speed up the development
of de novo ELPs, we also need to be able to predict the
LCST behaviour of ELPs not used to build the model. To
address this, we switched to a supervised model in which
we included the experimental data from turbidity mea-
surements. This aimed at identifying the combination
of MD molecular properties in our dataset that discrimi-
nated ELPs based on their LCST behaviour at 37 °C. We
did so by applying a partial least squares regression dis-
criminant analysis (PLS-DA) model [47, 48]. PLS-DA is
a suitable approach for the analysis of a high-dimensional
dataset (in this case, our 27 molecular properties) with
a binary outcome (presence or absence of LCST). The
principle behind PLS-DA methods is similar to PCA, but
maximising covariance between the dataset of molecular
properties and their LCST outcome, instead of maximis-
ing the variance observed within the molecular properties
only. This generated a model that summarised both the
molecular properties obtained via MD simulations and
predicted the outcome (presence or absence of LCST).

The presence or absence of LCST behaviour at 37 °C
was coded in the PLS-DA model as 1 and 0, respectively.
To develop our PLS-DA model, we applied a double cross
validation procedure. In total, each simulation was pre-
dicted 7 times, using 6 simulations to build the model and
1 to validate it. When an ELP simulation was left out of
the PLS-DA model and then predicted, a numeric value
was produced (Figure 1e). When that value was above
0.5 [48], the model predicted that the ELP displayed
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LCST behaviour at 37 °C. The predictions for each simu-
lation were combined in 99% confidence intervals. When
the confidence intervals do not cross the boundaries of the
correct class (LCST behaviour yes/no), the experiment
is properly predicted. This approach mimics real-world
design-build-test-learn cycles [49], where a model is first
built with the current knowledge, then a new experiment
is designed using that knowledge and predicted through
the model, and finally the predictions are validated ex-
perimentally. When leaving EAE , EAE,triblock, EAI , and
EAI,triblock out of the model and then using the model
to predict their LCST behaviour, the 99% confidence in-
terval was entirely above 0.5. In turn, the same interval
for SEE , EKE , SEI , and EKI was entirely below 0.5.
The regression coefficients of the PLS-DA model can be
found in Figure S9 and Table S4. Thus, the PLS-DA
model agreed with the PCA and turbidity data, attain-
ing a 100% prediction accuracy.

To sum up, MD studies of ELPs typically assess molec-
ular properties individually or in pairs, which has helped
to establish the links between some molecular properties
(e.g., hydrophobic or hydrophilic SASA) and LCST be-
haviour. However, this usually required long simulation
times or computationally expensive advanced sampling
methods [20, 35], and the reported results were typi-
cally associated with large uncertainties. Instead, here we
achieved an unambiguous separation between the ELPs
that undergo LCST at 37 °C and those that do not by
collectively analysing 27 molecular properties (via PCA
and PLS-DA) using relatively short simulation times in
explicit solvent (150 ns). This finding hints that MD sim-
ulations hold great potential to rapidly screen and predict
qualitative trends in the LCST behaviour of ELPs.

Rheological characterisation of the ELP library

The computational and turbidity data suggest that hy-
drophobic IPAVG blocks are instrumental in triggering
the LCST at 37 °C in our ELP library, even in spite of
the ionic guest residues in EAE and EAE,triblock that nor-
mally hinder gelation [19, 24]. To get further insight into
the sequence-property relationships, we performed rhe-
ological measurements. The LCST of our ELP library
was determined as the temperature at which ELP solu-
tions underwent a sharp increase in their storage (G′)
and loss (G′′) moduli during a temperature sweep from
4 to 37 °C (f=1 Hz, γ=0.3 %) (Figure 2a). Such an
increase was only observed for EAI , EAE,triblock, and
EAI,triblock (which formed stiff physical hydrogels) but
not for EAE,triblock. This shows that LCST behaviour as
measured by optical density does not necessarily indicate
the ability of an ELP solution to form a hydrogel network
capable of supporting mechanical stress. The formation
of chemical hydrogels via interchain covalent bonds was
also assessed for EKE and EKI by adding glutaralde-
hyde (40:1 glutaraldehyde:ELP molar ratio). Without
glutaraldehyde, neither of these ELPs gelled. But upon

adding glutaraldehyde, both formed a gel (Figure S10),
reaching steady state after 2 h (Figure S11). Chemical
hydrogels at 37 °C lacked the turbidity typically associ-
ated with LCST, indicating that their gelation originated
from network formation via covalent bonds, rather than
from an LCST phenomenon.

The value of the LCST was affected by the sequence
composition and block distribution. EAI,triblock switched
at 18 °C from a solution to a stiff hydrogel. A similar
transition was observed for EAE,triblock, but at a higher
temperature (24 °C), due to its ionic guest amino acid
(glutamic acid). In contrast, the moduli of EAI increased
gradually between 25 and 30 °C. We attribute this to the
ability of the non-IPAVG regions in EAI to hydrophobi-
cally interact with and hinder the self-interactions of the
short IPAVG blocks. Early research had shown that a
multiblock distribution of hydrophobic blocks in ELPs
with the same MW raised the LCST [50]. Here we
demonstrate that a multiblock distribution also weakens
the mechanical properties of the network.

Sequences with different physical crosslinking blocks
(IPAVG vs GAGAGS) but the same block distribution
(i.e., EAE vs SEE ; or EAI vs SEI) also showed dif-
ferences in thermoresponsiveness. While sequences with
IPAVG blocks changed their turbidity in the 4-37 °C
range (EAE and EAI), equivalent sequences with silk-like
blocks (SEE and SEI) did not. An increase in moduli
did not happen for SEE and SEI even at extended incu-
bation times (4 h) at 37 °C (Figure S12). This observa-
tion indicates that the increased hydrophilicity and lack
of thermoresponsiveness of GAGAGS blocks impeded the
gelation of SEE and SEI . We found the lack of LCST
of SEI surprising, given the hydrophobicity of its guest
amino acid isoleucine. The inclusion of silk-like blocks is
a common strategy to form durable hydrogels, due to the
ability of silk-like blocks to physically associate into ther-
modynamically stable β-sheets [31, 37]. However, our
computational and experimental data showed that SEE

and SEI do not undergo LCST at 37 °C. This differs
from previous work that showed the ability of ELPs with
silk-like blocks and a similar MW (though with larger
elastin:silk ratios than in our study) to gel at 37 °C [37].
A recent study namely proposed that the aggregation of
the ELP regions is a necessary first step to bring silk-like
blocks in close proximity to form β-sheets [37]. Thus, we
hypothesise that the length of ELP regions (5 VPGXG
blocks) between GAGAGS blocks in our library was in-
sufficient to trigger their aggregation.

We also assessed the reversibility of the gelation of
these ELP solutions over three temperature cycles be-
tween 4 and 37 °C, using a resting time of 30 min
between each temperature ramp. The networks disas-
sembled upon cooling for the physical hydrogels (EAI ,
EAE,triblock and EAI,triblock), but not for the chemical
ones (Figure 2b). Noteworthy differences were identi-
fied for compositionally identical ELPs but with build-
ing blocks scrambled in a different manner. For in-
stance, EAI and EAI,triblock formed physical hydrogels
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Figure 2. Rheological properties of the ELP library. a. Rheological characterisation (storage modulus G′ and loss
modulus G′′) of ELP solutions in milliQ water (15 wt %) during a temperature sweep between 4 and 37 °C (n=4). b. Thermal
cycling of ELP solutions (15 wt %) at a heating/cooling rate of 1 °C/min (f=1 Hz, γ=0.3%), with 30 min of resting time between
temperature ramps: representative reversible physical hydrogel from EAE,triblock (top) and irreversible chemical hydrogel from
EKE after glutaraldehyde addition (bottom) (n=2). c. Hysteresis of ELP solutions forming physical hydrogels over three
temperature cycles (n=2). d. Plateau G′ and G′′ of hydrogels obtained from ELP solutions in milliQ water (15 wt %) at 37 °C
(f=1 Hz, γ=0.3%) (n=2). e. Frequency sweeps (0.01-10 Hz) of ELP solutions in milliQ water (15 wt %) (T=37 °C, γ=0.3%)
(n=2). f. Schematic representation of network formation above the LCST for the different ELP designs.
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at 37 °C, yet with different hysteresis behaviour (Figure
2c and S13). Hysteresis is usually absent in ELPs with
VPGXG blocks [40], but triblock arrangements in our li-
brary did display hysteresis. We attribute this behaviour
to IPAVG blocks, which are known to have hysteresis be-
tween solvation and desolvation [23, 24, 44]. However,
the presence of IPAVG blocks was a necessary condi-
tion, but not sufficient, to cause hysteresis: EAI,triblock

and EAE,triblock showed hysteresis upon cooling, whereas
EAI did not. Multiblock arrangements of IPAVG blocks
increased the LCST, prevented hysteresis and formed
weaker networks: EAI,triblock networks were one order of
magnitude stiffer (G′=20000±1100 Pa) than those from
EAI (G′=1300±400 Pa), despite having the same number
of IPAVG blocks.

The linear viscoelastic (LVE) region of these hydrogels
was determined via amplitude sweeps at 37 °C (Figure
S14). Triblock designs and chemical hydrogels showed a
linear response over the entire range of strain amplitudes
(0.01-15%). In contrast, the LVE region for EAI only
extended up to strains of ∼ 3% and the moduli started
decreasing with strain thereafter. We also determined
the steady state moduli of these networks after 30 min
at 37 °C (f=1 Hz, γ=0.3 %) (Figure 2d). For physi-
cal hydrogels, G′ was 1300±400 Pa (EAI), 4500±400 Pa
(EAE,triblock) and 20000±1100 Pa (EAI,triblock), whereas
G′′ was 1700±400 Pa (EAI), 110±10 Pa (EAE,triblock)
and 3400±200 Pa (EAI,triblock). Chemical hydrogels
showed little effect of the amino acid sequence, with
comparable values for G′ (47440±7531 for EKE and
38690±5069 for EKI) or G′′ (16±9 for EKE and 7±6
for EKI). This finding highlights that the covalently
crosslinked macromolecular network has a larger influ-
ence on the mechanical properties than the amino acid
sequence. Frequency sweeps (Figure 2e and S15) revealed
that the relaxation spectra varied across the ELP library.
Triblock designs and chemical hydrogels showed an al-
most frequency-independent behaviour for G′ and G′′

(though the determination of G′′ was noisy for chemical
hydrogels due to their highly elastic character). In turn,
EAI showed a crossover indicative of stress relaxation at
f ∼ 2 Hz.

The effect of the hydrophilic/hydrophobic character of
the guest amino acid (E vs I) on the viscoelastic proper-
ties and LCST was discerned by comparing EAE,triblock

and EAI,triblock hydrogels. The steady state G′ for
EAI,triblock was 4.6 times larger than for EAE,triblock.
However, the steady state G′′ for EAI,triblock was 29.5
times larger than that of EAE,triblock. As mentioned be-
fore, the nonpolar mid-block of EAI,triblock can likely
more easily mix with IPAVG end-blocks. This could
promote dissipative interchain hydrophobic contacts.
In contrast, the ionic character of VPGEG blocks in
EAE,triblock could enhance the aggregation of IPAVG
end-blocks, preventing mixing between mid- and end-
blocks and reducing the viscous response.

We expected ionic ELPs in our library (EAE ,
EAE,triblock, EKE , and EKI) to form weaker gels or to

not gel at all [35], because the self-assembly of ionic poly-
mers is typically hindered by electrical repulsion and gen-
erally requires that those repulsions are overcome by pH
adjustment or by adding counterions [51]. Indeed, EKE

and EKI only gelled after the formation of a macromolec-
ular network upon the addition of glutaraldehyde. In
turn, EAE and EAE,triblock did show LCST in the 4-37
°C range (as shown by turbidity data), but with different
mechanical outcomes: EAE,triblock gelled and EAE did
not. The already discussed differences between multi-
block and triblock IPAVG arrangements were likely ex-
acerbated in EAE and EAE,triblock by the presence of
an ionic guest amino acid. It has been proposed that
high concentrations of ionic ELPs increase the electro-
static repulsion between chains. This can force some hy-
drophobic blocks (e.g., IPAVG blocks) to become solvent-
exposed, triggering the formation of a hydrogel network
[51]. According to this mechanism, the higher charge
density in the midblock of EAE,triblock could facilitate
its gelation. In turn, the more distributed ionic blocks
in EAE , together with the reduced length of its IPAVG
blocks, would hinder IPAVG-IPAVG associations needed
to form the hydrogel network.

Collectively, these observations allowed us to de-
velop an understanding of the different networks that
is schematically summarised in Figure 2f. Overall, the
highest moduli were obtained for chemical hydrogels.
Nonetheless, the viscoelastic properties of physical hy-
drogels were remarkably high for triblock designs, in the
range of tissues like lung, muscle, cartilage, or kidney [52].
This indicates that a rational design of the ELP sequence
can deliver materials with mechanical properties in the
order of magnitude of chemical hydrogels, but solely re-
lying on physical interactions and without the need of
crosslinking agents. This adds to other advantages of
physical hydrogels, such an stimuli-responsiveness, self-
healing properties, and tailored viscoelasticity [53].

Microstructural characterisation of ELP hydrogels

Our understanding of the nano- and microstructure of
ELP hydrogels has been hampered by the intrinsic disor-
der of ELPs and the high mobility and viscosity of their
coacervates [21]. However, such data is critical for po-
tential applications since it determines the ability of cells
to infiltrate hydrogels in tissue regeneration applications
and the diffusion of small molecules through the hydrogel
network in drug delivery applications. Therefore, we in-
vestigated the links between amino acid sequence and the
nano- and microstructure of the hydrogel-forming ELPs
in our library. We combined Fourier-transform infrared
(FTIR) spectroscopy and scanning electron microscopy
(SEM) with techniques that probed the hydrogels in a
hydrated state. The latter included rheology (discussed
in the previous section) and mesh size determination by
fluorescence recovery after photobleaching (FRAP).

FTIR spectra were used to assess the secondary struc-
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ture of flash-frozen and freeze-dried ELPs in solution (4
°C) and hydrogel (37 °C) states (15 wt %). To do so, we
inspected the amide I region of the spectra (1600-1700
cm−1). This region is commonly used for quantitative
determination of the secondary structure in protein ma-
terials [54]. We found a modest increase in ordered struc-
tures after gelation (from ∼26-32% to ∼32-40%) (Fig-
ure 3a,b), as shown by the increase in the peak associ-
ated to β-sheets at 1620 cm−1. This increase was less
pronounced in chemical hydrogels (Table S5), likely be-
cause covalent crosslinks hindered the reshuffling of the
ELP network at 37 °C. The modest increase in order ob-
served in physical hydrogels likely originated from IPAVG
blocks, which can lead to more structural order above
LCST [55]. Despite the modest shift towards more order
above LCST, the hydrogels remained mostly disordered
(Figure S16). The high G′ of EAE,triblock, EAI,triblock, or
chemical hydrogels -despite their lack of order- indicates
that nanoscale order is not a requirement for mechanical
reinforcement in ELP materials.

To assess the microstructure of the hydrogels, we first
estimated their mesh size from their measured G′ using
rubber elasticity theory [56] (Equation (4)). The pre-
dicted mesh sizes ranged from 4.5 ± 0.7 (EKE) to 15.0
± 4.2 nm (EAI) (Table 2). We also probed the mesh size
by performing FRAP diffusion measurements for fluo-
rescein isothiocyanate labelled dextran tracers of differ-
ent sizes (MW of 40 and 150 kDa, radii of ca. 4.5 and
8.5 nm, respectively) within ELP hydrogels incubated at
37 °C (Figure 3c,d) for 1 h (physical hydrogels) or 2 h
(chemical hydrogels). Glutaraldehyde used to prepare
chemical hydrogels did not interfere with the diffusion of
dextrans (Figure S17). We found that the diffusion of
40 kDa dextrans was unhindered (i.e., identical to that
of a pure dextran solution in milliQ water) for EAI . For
the rest of our ELP library, diffusion of 40 kDa dextrans
was hindered by the presence of the hydrogel network.
The larger 150 kDa dextrans showed an even slower flu-
orescence recovery (Figure 3e), in this case also within
EAI networks. Fitting the fluorescence recovery data to
a single exponential (Figure S18) allowed us to estimate
the diffusivity of dextrans in the different ELP networks
(Table 2). This value was normalised by the diffusivity
D0 in solution calculated using the Stokes-Einstein rela-
tion (73.0 and 38.6 µm/s2 for 40 and 150 kDa dextrans,
respectively) (Figure 3f). Generally, chemical hydrogels
led to lower diffusivities. Given that the diffusion of 150
kDa dextrans (hydrodynamic radius of 8.5 nm) was hin-
dered in all samples, this suggests that the mesh sizes
were below 17 nm. This estimate is consistent with the
mesh sizes calculated from G′ via rubber elasticity the-
ory. The diffusion of dextrans was similar in all samples,
despite the variations in the amino acid sequence. A
similar phenomenon was reported in networks formed by
ELPs fused to helical partially ordered polypeptides [36],
where MW, helical percentage, or helix sequence did not
impact their void volume.

We note that the mesh size estimates for hydrated hy-

drogels obtained using Equation (4) or from probe diffu-
sivity measurements with FRAP differed by three orders
of magnitude from the average pore sizes measured via
SEM on dried hydrogels (5.2 ± 1.1 µm for EAE,triblock,
2.7 ± 0.7 µm for EKE+GA, 1.5 ± 0.4 µm for EAI,triblock,
or 0.8 ± 0.3 µm for EKI+GA, determination of the av-
erage pore size was not possible for EAI due to its highly
heterogeneous structure) (Figure S19). We hypothesise
that the large pores observed via SEM are artefacts of
the drying process needed to image the samples with this
technique. Thus, our results show that techniques that
probe hydrogels in hydrated, non-perturbed conditions
are required to obtain reliable microstructural data for
ELP hydrogels.

DISCUSSION

Analysis of the multidimensional dataset of molecular
properties obtained via short MD simulations allowed us
to develop a predictive model for the LCST behaviour
of ELPs at 37 °C. This model unambiguously classified a
library of 8 ELPs by their presence or absence of LCST
behaviour. It did so without the need for computation-
ally expensive long simulation times or advanced sam-
pling methods. Experimental characterisation indicated
that ELPs with physical crosslinking of IPAVG blocks in
triblock arrangements formed stiff and reversible hydro-
gels at physiological temperature. Nonpolar guest amino
acids (isoleucine) facilitated the formation of stiffer hy-
drogel networks, albeit with a higher viscous response.
Chemical hydrogels attained the highest elastic response,
but without thermoresponsiveness. Triblock sequences
exhibited hysteresis upon cooling that was not observed
for multiblock arrangements. Silk-like GAGAGS blocks
hindered the formation of hydrogel networks, highlight-
ing the need for larger ELP regions (more than the five
VPGXG repeats used here) between silk-blocks to enable
self-assembly and network formation. Theory and exper-
iments also demonstrated the need to probe ELP hydro-
gels in a hydrated and unperturbed manner to obtain
reliable information about the network structure. The
hydrogels displayed mesh sizes below 17 nm at ELP con-
centrations of 15 wt %, with little dependence on the
ELP sequence.

Overall, our results reveal multiple handles to orthog-
onally control the features of ELP hydrogels via block
selection and sequence organisation: chain hydrophilic-
ity/hydrophobicity and/or block distribution can be used
to control the viscoelastic properties and LCST, whereas
polypeptide concentration defines the network perme-
ability. Furthermore, we showed the potential of MD
simulations to mitigate the costs of developing de novo
ELP designs by predicting their LCST behaviour before
synthesising them. This opens the possibility to explore
a larger sequence space at a faster pace, where it will be
interesting to test the robustness of the model for differ-
ent MWs or new building blocks.
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(r = ~4.5 nm)
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(r = ~8.5 nm)

40 kDa dextrans (r = ~4.5 nm) 150 kDa dextrans (r = ~8.5 nm)

In solution (4 °C) Hydrogel (37 °C)
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Figure 3. Microstructural characterisation of ELP hydrogels. a. Normalised FTIR spectra of the amide I region for
freeze-dried and cryo-fractured ELP samples obtained from 15 wt % solutions after overnight incubation at 4 °C (n=2). Spectra
are shifted along the y-axis for clarity. b. FTIR spectra of the amide I region for freeze-dried and cryo-fractured ELP hydrogels
(15 wt %) after incubation at 37 °C for 1 h (physical hydrogels) or 2 h (chemical hydrogels, in the presence of glutaraldehyde)
(n=2). c. Schematic representation of the diffusion of dextrans of different MW within ELP hydrogels with mesh size ξ. d.
Snapshots of a representative photobleaching experiment for ELP hydrogels (15 wt %) at 37 °C using FITC-dextrans with MWs
of 40 and 150 kDa. e. Fluorescence recovery curves for hydrogel samples at 37 °C for 40 kDa dextrans (left, hydrodynamic
radius r ∼ 4.5 nm) and 150 kDa dextrans (right, r ∼ 8.5 nm) (n=5). f. Ratio between the diffusivity D of 40 and 150 kDa
dextrans in ELP hydrogels (15 wt %, 37 °C) and the predicted diffusivity D0 from Equation (6) in milliQ water (1 mg/mL).

METHODS

Synthesis and characterization of the ELP Library

Synthetic DNA sequences were designed to encode for
the different elastin-like polypeptides (ELPs) and pur-

chased from GeneArt (Table 1). The DNA fragments
were then transformed into an electrocompetent E. coli
K12 strain. The correct transformation of plasmids con-
taining the ELP genes was confirmed by agarose gel
electrophoresis. To that end, plasmids were isolated
using the NucleoSpinr plasmid DNA purification kit
(Macherey-Nagel) according to the manufacturer’s pro-
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Table 2. Microstructural characterisation of ELP hydrogels: mesh size ξ as calculated from the gel storage modulus G′ following
Equation (4); fluorescence recovery rate kFRAP obtained by fitting FRAP data and diffusion constant D.

Dextrans 40 kDa Dextrans 150 kDa
ELP design ξ [nm] kFRAP [s−1] D [µm2/s] kFRAP [s−1] D [µm2/s]
Solution 1 mg/mL - 0.179 ± 0.002 73.0 ± 0.8 0.138 ± 0.001 38.6 ± 0.3
EAE,triblock 9.9 ± 0.8 0.115 ± 0.001 47.4 ± 0.4 0.094 ± 0.001 26.7 ± 0.3
EKE + GA 4.5 ± 0.7 0.051 ± 0.001 21.0 ± 0.4 0.057 ± 0.000 16.2 ± 0.3
EAI 15.0 ± 4.2 0.186 ± 0.002 76.7 ± 0.4 0.129 ± 0.002 36.7 ± 0.6
EAI,triblock 6.0 ± 0.3 0.087 ± 0.001 35.9 ± 0.4 0.038 ± 0.008 10.8 ± 2.3
EKI + GA 4.8 ± 0.6 0.063 ± 0.001 26.0 ± 0.4 0.036 ± 0.002 10.2 ± 0.6

tocol. Transformants were randomly selected and used
for bacterial fermentation in 2-L shake flasks containing
500 mL of Terrific Broth medium. Cultivation was per-
formed at 27 °C and ELP expression was induced with
L-arabinose when the optical density of the culture at
600 nm reached 0.6. After overnight expression, cells
were harvested by centrifugation at 5500 rcf for 20 min
at 4 °C. The supernatant was decanted, and the cell
pellets were subjected to a freeze-thaw cycle to rupture
them. Thereafter, cell pellets were resuspended in PBS
and tip sonicated to enhance the release of ELP. The
LCST behaviour of ELPs allowed for their purification
via inverse temperature cycling [46]. The aggregation of
ELPs was triggered by adding 2 M NaCl and incubat-
ing the solutions at 42 °C for 1 h. For ELPs containing
glutamic acid, the pH was adjusted to 4 to protonate glu-
tamic acid residues and facilitate the coacervation [46].
Purified ELPs were desalted in 3000 MWCO Amiconr
ultra-15 centrifugal filter units (MilliporeSigma). The de-
salted materials were then resuspended in milliQ water,
flash-frozen and lyophilised, followed by storage at −20
°C until further use. The purity of ELPs was assessed
via sodium dodecyl sulphate−polyacrylamide gel elec-
trophoresis (SDS-PAGE) using NuPAGE 4-12% Bis-tris
gels (Invitrogen). Mark12 unstained standard (Thermo
Fisher) was used as protein ladder. Gels were stained
using SYPROr Red gel staining agent (Invitrogen) fol-
lowing the manufacturer’s protocol. Total amino acid
analysis was performed using the Accq Tag method af-
ter chemical hydrolysis (Waters). The theoretical hy-
drophobicity of the ELPs was calculated using the Kyte-
Doolittle scale [45]. Their molecular weight was assessed
via intact LC-MS.

Computational modelling

Input structures for molecular dynamics (MD) simu-
lation were created based on the ELP sequences from
Table 1. To reduce the computational cost of these sim-
ulations, we used 5-mer sequences instead of the 12-mer
used experimentally (Table S1). Extended conforma-
tions of each ELP were built using the software Avo-
gadro (version 1.2.0) [57]. MD simulations were per-
formed using the software NAMD 2.13 developed by the
Theoretical and Computational Biophysics Group in the

Beckman Institute for Advanced Science and Technology
at the University of Illinois at Urbana-Champaign [58].
The Chemistry at HARvard Macromolecular Mechanics
(CHARMM) force field was used for these simulations
[59]. This force field is widely used for studying proteins,
including ELPs [20, 35, 39]. The atomic structures were
visualised using the Visual Molecular Dynamics (VMD)
graphics software [60].

Implicit solvent simulations: Each extended ELP
structure was subjected to MD simulations in implicit
solvent to obtain a folded structure. The equilibration
and folding of ELPs was assessed by the evolution of the
root mean squared displacement (RMSD) of their atomic
positions. First, the structure was subjected to energy
minimization for 20000 timesteps to relax the polypep-
tide, using the steepest descent algorithm. This was fol-
lowed by Langevin dynamics in Generalized Born implicit
solvent [61]. A simulation step of 2 fs was applied at 310
K for a total simulation time of 50 ns. The short-range
electrostatic interactions and Lennard-Jones interactions
were evaluated with a cutoff of 18 Å and a switch distance
of 16 Å [62].

Explicit solvent simulations: Simulations in explicit
water were performed at 310 K. The final structures ob-
tained in implicit solvent simulations were solvated in
a TIP3P water box with 3D periodic boundary condi-
tions. The distance between any ELP atom and the edge
of the periodic box was at least 12 Å to avoid spurious
effects of self-interactions for the ELP chain. Na+ and
Cl− ions were added to neutralise the charge of the sys-
tem in simulations containing ionic ELPs. The ShakeH
algorithm was applied to all the bonds containing hydro-
gen atoms. The energy of the systems was minimised
for 20000 timesteps, followed by Langevin dynamics for
150 ns using the NPT ensemble at 310 K and pressure
(1 bar) was exerted through the Nosé-Hoover Langevin
piston. The long-range electrostatic Coulombic interac-
tions were calculated using particle mesh Ewald method
with a grid spacing of 1 Å. A cutoff distance of 12 Å was
applied for electrostatic and van der Waals interactions,
with a switch distance of 10 Å to avoid hard cuts [62]. A
timestep of 2 fs was applied. The backbone of the ELPs
was restrained for the first 1 ns of simulation. Three
replicas were performed for each system, and simulation
data was sampled every 0.2 ns.
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Data analysis: Molecular properties were sampled
from the last 50 ns of the MD trajectories. The evo-
lution of the RMSD of the atomic positions during the
simulation was analysed for the protein backbone using
the RMSD Trajectory Tool from VMD. The count of in-
traprotein and protein-solvent hydrogen bonds through-
out the simulation trajectories was analysed using the
Hbonds plugin from VMD, using a distance cutoff of 3.5
Å and a D-H-A angle cutoff of 30° as geometric criteria.
Custom TCL scripts were developed to analyse in VMD
the solvent accessible surface area (SASA) (using a stan-
dard water probe radius of 1.4 Å), the radius of gyration
of ELPs, and the evolution of the secondary structure
(using the STRIDE algorithm) [63]. Water molecules
in the hydration shell of the ELP were defined as those
within 3.15 Å from the ELP backbone. The interaction
energies were calculated using the molecular mechanics
energy function in NAMD 2.13.

For exploratory data analysis purposes, principal com-
ponent analysis (PCA) was used. PCA searches for the
variable subspace summarising the main features of the
data [64]. PCA transforms the original (correlated) vari-
ables (in this case, the molecular properties sampled
from MD simulations) into a lower number of uncorre-
lated variables or principal components (PCs). The PCA
model equation is

X = TP ′ + E (1)

where X is the data matrix (having observations by rows
and variables by columns), T is the score matrix con-
taining the PCs, P is the loading matrix containing the
linear combination of the original variables to build the
PCs (being P ′ its transposed), and E is the residual ma-
trix.

A predictive model for MD data was developed via a
supervised model based on partial least squares regres-
sion discriminant analysis (PLS-DA). PLS is a multivari-
ate statistics method commonly used to predict an out-
put variable y from a set of X predictors [65]. PLS,
similarly to PCA, reduces the dimensionality of the X
variable space by finding the linear combinations of pre-
dictors that best summarise the X variable space and
best predict the output variable. Therefore, the compo-
nents found by the PLS algorithm maximise the covari-
ance between X and y. The scores (or PLS components)
are obtained as

T = XW (2)

whereW is the normalised weights matrix. On one hand,
these scores reconstruct well the original predictor matrix
X = TP’ + E. On the other hand, y can be predicted
using the score matrix [47] as

y = Tq + F = XWq + F = Xb+ F (3)

where F is the residual matrix and b are the PLS coeffi-
cients. In our case, the response variable is not quanti-
tative but qualitative (presence or absence of LCST be-
haviour), and therefore the discriminant version of PLS
(PLS-DA) was used [48]. To perform PLS-DA, the pres-
ence or absence of LCST behaviour was coded as 1 or 0,
respectively. When using the regression model to predict,
a quantitative value is produced, which is later converted
to a qualitative 0/1 taking as threshold the mean between
those two values as reference [48].

Thorough validation of PLS-DA models is needed
when dealing with large datasets. Single cross valida-
tion approaches, where the model is built with a subset of
samples and validated with an external set, often leads to
too optimistic results [66, 67]. That is why a more strin-
gent double cross validation procedure was used here,
which comprised the following steps:

1. The 8 MD simulations (one per ELP, including 3
replicas for each ELP) were split in 3 groups: train-
ing (including simulations 1 to 7) and test (includ-
ing simulation 8).

2. The simulations in the training set were further
split in 2 groups: model (including simulations 1
to 6) and validation (including simulation 7).

3. The 6 model simulations were used to build a par-
tial least squares regression discriminant analysis
model (PLS-DA).

4. The validation simulation was then projected into
the PLS-DA model. The number of components of
the PLS-DA model was selected at this step, includ-
ing the minimum number of components needed
to obtain perfect classification (LCST behaviour
yes/no for each ELP) of the validation set.

5. The PLS-DA model built in step 3 with as many
components as defined in step 4 was used to predict
the result of the test set, left out in step 1.

Steps 2 to 5 were afterwards repeated 6 times, switch-
ing the validation simulation from 1 to 6, and using the
remaining ones to build the model. In the same way,
steps 1 to 5 were then repeated switching the test simu-
lation from 1 to 7, using the remaining ones to build the
model and validate it.

Hydrogel Formation and Characterisation

Experiments were performed using ELPs solutions in
milliQ water prepared at 4 °C and with a polypeptide
concentration of 15 wt %. This concentration has been
reported to yield stiff ELP hydrogels [44]. In all cases
(except for chemical hydrogels) solutions were incubated
at 4 °C overnight. For the lysine-containing ELPs, chemi-
cal hydrogels were formed by dissolving the polypeptides
in milliQ water containing an excess of glutaraldehyde
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as crosslinking agent (40:1 glutaraldehyde:ELP molar ra-
tio). The dissolution of lysine-containing ELPs was per-
formed on ice for 10 min to facilitate ELP dissolution in
milliQ water. Higher temperatures were prevented dur-
ing this step, as they accelerated the reaction between
ELP and glutaraldehyde and rapidly formed a stiff chem-
ical hydrogel that could not be pipetted onto the rheome-
ter.

Turbidimetry: The ability of ELPs to undergo LCST
in the 4-37 °C range was analysed via optical density
measurements using a microplate reader (Multiskan GO,
Thermo Scientific). 100 µL of each ELP solution (15 wt
%) were loaded in a 96-well plate at 4 °C. The plate was
then introduced in the microplate reader preheated at 37
°C, and the absorbance of the solutions was recorded at
350 nm.

Rheology: Rheological characterisation was per-
formed to assess the ability of ELP solutions to form
hydrogels, and to characterise their viscoelastic proper-
ties. Experiments were performed using small amplitude
oscillatory shear rheology on a stress-controlled rheome-
ter (Anton Paar MCR 501) equipped with a cone-plate
geometry with a diameter of 20 mm and a cone angle of
1°. The temperature was controlled by a Peltier system.
For each test, 42 µL of the ELP solutions (15 wt %) were
loaded at 4 °C onto the bottom plate using a pipette,
followed by equilibration for 5 min. Solutions without
glutaraldehyde were incubated overnight at 4 °C before
loading them onto the rheometer. For experiments
with glutaraldehyde, ELPs were dissolved in a milliQ
water-glutaraldehyde solution for 10 min on ice, and
quickly pipetted onto the Peltier plate. Low viscosity
mineral oil (Sigma Aldrich) was applied to the air-sample
interface around the measuring geometry to prevent
water evaporation. The LCST of ELP solutions was
analysed with a temperature sweep between 4 and 37
°C (with a heating rate of 1 °C/min). The reversibility
of gelation was assessed with three temperature cycles
between 4 and 37 °C (with a heating/cooling rate of 1
°C/min). Holding times of 30 min were applied at 4 and
37 °C, after each temperature ramp. Strain sweeps were
performed from 0.01% to 15% at a frequency of f=1
Hz to evaluate the linear viscoelastic region of these
hydrogels. Frequency sweeps were carried out at 37 °C
from 0.01 to 15 Hz, using a constant strain amplitude
γ=0.3%.

Fourier Transform Infrared Spectroscopy (FTIR):
Freeze-dried samples of ELP solutions and hydrogels were
analysed by FTIR to assess their secondary structure be-
fore and after gelation. 80 µL of cold ELP solutions were
placed in microcentrifuge tubes. Samples before gelation
were directly submerged in liquid N2 for 1 min. Hy-
drogel samples were prepared by incubating ELP solu-
tions at 37 °C for 1 h (physical hydrogels) or 2 h (chem-
ical hydrogels), before flash-freezing them in liquid N2

for 1 min. All samples were then lyophilised and cryo-
fractured prior to FTIR analysis. Infrared spectra were
measured in a Bruker Vertex 70 Attenuated Total Re-

flectance FTIR device equipped with a Harrick split pea
accessory. For each measurement, 64 scans with a resolu-
tion of 2 cm−1 were recorded in the range of 650 to 4000
cm−1. The secondary structure of the polypeptides is re-
lated to the C=O stretching vibration and can be deter-
mined by performing peak deconvolution over the amide I
region (1595−1705 cm−1). This was done using the lmfit
package for curve fitting from Python. The deconvolu-
tion was carried out using five primary peaks assigned
to different secondary structures: 1620 cm−1 (β-sheet),
1645, 1660 and 1670 cm−1 (random coil/helix), and 1700
cm−1 (β-turn) [68]. The peak positions were allowed to
shift 4 cm−1 to obtain a reconstituted curve as close as
possible to the original spectra. The amide I region from
all spectra was normalised to its highest value, to facili-
tate the comparison between different samples. We used
the Levenberg-Marquardt least-squares method, and a
Gaussian model was selected for the band shape.

Mesh size determination: We estimated the typi-
cal mesh size ξ (distance between physical or chemical
crosslinking points) of ELP hydrogels from the measured
G′, based on rubber elasticity theory [56]:

G′ = kBTξ (4)

Equation (4) can be applied to gels and physically
crosslinked networks of flexible chains [56], with kBT rep-
resenting the thermal energy at the temperature T used
for G′ determination.

Fluorescent recovery after photobleaching (FRAP):
Diffusion coefficients of fluorescent dextran probes in
ELP hydrogels (15 wt %) were determined via FRAP
experiments. ELPs were dissolved in fluorescein isothio-
cyanate (FITC)-labelled dextran solutions (40 and 150
kDa, 1 mg/mL, Sigma) at 4 °C. FRAP experiments
were performed on a Leica Stellaris 8 Falcon confocal
microscope at 37 °C equipped with a white light laser.
The FRAP protocol started with 10 images at low laser
power and a pixel dwell time of 3.6125 µs to determine
the baseline fluorescence. Subsequently, a square region
of 37.5x37.5 µm was photobleached using an excitation
wavelength of 491 nm at 100% intensity for 7 seconds.
A time series was then recorded to follow fluorescence
recovery, acquiring a frame (pixel dwell time of 3.6125
µs, image size 512 x 128) every 0.33 s for the first 20 s,
and every 1 s thereafter. FRAP data was subjected to
full-scale normalisation [69], using the fluorescence of the
whole imaging area to normalise and correct for laser
fluctuations, photobleaching during image acquisition,
and fluorescence loss during photobleaching. The fluo-
rescence recovery was analysed by fitting the normalised
data to a single exponential curve (Equation (5)) using
the curve_fit function of the SciPy module from Python:

I(t) = A(1− e−kFRAP t) (5)

where A corresponds to the plateau intensity after flu-
orescence recovery, kFRAP is the recovery rate, and t is
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the time after photobleaching. We calculated the free
diffusivity D0 of pure dextran solutions using the Stokes-
Einstein relationship (Equation (6)):

D0 =
kBT

6πηr
(6)

where kBT is the thermal energy at the temperature T
used in FRAP experiments (37 °C), η is the viscosity of
the solvent (0.692 mPa s for milliQ water at 37 °C), and
r is the dextran particle radius (4.5 nm for 40 kDa dex-
trans, 8.5 nm for 150 kDa dextrans). To calculate the
diffusivity Dhydrogel of dextrans within ELP hydrogels,
we assumed that D ∼ kFRAP ·L2, where L is the charac-
teristic length scale of our FRAP experiments (the size
of the bleached area, 37.5 µm). Given that the size of the
bleached spots was constant in our FRAP experiments,
it follows that

Dhydrogel =
kFRAP

kFRAP,0
D0 (7)

Scanning Electron Microscopy (SEM): Freeze-dried
samples of ELP hydrogels were analysed by SEM to in-
vestigate their microstructure. 80 µL of each solution
(15 wt %) were incubated in microcentrifuge tubes at 37
°C for 1 h (physical hydrogels) or 2 h (chemical hydro-
gels). The tubes were then submerged in liquid N2 for
1 min, followed by lyophilisation. The resulting samples
were then cryo-fractured and coated with a 2 nm layer of

iridium using a Q150T S/E/ES sputter coater (Quorum
Technologies). SEM images were obtained using a FEI
Teneo LoVa microscope with trinity detector. Analysis
of the pore sizes of SEM samples was performed using
the software ImageJ [70] by measuring the diameter of
30 randomly selected pores.

Data availability. The authors declare that all
data supporting the findings of this study are avail-
able within the manuscript and supplementary files, or
from the authors on request. The scripts used for
the analysis of computational data can be found at
https://github.com/dlopezbarreiro/.
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