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Abstract: Consisting of more than 350 isolated members, the Daphniphyllum 

alkaloids possess complicated, polycyclic, and often caged skeletons along with diverse, 

interesting biological profiles. Among this natural product family, the representative 

calyciphylline A-type subfamily has triggered particular interest from the organic 

synthesis community. In this paper, we wish to report divergent total syntheses of three 

calyciphylline A-type alkaloids, namely (−)-10-deoxydaphnipaxianine A, (+)-

daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent 

strategy via late-stage diallylic alcohol rearrangements, including an unprecedented 

oxidative Nazarov electrocyclization using an unfunctionalized diallylic alcohol and, 

an unusual, transannular allylic alcohol rearrangement. Other key transformations in 

our approach including an nitrile hydration using a highly efficient “donor-acceptor” 

platinum catalyst, an intramolecular Heck coupling and an intramolecular, 

regioselective pinacol coupling. Moreover, the power of selective amide reductions has 

also been showcased by novel and classic tactics. The strategies and methods used in 

our approach might provide further inspiration for natural product synthesis. 

Particularly, the novel oxidative Nazarov electrocyclization should be valuable in the 

chemical synthesis of other cyclopentenone-containing small molecules. 

 

 



Isolated from the genus Daphniphyllum, calyciphylline A-type alkaloids (Figure 1 

and Scheme 1) belong to a famous family of bioactive natural products, known as the 

Daphniphyllum alkaloids.[1] Biological investigations of this large family indicate a 

wide range of bioactivities including anti-tubulin polymerization, anti-HIV, 

anticarcinogenic, vasorelaxant, cytotoxic, and neurotrophic activities.[2] Equally 

interesting attributes of Daphniphyllum alkaloids are their synthetically challenging 

architectures, which possess sophisticated, polycyclic and caged backbones. Based on 

their diverse skeletons, the structures of these intriguing alkaloids can be categorized 

into 13−35 subfamilies,[1,3] while the title of the largest subfamilies currently shared by 

the calyciphylline A-type and the yuzurimine-type alkaloids, which both contain 

approximately 50 members. 

Figure 1. Recent Total Syntheses of Calyciphylline A-type and Other Types of 

Daphniphyllum Alkaloids. 
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Owing to the structural and biological significance of the Daphniphyllum alkaloids, 

extensive synthetic studies have been initiated by the organic synthesis community over 

the last four decades.[3,4] After Heathcock’s seminal work,[5] many impressive total 

syntheses have been achieved by the groups of Carreira,[6] Li,[7] Smith,[8] 

Fukuyama/Yokoshima,[9] Dixon,[10] Zhai,[11] Qiu,[12] Gao,[13] Sarpong,[14], C. Li[15] and 

Lu[16] (Figure 1).[17] Meanwhile, our group has achieved asymmetric total syntheses of 

four members from four distinct subfamilies, namely calyciphylline A-type alkaloid 

himalensine A, daphnezomine A-type alkaloid dapholdhamine B, bukittinggine-type 

alkaloid caldaphnidine O, and yuzurimine-type alkaloid caldaphnidine J (Figure 1).[4b, 

18] Particularly, the calyciphylline A-type subfamily has triggered enormous synthetic 

activities.[4a, 19] From 2013 to 2018, the Li group accomplished remarkable total 

syntheses of eight calyciphylline A-type alkaloids, including daphenylline, 

daphniyunnine C (longeracinphyllin A), daphnipaxianine A, himalenine D, 

daphnilongeranin B, hybridaphniphylline B, daphniyunnine E, and 

dehydrodaphnilongeranin B.[7] In 2016, the Fukuyama/Yokoshima group reported their 

elegant total synthesis of daphenylline.[9] Continuing exploration in this subfamily also 

resulted in several impressive total syntheses of himalensine A (Dixon, 2017;[10] 

ourselves, 2019;[18a] Gao, 2019;[13] Qiu, 2021[12b]), that of daphenylline and 

daphnilongeranin B by Zhai in 2018[11] and that of daphenylline by Qiu in 2019[12a] and 

2021[12b] and by Lu in 2022.[16] 

The advances achieved in the total syntheses of those nine calyciphylline A-type 

alkaloids have showcased many elegant strategies and novel methods. Nevertheless, 

more than forty unsynthesized members within this subfamily leave much space for 

further innovations. Here, we wish to report divergent total syntheses of three members 

of calyciphylline A-type alkaloids, (−)-10-deoxydaphnipaxianine A, (+)-

daphlongamine E, and (+)-calyciphylline R. Our approach highlights a divergent 

strategy using two different late-stage diallylic alcohol rearrangements, namely an 

unprecedented oxidative Nazarov electrocyclization using an unfunctionalized diallylic 

alcohol and, an unusual, transannular allylic alcohol rearrangement. 

The calyciphylline A-type alkaloid 10-deoxydaphnipaxianine A was isolated from 

the Nepalese plant Daphniphyllum himalense by Yue et al. in 2016. [20] Its natural analog 

(+)-daphlongamine E was isolated from Daphniphyllum longeracemosum by the Hao 

group in 2009,[21] while the N-oxide form of daphlongamine E, namely calyciphylline 

R, was isolated from Daphniphyllum macropodum by the Tang lab in 2014.[22] Their 

complicated structures features a pentacyclic or a hexacyclic caged-like skeleton that 



contain multiple contiguous stereogenic centers and two vicinal all-carbon quaternary 

centers. Although little is known about their biological potency, their highly 

synthetically challenging architectures provide intriguing opportunities for strategical 

and tactical innovations. 

Scheme 1. (A) Retrosynthetic Analysis of Calyciphylline A-type Alkaloids 

(B) Key Challenges Encountered in Our Approach. 
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As depicted in Scheme 1A, the retrosynthetic analysis of our target molecules 

indicated that they could be derived from common key intermediate 1 through late-

stage diallylic alcohol rearrangements followed by selective amide reductions. 

Specifically, the enone moieties in daphlongamine E and its N-oxide analog, 

calyciphylline R, should both be accessible from 1 using a transannular allylic alcohol 

rearrangement. Instead, the pivotal cyclopentenone in 10-deoxydaphnipaxianine A can 

be traced back to the unfunctionalized diallylic alcohol motif through a Nazarov-type 

cyclization. Next, we envisioned that compound 1 can be easily produced from 

aldehyde 2 via an intramolecular, regioselective pinacol coupling followed by a 

Grignard 1,2-addition. The aldehyde appendix along with the critical C-8 all-carbon 

quaternary center in compound 2 could be derived from 1,3-diketone 3 using a three-

step transformation including a Tsuji-Trost allylation, a Claisen rearrangement and a 

hydroboration-oxidation reaction. We further envisaged that intermediate 3 could be 

obtained via oxidation state manipulations from tetracyclic alkene 4, which can be 

further traced back to tricycle 5 through a Hutchins-Kabalka reductive rearrangement 

and an intramolecular Heck coupling reaction. The -lactam moiety in compound 5 

could be derived from dienone 6 using a Pt-catalyzed nitrile hydration followed by an 

aza-Michael addition. Finally, dienone 6 could be readily prepared from known chiral 

nitrile compound 7.[18a] 

Despite the seemingly straightforward synthetic design, several key challenges 

embedded in our approach are particularly worth mentioning (Scheme 1B). First, 

Nazarov-type cyclizations using unfunctionalized diallylic alcohols usually favor the 

Dauben-Michno rearrangement pathway.[23] Only a few reported examples[24] involving 

heteroatom-functionalized diallylic alcohols underwent Nazarov-type or 

decarboxylative Nazarov-type cyclizations (Scheme 1B),[25] thereby signifying the 

remarkable challenges presented in our desired transformation. The second critical 

problem arises from the production of alcohol 8 or its ketone form by a transannular 

allylic alcohol rearrangement, which has only been demonstrated a limited number of 

times.[26] Last, although the methods for selective amide reduction in presence of 

ketones have appeared as critical tools especially in the synthesis of Daphniphyllum 

alkaloids, significant challenges have been encountered in the transformation from 

compound 9 to (−)-10-deoxydaphnipaxianine A. Therefore, in the following sections, 

we would like to introduce our efforts on unraveling these fascinating puzzles that 

eventually resulted in total syntheses of three complex calyciphylline A-type alkaloids. 

 



Scheme 2. Total Syntheses of (−)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine 
E and (+)-Calyciphylline R 
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We began our approach from chiral nitrile 7[18a] by hydrolyzing its enol 

methylether moiety followed by a Saegusa-Ito oxidation to yield dienone 6 (Scheme 2). 

Next, a novel “donor-acceptor” Pt-catalyst, which was developed by Grubbs et al.,[27] 

has shown remarkable efficiency (0.1 mol%) that facilely hydrated the nitrile motif in 

compound 6 into the corresponding primary amide motif. The following aza-Michael 

addition was triggered by adding DBU into aforementioned reaction mixture to give -

lactam 5 (90% from 6). Subsequently, a Hutchins-Kabalka reductive rearrangement[28] 

furnished alkene 10 from compound 5. The critical 2-azabicyclo[3.3.1]nonane moiety 

in tetracycle 12 was then fabricated by N-alkylation followed by an intramolecular 

Heck reaction (Pd(OAc)2, PPh3, Et3N, dioxane, 120 ℃, 42%). The 1,1-disubstituted 

alkene in compound 12 was regioselectively and diastereoselectively hydrogenated (dr 

= 5:1) under Li’s conditions (H2, [Rh(COD)Cl)]2)[7b−7d] to give intermediate 4. At this 

juncture, a carbonyl group was required at C-9 position. Screening of various allylic 

oxidation conditions indicated that classic Riley oxidation was able to give the best 

yield (SeO2, 1,4-dioxane, 80 ℃, ca. 85% yield), while other conditions gave only poor 

yields or the C-4 N,O-hemiacetal derivatives as interesting side products (See SI for 

details). To our knowledge, this is the first example of a transannular allylic oxidation 

on a [6,7]-fused bicycle system. Without isolation, a one-pot oxidation (PIDA, 

AZADOL) successfully furnished enone 13 in a 77% combined yield. A conjugate 

boron-addition[29] to the ,-unsaturated enone motif in compound 13 followed by 

sequential oxidations furnished the 1,3-diketone functionality in compound 3 (64%, 2 

steps). Other attempts at this transformation, such as hydroboration/oxidation or 

epoxidation/epoxide opening/oxidation process, either suffered low yields or 

decomposition of starting materials. In turn, a palladium-catalyzed Tsuji-Trost 

allylation reaction introduced the allyl group, yielding the O-alkylated product 14 

instead of the C-alkylated product 15. Hence, a Claisen rearrangement[6,7d,19g] was 

employed to convert enol ether 14 into compound 15, which bears the pivotal C-8 

quaternary center that is vicinal to the C-5 quaternary center. This critical Claisen 

rearrangement occurred on the convex face and, the stereochemistry of substrate 15 was 

later assigned by the single-crystal X-ray diffraction of its descendant, compound 9. We 

next required an efficient tactic to fabricate the cyclopentane motif. While routine 

hydroboration conditions (BH3 or 9-BBN) failed to convert the terminal alkene motif 

in compound 15 into the corresponding primary alcohol, other conditions such as anti-

Markovnikov Wacker oxidation[30] or olefin cross-metathesis[31] were also fruitless. 

Alternatively, a two-step functionalization of this terminal alkene, using a Rhodium-



catalyzed hydroboration[32] followed by a PCC oxidation produced aldehyde 2 (61%, 2 

steps). In turn, the crucial cyclopentane motif was assembled by a SmI2-mediated, 

regioselective, intramolecular pinacol coupling that successfully differentiated the C-1 

ketone and the C-9 ketone, most likely due to the different steric hindrances between 

two ketone groups. Next, a Ley oxidation of the secondary hydroxyl group in diol 16 

furnished -hydroxyl ketone 17, in which the -hydroxyl group was eliminated under 

SOCl2/pyridine conditions to give ,-unsaturated enone 18. Furthermore, nucleophilic 

1,2-addition to the enone motif in compound 2, using vinyl Grignard reagent with 

LaCl3•2LiCl as an additive, produced key intermediate 1 (dr ≈ ca. 2:1). 

With a sufficient amount of key intermediate 1 in hand, our original plan was to 

employ a Dauben-Michno rearrangement[23] to fabricate the enone moiety in compound 

19, which would allow us to access (+)-daphlongamine E and (+)-calyciphylline R. To 

our great surprise, under Iwabuchi’s conditions (TEMPO+BF4
-, MeCN),[23b] diallylic 

alcohol 1 underwent an unprecedented oxidative Nazarov cyclization to afford 

pentacycle 9 in 80% yield. The structure of compound 9 have been unambiguously 

confirmed via a single-crystal X-ray diffraction.[33] As previously mentioned, only a 

few reported examples[24,25] of heteroatom-functionalized diallylic alcohols have 

undergone Nazarov-type or decarboxylative Nazarov-type cyclizations (Scheme 1B). 

Therefore, using an unfunctionalized diallylic alcohol, this novel oxidative Nazarov 

electrocyclization provided an important and facile method for the synthesis of 

cyclopentenone-containing molecules. A plausible mechanism for this unique 

transformation is depicted in Scheme 3. We envisioned that adduct A is formed by the 

addition of the tertiary hydroxyl group to the oxoammonium ion. Next, the diallylcation 

formation converts intermediate A to intermediate B, which further undergo a 4-

electrocyclization to give intermediate C as an allylcation. N-hydroxyl trapping of this 

allylcation produces intermediate D, which is subsequently oxidized into compound 9. 

The success of this novel transformation might be attributed to the formation of the 

counteranion-stabilized diallyl cation, intermediate B. Moreover, the fact that either 

diastereomeric isomers of intermediate 1 (ca. 2:1) can be converted into compound 9 

also suggests the diallyl cation/4-electrocyclization pathway. The full scope of this 

novel oxidative Nazarov cyclization has been studied in parallel and will be reported 

separately. 

 

 



Scheme 3. Proposed Mechanism of the Oxidative Nazarov Electrocyclization 
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Our next mission was to convert compound 9 into one of our target molecules, (−)-

10-deoxydaphnipaxianine A, through a selective amide reduction in presence of the 

enone motif and C-1 ketone moiety. Unexpectedly, despite several similar reported 

examples,[7b-7d, 12b, 13, 18a] this seemingly simple reduction proved extremely difficult. 

Attempts using Vaska’s conditions resulted in only a trace amount of desired product, 

while global reductions of all three carbonyl groups using LiAlH4 followed by various 

oxidation conditions were also fruitless. Instead, treating compound 9 with Lawesson’s 

reagent or P2S5 at room temperature or 40 °C converted only the C-16 carbonyl into its 

sulfur carbonyl derivative, leaving the amide carbonyl group untouched. Other trials 

using Lawesson’s reagent or P2S5 under elevated temperature resulted in unidentifiable 

mixtures. Detailed conditions of these unsuccessful attempts are listed in the Supporting 

Information. These failed attempts forced us to consider masking the C-16 carbonyl 

group in compound 9. Initial attempts to convert it into its ketal form failed to give any 

desired product, while its silyl ether derivatives are regrettably unstable. Gratifyingly, 

mixing compound 9 with methoxyamine produced O-methyloxime 20, which was 

poised for assembly of our final target, (−)-10-deoxydaphnipaxianine A. It is worth 

mentioning that, although O-alkyloximes[34] have rarely been used as protecting groups 

for ketones, their unique stability and reactivity were unexpectedly suitable for the final 

transformation in our approach. Finally, microwaving oxime 20 with Lawesson’s 

reagent in chlorobenzene at 125 °C followed by treatment with Raney nickel smoothly 

reduced the amide functionality to its amine form, while the O-methyloxime group was 

concurrently removed, thus afforded our target molecule, (−)-10-deoxydaphnipaxianine 

A. This synthetic compound gave spectral characteristics (1H and 13C NMR 



spectroscopy and HRMS data) consistent with those of the naturally occurring (−)-10-

deoxydaphnipaxianine A, while the optical rotation also matched with that of the 

natural product (synthetic: [α]D
18= −94.0 (c = 0.2 in MeOH); natural: [α]D

25 = −111.0 

(c = 0.2 in MeOH).[20] 

Finally, we investigated the syntheses of (+)-daphlongamine E and (+)-

calyciphylline R (Scheme 2). The key to success relied on a Dauben-Michno 

rearrangement[23] or a transannular allylic alcohol rearrangement of diallylic alcohol 1. 

Despite the fact that these types of rearrangements have been widely used in the 

synthesis of -disubstituted enones, its transannular version was unexpectedly difficult 

and rare.[26] Surprisingly, our variation (TEMPO+BF4
-, 1,4-dioxane) on Iwabuchi’s 

conditions[23b] converted diallylic tertiary alcohol 1 to secondary alcohol 8 in 75% yield. 

It was observed that the TEMPO+BF4
- moderately dissolves in dioxane, while it is fully 

soluble in acetonitrile. Thus, it is presumed that the solubility of TEMPO+BF4
- was key 

to the selectivity between the two drastically different rearrangements. It is also notable 

that the highly sterically hindered C-10 hydroxyl group in compound 8 could not be 

further oxidized under our conditions, until more powerful oxidation conditions were 

employed (AZADOL, PIDA, 98%) to furnish enone 19. Interestingly, under selective 

amide reduction conditions using Vaska’s catalyst followed by a hydride reduction,[7b-

7d, 12b, 13, 18a] compound 19 behaved dramatically different than its analog 9 and, 

smoothly yielded (+)-daphlongamine E in 66% yield. Furthermore, subjecting (+)-

daphlongamine E to m-CPBA afforded its N-oxide derivative, (+)-calyciphylline R. The 

synthetic products, thus obtained, possessed identical spectroscopic and analytical 

properties to those reported for the natural products, while the optical rotations were 

also in good agreement with that of the natural products (see SI for details).[21,22] 

In conclusion, we have accomplished the first total syntheses of three complicated 

calyciphylline A-type alkaloids, namely (−)-10-deoxydaphnipaxianine A, (+)-

daphlongamine E and (+)-calyciphylline R, in 21-22 linear steps from chiral nitrile 7 

with minimal use of protecting groups[35]. Our synthetic strategy is highly flexible since 

intermediate 15 allows general and diversifiable accesses to various calyciphylline A-

type alkaloids. Importantly, embedding with different enone motifs, our target 

molecules can be easily accessed via late-stage diallylic alcohol rearrangements from 

key intermediate 1. A rare, transannular allylic alcohol rearrangement was key to the 

success of the syntheses of (+)-daphlongamine E and (+)-calyciphylline R. Even more 

noteworthy is the unprecedented, oxidative Nazarov electrocyclization using an 

unfunctionalized diallylic alcohol. Followed by a novel amide reduction via an O-



alkyloxime masked enone, these novel transformations eventually paved the way to the 

total synthesis of (−)-10-deoxydaphnipaxianine A. Our efficient, diversifiable strategy 

and novel findings in synthetic methods may be inspiring in the chemical synthesis of 

many other natural products. 
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