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Abstract

Separating azeotropic mixtures of hydrofluorocarbons (HFCs) for reuse and recycle

is environmentally and economically imperative. While ionic liquid (IL)-enabled HFC

separations show promise, Edisonian trial-and-error screening for the optimal IL en-

trainer is intractable and expensive. Here we propose an open-source, equation-oriented

modeling framework to rapidly translate HFC/IL solubility data into regressed ther-

modynamic models which can be used for process design under uncertainty and rapid

IL screening. Moreover, we use data science and process systems engineering tools to

contemplate which data are the most valuable for IL screening. We find that binary

solubility data collected at multiple temperatures is adequate for separation process

design and newly available ternary solubility measurements should be reserved for val-

idation. Additionally, we use uncertainty quantification analyses to show up to 10%

experimental error is acceptable for IL screening decisions. Informed by these results,

we recommend a multi-step workflow for IL screening.

1

adowling@nd.edu


Laboratory 
Data

Experimental 
Design

Thermodynamic 
Modeling

Rapid IL 
Screening

𝑎 =   𝑦𝑦



𝑎𝑎(1 − 𝜿𝒊𝒋)



𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉ଶ − 𝑢𝑏𝑉 + 𝑤𝑏ଶ

𝑏   𝑥

ே

ୀଵ
= 1

𝑎 = 0.421875
𝑅ଶ𝑇

ଶ

𝑃
𝛼

𝑏 = 0.125
𝑅𝑇

𝑃

Graphical abstract

Introduction

Due to their high ozone depletion potential, chlorofluorocarbon (CFC) refrigerants were

phased out under the 1987 Montreal Protocol and replaced by their close molecular relative,

hydrofluorocarbons (HFCs), which had similar excellent refrigeration properties. However,

more recently, many of these second generation HFC refrigerants have been shown to have

high global warming potentials (GWPs), caused by their ability to block infrared radiation1

and extended atmospheric lifetimes, ranging from five to forty-seven years.2,3 In fact, 2019

United States (US) industrial HFC emissions accounted for more than 175 million metric tons

of carbon dioxide equivalents in the atmosphere.4 This alarming environmental impact has

sparked renewed global concern resulting in fresh mandates for environmentally detrimental

refrigerant phase out. For example, the 2016 Kigali Amendment5 to the Montreal Protocol

aims to cooperatively achieve an 85% reduction of HFC use by 2036 among industrialized

countries. The American Innovation and Manufacturing (AIM) Act of 20206 authorized
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the U.S. Environmental Protection Agency (EPA) to limit HFC production to 15% of the

present values by 2036.6 In addition to environmental incentives, the EPA estimates this

future reduction of fluorinated gas emissions can have an annual social benefit of up to

$2.8 billion.7 Also important to consider is the huge economic value of HFCs. For example,

there are approximately 100 million kilograms of HFC-32, a low GWP HFC used in many

refrigerant mixtures, in global circulation worth around half a billion dollars.8

The combined environmental, social, and economic impact of HFC refrigerants makes

it imperative to develop a sustainable path forward for their phaseout. Fortunately, there

remain new opportunities to reuse low GWP HFCs, either as pure refrigerants8 or in next

generation refrigerant mixtures,9 and recycle high GWP HFCs into new products. However,

complicating this phaseout and transition to more environmentally-friendly chemicals is the

fact that most refrigerants are manufactured and deployed as azeotropic mixtures of HFCs.

While this azeotropic nature creates an ideal refrigerant with a single boiling point that will

not separate in a leak, conventional technologies, i.e., distillation, become impractical when

separating the components of these mixtures at the end of their utility.

Ionic liquid (IL) entrainers can effectively separate HFC mixtures, overcoming the energy

costs of traditional separation technologies.10–12 Over the past eighteen years, IL and HFC

systems have been studied in a variety of contexts including the characterization of their

individual and mixture physical properties13–23 and their use in extractive distillation, mem-

brane, and adsorption separation processes.11 More recent work has used data generated

from these studies to regress thermodynamic models then perform process design, optimiza-

tion, technoeconomic analyses, and life cycle assessments for IL-enabled HFC separation

schemes.12,24–26 However, because millions of theoretical ILs are available, each with unique

properties, trial-and-error molecular and process design is intractable since each HFC within

a refrigerant blend exhibits a different boiling point and solubility with an IL.27 This neces-

sitates a framework which integrates experiments, mathematical models, and computational

optimization to concurrently design ILs and separation processes for azeotropic HFC refrig-
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erant mixtures. Thus, several opportunities remain to explore the intersection between IL

discovery and design, thermophysical property measurements, and process engineering.

Here, we integrate published HFC/IL solubility data and process systems engineering

approaches to answer the question: what data are most valuable to screen IL entrainers

for HFC reuse and recycling? We investigate the use of first-of-their-kind thermophysical

property measurements of ternary mixtures of HFCs and ILs, i.e., two HFCs mixed with an

IL,28 within an HFC separation process design framework, determining how to best incorpo-

rate these new measurements to effectively screen ILs for use as entrainers. This enables us

to begin to bridge the gap between experimental thermophysical property characterization,

which is often driven by scientific goals, and process design decisions, which are guided by

engineering principles, by addressing the following questions:

• What is the best way to use the new HFC/IL ternary mixture data to accelerate the

design of HFC separation systems and the screening of IL entrainers?

• What is the uncertainty in property predictions for regressed thermodynamic models

using various types of HFC/IL mixture data (e.g., binary versus ternary mixture data

at single versus multiple temperatures)? How does this uncertainty propagate through

process design calculations?

• What experimental precision for HFC/IL mixture data is sufficient to screen IL en-

trainers?

We propose an open-source, equation-oriented modeling framework to rapidly trans-

late HFC/IL mixture data into regressed thermodynamic models for rapid IL screening.

In contrast to prior work, this framework propagates uncertainty in experimental data to

process-level physical properties. This allows us to evaluate precision between experimental

measurements versus model predictions, providing the opportunity to systematically guide

laboratory and simulation experiments on the data types and accuracy that are needed for

HFC separation process design and IL screening.
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Literature review

Azeotropic distillation process design and entrainer screening

Separating mixtures with very close boiling points, such as azeotropic HFC mixtures, us-

ing conventional distillation requires a large number of trays, making the separation energy

intensive and uneconomical.29 To overcome this challenge, azeotropic and extractive distil-

lation schemes have been used to separate these types of mixtures for more than 90 years.11

Introducing an entrainer, i.e., a mass separating agent, to a close-boiling mixture creates a

new mixture comprised of the entrainer and one of the original azeotropic mixture compo-

nents. This new mixture, which may form its own azeotrope, has a different boiling point,

breaking the original azeotrope to allow separation.30 Techniques to identify ideal entrainers

include using the molecular structure,31 residue curve maps,32 volatilities,33 process simula-

tions,34 and entrainer selection rules developed by Rodrıguez-Donis et al.35 Yet, the search

for entrainers is challenging and time consuming. For example, optimization of entrainers for

separating water and ethanol has been ongoing since the 1930s.36–38 However, for HFC sys-

tems especially, environmental regulations and global economics necessitate rapid innovation

within the next decade.

Ionic liquids as entrainers

ILs are generally defined as organic salts with melting points below 100◦C that are soluble

with a wide range of organic compounds.39,40 ILs exhibit many traits which make them

ideal entrainers. For example, ILs have tunable structure-property relationships such that

the cation and anion which comprise the molecule can be selected from among a variety of

options to achieve a specific chemical purpose. ILs have negligible vapor pressure which leads

to easy recovery and essentially no contamination of products within a separation scheme,

allowing ILs to be recycled in a separation process, reducing material demands and improving

the separation economics.41 ILs also have been shown to have excellent ability to separate
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a wide range of azeotropic and close-boiling mixtures.12,42–44 Other convenient properties of

ILs include their existence in a liquid state over a wide temperature range and their high

thermal and chemical stability.45–48 Since the feasibility of using ILs in extractive distillation

schemes10,11 was shown in the early 2000s, many studies have evaluated their properties in

mixtures with fluorinated refrigerants13–23 and examined their use in HFC separations.12,24

ILs have also been the subject of computer-aided molecular design research, which has aimed

to take advantage of their tunability to simultaneously design IL entrainers and optimize the

separation processes in which they are used.49,50

Regression of thermodynamic models

Because equations of state (EoS) are continuous and differentiable functions, they are well-

suited for computer-aided process design and optimization.51–53 EoS models, including van

der Waals,54,55 Peng-Robinson,56 Redlich-Kong,18,19 and soft-SAFT EoS,57 have been shown

to reliably predict thermodynamic properties of HFC and IL mixtures. Yet, many of these

models include parameters which must be calibrated from data before they are used in process

design. These parameters are often fitted using a minimizing least-squares approach58,59

involving the pressure of the system.18,19,54–56 However, different objective functions, such

as those involving liquid or vapor compositions, can be utilized in practice and may provide

different parameter values.60

There is a rich history of nonlinear parameter estimation within the chemical engineer-

ing discipline and, more specifically, thermodynamics community. It is well known that

EoS parameter estimation is a nonconvex optimization problem and local optima are com-

mon and either multi-start initialization or rigorous global optimization methods are recom-

mended.59,61–63 Besides local minima, spurious solutions are another key challenge for EoS

calibration. Common mitigation strategies include bilevel optimization methods,64,65 branch

and bound methods,63 or the addition of penalty terms to the optimization problem.66 Post

regression tests can be implemented, including the Gibbs tangent plane method,67 which
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enforces a stable solution of the phase equilibrium problem if and only if the tangent plane

lies below the Gibbs free energy surface for all compositions.

Once parameterized, EoS models are used for process design and optimization, yet ther-

modynamic model parameterization is often one of the most significant sources of uncertainty

and risk in process design. For example, Hajipour and Satryo68,69 show how underestimating

critical temperature by 2% while fitting binary interaction parameters may produce errors of

20% to 60% in vapor pressure predictions for petroleum engineering systems. However, out

of the numerous thermodynamic modeling studies for HFC/IL systems, we are aware of only

two papers, co-authored by us, which investigate EoS parameter uncertainties. In Morais

et al ,55 we use Monte Carlo techniques to calculate the uncertainty of parameters for the

van der Waals EoS and describe the apparent over-parameterization of the model due to ob-

served parameter sloppiness. In Baca et al ,28 we report and interpret the covariance matrix

of estimated Peng-Robinson EoS parameters. However, there remains a need to understand

how these uncertainties impact separation process design and IL screening decisions, which

is a key contribution of this work.

Methods

To address the aforementioned gap, this paper presents an equation-oriented modeling frame-

work to systematically translate binary or ternary vapor-liquid equilibrium (VLE) data into

regressed thermodynamic and process models for rapid IL screening. Figure 1 depicts the

workflow, which starts by specifying the system VLE data (Step 1) and EoS model (Step 2),

which are inputs for parameter estimation (Step 3). The parameterized models are then used

to make phase predictions (Step 4) and generate process designs, specifically flash calcula-

tions in this work (Step 5). Additionally, we use these parameters to calculate the pressure of

the mixture to compare the quality of fit of our models (Step 6). Finally, ILs are screened for

their HFC separations ability via a comparison of HFC relative volatility in the IL entrainer
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(Step 7) and uncertainty analysis is performed to inform experimental design (Step 8). The

framework leverages tools from the open-source Institute for the Design of Advanced Energy

Systems (IDAES) Integrated Platform70 and the Pyomo Python library.71,72 Utilizing these

open-source packages for modeling and optimization facilitates validation, reproducibility,

and accountability, and allows for easy extension of the framework to other systems.

As a case study, we apply this workflow to screen six ILs for the separation of HFC-32 and

HFC-125, which comprise the refrigerant R-410a. The remainder of this section describes

the individual steps of the workflow.
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Step 8
Quantify Uncertainty & 
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Figure 1: Open-source, equation-oriented modeling framework for HFC separation process
design and IL entrainer screening.
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Step 1. Generate or compile data

Based on previous studies from Morais et al.55 and Baca et al.,28,56 three types of data are

considered in this work:

1. Binary HFC/IL solubility data for HFC-32 or HFC-125 in [bmim][PF6], [bmim][BF4],

[emim][TF2N], [bmim][Ac], [hmim][Cl], and [hmim][FAP] collected with a gravimetric

microbalance.17,19,55,56

2. HFC-32/HFC-125 binary equilibrium data collected with gas chromatograph equipped

with a flame ionization detector.73

3. Ternary mixture data for HFC-32 and HFC-125 in [bmim][PF6] and [bmim][BF4] col-

lected from XEMIS and IGA gravimetric microbalances with the integral mass balance

method.28

Step 2. Select thermodynamic model

Peng-Robinson EoS

We correlate experimental data utilizing the Peng-Robinson EoS:

P =
RT

V − b
− am
V 2 − 2bmV − b2m

(1)

where pressure P is a function of temperature T , volume V , and the intermediate variables

am and bm. The substance-specific parameters aj and bj for each component j are calculated

with:

aj = 0.421875
R2T 2

c,j

Pc,j
αj (2)

αj =
(
1 + (1− T 2

r )(0.37464− 1.54226ωj − 0.26992ω2
j )
)2

(3)

bj = 0.125
RTc,j
Pc,j

(4)
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where R is the ideal gas constant, Pc and Tc are the pressure and temperature, respectively,

at the critical point, and ωj is the acentric factor. am and bm are calculated with the mixing

rule recommended for cubic EoS:74

am =
∑
i

∑
j

yiyj
√
aiaj (1− κi,j(T )) (5)

bm

N∑
i=1

xi = 1 (6)

where κi,j is the binary interaction parameter function:

κi,j(T ) = κAi,j + κBi,j · T (7)

Specifying κBi,j = 0 removes the temperature dependence for Eq. (7).

Regressed models

To study the differences between the use of different combinations of binary and ternary

data sets, as well as to study the influence of temperature on fitted parameters in Eq. (7),

we postulate five combinations of fitting data sets and models for comparison:

• MB: EoS parameterized with binary data without binary interaction temperature de-

pendence, i.e., κBi,j = 0.

• MB,K : EoS parameterized with binary data taking into account binary interaction

temperature dependence.

• MT : EoS parameterized with ternary data without binary interaction temperature

dependence, i.e., κBi,j = 0.

• MBT : EoS parameterized with binary data and ternary data without binary interaction

temperature dependence. Data are weighted based on the number of observations in

each data set and normalized by the average pressure.
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• MBT,K : EoS parameterized with binary data and ternary taking into account binary

interaction temperature dependence. Data are weighted the same as for MBT .

Here, the subscript B denotes a model was parameterized with binary data, the subscript T

denotes the model was parameterized with ternary data, and the subscript BT indicates a

model was parameterized with both binary and ternary data. The subscript K (for Kelvin)

denotes a temperature dependence of the binary parameters, i.e., κBi,j was calibrated. Table

1 compactly summarizes the models.

Table 1: Postulated models to predict HFC/IL phase equilibrium.

Model κBi,j Binary data Ternary data
MB 0 Yes No

MB,K Optimized Yes No
MT 0 No Yes
MBT 0 Yes Yes

MBT,K Optimized Yes Yes

Step 3. Estimate parameters

Nonlinear least-squares optimization was performed in Pyomo using parmest75 to calculate

the binary parameters κ via Eq. (5):

min
κl≤κ≤κu

D∑
d=1

[
wd
nd

nd∑
i=1

(P̂ (κ, Ti,d, xi,d)− Pi,d)2
]

s.t. Eqs. (1)− (10)

(8)

Here Pi is the experimentally measured pressure value, P̂ is the model prediction of pressure,

D is the total number of data sets, nd is the number of observations in data set d, and the

weight wd is the average pressure of the data set. Minimizing the least-squares error of the

calculated pressure P̂ and experimental pressure P is consistent with prior literature on EoS

calibration for IL and HFC mixtures.18,19,54,55 The model is constrained by Eqs. (1) to (10).

With D = 1 and n = 32 ,where n is the number of fitted points n =
∑D

d=1 nd, the model
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contains 434 variables and 432 equality constraints for the case in which only κAi,j is fit. We

can estimate parameters for the full [bmim][PF6] data set using IPOPT76 solver and HSL

(MA27)77 in approximately 30 seconds with thoughtfully chosen initial parameter values.

The bounds κl and κu were set to -3 and 3, respectively. In all obtained optimal solutions

these bounds were not active.

Alternatively, we can estimate the parameters by minimizing the least squares error of

the composition:

min
κl≤κ≤κu

D∑
d=1

[
wd
nd

nd∑
i=1

(x̂(κ, Ti,d, Pi,d)− xi,d)2
]

s.t. Eqs. (1)− (10)

(9)

Here xi,d is the experimentally measured liquid phase composition and, x̂(κ, Ti,d, Pi,d) is

the model prediction of the liquid composition. With D = 1 and n = 32 the model contains

434 variables and 432 equality constraints for the two-parameter κAi,j system. We can esti-

mate parameters for the full [bmim][PF6] data set using IPOPT76 solver and HSL (MA27)77

in approximately 31 seconds. Although both formulations are computationally tractable,

Eq. (8) is predominatenly used in previous IL literature.18,19,28,54,55 To be consistent, Eq. (8)

is used throughout the remainder of the analysis.

Step 4. Calculate phase equilibrium

We use the phi-phi method78 to calculate VLE at temperature Teq:

Φvap,i(Teq) = Φliq,i(Teq) (10)

Here the Peng-Robinson EoS is used to calculate the fugacities of both phases, Φvap,i and

Φliq,i.
79 However, Eq. (10) is only valid in the two-phase region. It is relaxed as follows as
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part of the smooth flash formulation:79

T1 = max(Tbubble, T ) (11)

Teq = min(T1, Tdew) (12)

where T1 is an intermediate variable, and T is the outlet temperature. Thus if T < Tbubble,

then the VLE is calculated at Tbubble. Likewise if T > Tdew, then the VLE is calculated

at Tdew. The calculation is reformulated with smooth min and max operators to improve

numerical performance with derivative-based equation solving and optimization algorithms.

T1 = 0.5
[
T + Tbubble +

√
(T − Tbubble)2 + ε21

]
(13)

Teq = 0.5
[
T + Tdew +

√
(T − Tdew)2 + ε22

]
(14)

where ε1 = 0.01 and ε2 = 5.0× 10−5 are smoothing parameters.79

Step 5. Perform Process Calculations

Shiflett and Yokozeki12 presented an extractive distillation flowsheet uses an IL entrainer

to separate R-410A, which is a 50/50 mol% mixture of HFC-32 and HFC-125. In this

extractive distillation column, HFC-125 is the top product and HFC-32 and the IL are the

bottom products. The HFC-32 and IL mixture is then sent to the recycling section of the

flowsheet with two sequential flash vessels to separate HFC-32 from the IL entrainer. The IL

is then recycled to the extractive distillation column. The first vessel is operated at 0.1 MPa

and 371 K. With a feed composition xin of 21.6 mol% of HFC-32, 0.3 mol% of HFC-125, and

78.1 mol% of [bmim][PF6].
12 We simulate this flash vessel to illustrate the impact of data
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and model uncertainty on process modeling calculations. The flash is modeled as follows:

Fin =
∑
l∈O

Fl (15)

Finxin,c =
∑
l∈O

Flxl,c, ∀c ∈ C (16)

∑
c∈C

(xvap,c − xliq,c) = 0 (17)

Eq. (15) is a total mole balance that equates the inlet total molar flowrate, Fin, with the

sum of the outlet, Fl. Eq. (16) is the component balance and equates the product of the

inlet flow Fin and the inlet composition xin,c of a component c to the sum of the flow of the

outlet streams Fl and the mole fraction xl,c of component c in the outlet streams l. Finally,

Eq. (17), commonly known as the Rachford–Rice equation, ensures the sum of the differences

between vapor and liquid fractions of the components, xvap,c and xliq,c, must be equal to zero.

Step 6. Assess quality of fit

We utilize the mean absolute percent error (MAPE) metric to quantify the fit and the

accuracy of our model predictions:

MAPE =
D∑
d=1

[
1

nd

nd∑
i=1

∣∣∣∣∣ P̂ (κ, Ti,d, xi,d)− Pi,d
P̂ (κ, Ti,d, xi,d)

∣∣∣∣∣
]

(18)

Here we compare the accuracy of the calculated pressure P̂ and experimental pressure

P , normalizing by the number of observations nd in data set d for all the data sets D.

We calculate two types of MAPE: in-sample, which corresponds to data used for parame-

ter calibration, and out-of-sample, which corresponds to data not used for the parameter

calibration.

15



Step 7. Screen ILs via relative volatility

Relative volatility is a good indicator of an IL’s potential as an entrainer and is a pop-

ular screening metric.33 We screen prospective ILs by calculating the relative volatility,

αi,j(T, P, xin), for species i relative to species j at different compositions of the species:

αi,j =
yi/xi
yj/xj

(19)

Here, xi and xj are the predicted molar compositions of the liquid phase in the flash calcu-

lation, and yi and yj are the predicted molar compositions of the vapor phase. In this work,

the relative volatility is calculated between HFC-32 and HFC-125 in a given IL.

Step 8. Quantify uncertainty to inform experiments

Finally, we quantify how experimental measurement uncertainty impacts relative volatil-

ity and similar calculations. We utilize two different uncertainty quantification methods:

Monte Carlo sampling and bootstrap re-sampling. Algorithm 1 describes our Monte Carlo

approach, a standard method for uncertainty quantification and propagation.80,81 The main

idea is to simulate experimental uncertainty by adding normally distributed noise ε to the

experimental composition. We choose to add this uncertainty to the compositions, as pres-

sure and temperature are easier to control in laboratory experiments. We then resolve the

flash calculation utilizing the newly regressed parameters and propagate this error to αi,j.

Alternatively, we used Parmest bootstrap re-sampling of the data to quantify uncertainty.

We eliminate two data points randomly, estimate the parameters, then re-sample and repeat

the process to estimate the binary parameters. We draw 50 bootstrap samples from the

data, with n-2 samples. For each instance of regressed parameters, the relative volatility

is computed. The key distinction between these approaches is that for Monte Carlo we

must specify the measurement noise probability distribution; in contrast, with bootstrap,

the measurement uncertainty is implicitly inferred from the data.
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Algorithm 1 Monte Carlo Uncertainty Analysis

1: for ε = 1–10% proportional to experimental composition do
2: for iteration = 1, 2, . . . , 100 do
3: Add noise proportional to experimental composition, xεi,d ← N (xi,d, xi,d · ε)
4: Enforce composition bounds of 0 and 1
5: Estimate parameters via Eq. (8) using xεi,d
6: Perform flash calculation via Eq. (15) –(17)
7: Calculate relative volatility via Eq. (19)
8: Store results
9: end for

10: Calculate and store average volatility
11: Calculate and store volatility standard deviation
12: end for
13: Plot the mean of the volatility and standard deviation vs. error %

Results

Peng-Robinson EoS accurately describes HFC/IL binary solubility

data behavior

We begin our analysis by comparing the parameter regression results for the five postulated

models. In Figure 2, we compare the predictions of solubility isotherms of HFC-32 and HFC-

125 in [bmim][PF6] as a function of composition computed using the regressed values for κi,j

with experimental binary solubility isotherm data. Table 2 shows the regressed parameters

for the [bmim][PF6] system. To assess the quality of fit, in Step 6, we utilize Eq. (18) to

calculate the in-sample MAPE.

Table 2: Binary interaction parameters for the five postulated models for HFC-32 or HFC-
125 solubility in [bmim][PF6].

Model MB MB,K MB,K MT MBT MBT,K MBT,K

Parameter κAi,j κAi,j κBi,j κAi,j κAi,j κAi,j κBi,j
i = HFC-32, j = [bmim][PF6] -0.0261 0.0270 -0.0488 -0.0435 -0.0328 -0.0248 -0.0056
i = [bmim][PF6], j = HFC-32 -0.0704 0.2680 -0.3153 -0.3506 -0.1131 -0.0106 -0.0910
i = HFC-125, j = [bmim][PF6] 0.0589 -0.1114 0.1703 0.0604 0.0595 -0.1612 0.2123
i = [bmim][PF6], j = HFC-125 0.3454 -1.6016 2.0860 1.6779 0.4138 -1.7646 2.1235
i = HFC-32, j = HFC-125 0.0093 0.3926 -0.3891 0.0093 0.0093 0.3926 -0.3891
i = HFC-125, j = HFC-32 0.0074 -0.3754 0.3892 0.0074 0.0074 -0.3754 0.3892
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We first compare the models calibrated only using experimental binary solubility data

(MB, MB,K). Figure 2(a) and 2(b) shows the pressure predictions of the models MB and

MB,K compared to the experimental data. We observe that the fit is more accurate at

lower concentrations of the HFCs. For HFC-32/[bmim][PF6], we calculate an in-sample

MAPE between predicted and experimental pressures of 7% for MB and 5% for MB,K . We

also observe that for HFC-125/[bmim][PF6], the fit is considerably better for MB,K at 7%

MAPE, as it accounts for temperature dependency for binary parameters, compared to a

MAPE of 15% for MB. We find the binary parameters are more dependent on temperature in

the HFC-125/[bmim][PF6] system than HFC-32/[bmim][PF6] system. We hypothesize that

temperature dependence is necessary because of the concave shape of the HFC-125 isotherm.

We emphasize that the temperature dependence shown in Eq. (7) can only be regressed with

data sets that contain measurements at two or more temperatures.

Next, we compare the models that are calibrated using only experimental ternary solu-

bility data (MT ) and both experimental binary and ternary solubilty data (MBT , MBT,K).

Figure 2(c) and 2(d) shows that model MT , calibrated only with experimental ternary solu-

bility data has an out-of-sample MAPE of at least 30% when predicting solubility for binary

HFC/IL systems. This is explained by two different features of the experimental ternary

solubility data set. The first is that the data set contains only two binary HFC/IL data

points for each HFC, one at each of the two experimental pressures. In other words, the

experimental ternary solubility data set includes an HFC-32/IL data point at 0.1 MPa and

an HFC-32/IL data point at 0.25 MPa, as well as two data points at the same pressures for

HFC-125. Second, the availability of this experimental data at only two pressures and one

temperature (298 K) necessitates extrapolation to higher pressures and different tempera-

tures.

We calculate the in-sample MAPE between predicted and experimental pressures for

HFC-32/[bmim][PF6] as 7.5% for MBT and 5.2% for MBT,K . For HFC-125/[bmim][PF6] the

in-sample MAPE is 15.8% for MBT and 7.4% for MBT,K . We note that in-sample MAPE of
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the predicted pressure of MB versus MBT and MB,K versus MBT,K are almost identical, which

is attributed to the exclusion or inclusion of temperature-dependent binary parameters. We

can also observe from Table 2 the order of magnitude change in κAi,j. MBT and MBT,K ,

calibrated with binary and ternary data, estimate binary solubility with higher accuracy

than MT , as the addition of binary data reduces the interpolation problem of MT . None of

the calibrated models using only ternary data or a combination of binary and ternary data,

MT , MBT , and MBT,K , have a significantly lower in-sample MAPE than MB and MB,K , the

models calibrated only with experimental binary solubility data.

EoS parameterized with binary or ternary data give accurate phase

equilibrium predictions

Figure 3 compares ternary solubility predictions for models MB to MBT,K against experimen-

tal ternary solubility of HFC-32/HFC-125/[bmim][PF6] in a ternary phase diagram (Step 4)

using the regressed parameters in Table 2. We calculate the vapor and liquid phase compo-

sitions with Eqs. (1) to (10) at 298 K and 1 MPa and compositions of the ternary mixture

extracted from the ternary data set.

As expected, we find that the predictions utilizing MT , which has no κ temperature

dependence and was calibrated only with experimental ternary data, has a 1% in-sample

MAPE. In contrast, we find that the predictions of MB and MB,K (both models only cal-

ibrated with experimental binary solubility data) have an out-of-sample MAPE of 10.1%

and 10.2%, compared to the ternary experimental compositions in Baca et al.56 The error

is consistent with the difference observed between the data sets in Figure 3. We emphasize

these measurements we obtained with different experimental methods and equipment (as

described in the references), so a modest difference is to be expected.

Predictions made with models MBT and MBT,K (models calibrated from both data sets)

have an in-sample MAPE of 9.5% and 9.2%, respectively. The predictions are qualitatively

consistent between models calibrated from experimental binary or ternary solubility data
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(a) Isotherms for HFC-32 solubility in
[bmim][PF6] predicted with MB and
MB,K

(b) Isotherms for HFC-125 solubility
in [bmim][PF6] predicted with MB and
MB,K

(c) Isotherms for HFC-32 solubility in
[bmim][PF6] predicted with MT , MBT

and MBT,K

(d) Isotherms for HFC-125 solubility in
[bmim][PF6] predicted with MT , MBT

and MBT,K

Figure 2: Comparison of experimental solubility isotherms (points) and solubility predictions
(dashed lines) made with models MB (no κ temperature dependence, fitted to experimental
binary data17), MB,K (κ temperature dependence, fitted to experimental binary data17), MT

(no κ temperature dependence, fitted to experimental ternary data28), MBT (no κ temper-
ature dependence, fitted to both experimental binary17 and ternary data28) and MBT,K (κ
temperature dependence, fitted to both experimental binary17 and ternary data28).

sets. The findings give us confidence in the EoS and provide a benchmark to compare

the results of the binary prediction (see below). This significant result allows us to compare

different IL behavior qualitatively as the ternary data now acts as an out-of-sample validation

for the binary models MB and MB,K .

Similarly, Figure 4 shows the absorption of each HFC and the total absorption to the

IL phase. We first note that the difference between the absorption predicted in both ex-

perimental data sets is consistent with the differences shown in Figure 2, i.e., the data sets
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(a) Experimental and predicted liquid compo-
sitions for HFC-32/HFC-125/[bmim][PF6] calcu-
lated utilizing MB, MB,K , MT , MBT and MBT,K .

(b) A zoomed in look at the
ternary composition results.

Figure 3: Ternary diagram liquid compositions calculated from two different data sets. MB,
MB,K were calibrated with binary data.

have a better agreement with respect to HFC-32 than HFC-125. MB prediction is consistent

with the binary data with a MAPE of 2.7%. However, MB,K prediction has a MAPE of

1% compared to the binary experimental data, consistent with the finding in the pressure

prediction shown in Figure 2, as it accounts for the temperature dependency.

MT gives an accurate prediction compared to the ternary experimental data, as it was

calibrated with this data. In comparison, MBT predicts approximately the average of the two

data sets. We note how weighing the ternary data changes the behavior of the temperature

dependence. MB,K predicted less absorption of HFC-32 than MB while, MBT,K considers

more absorption of HFC-32 than MBT . This is explained by the addition in the weighted

parameterization of the ternary data set, which contains more data at low pressures and 298

K. Although MT predictions show the lower MAPE with respect to absorption, we caution

against the use of the model at higher pressures: as shown in Figure 2(c) and 2(d), MT does

not have a good quality of fit at high pressures as it was only calibrated at a maximum of
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0.25 MPa and 298 K.

Binary data and PR EoS models are sufficiently accurate to perform

early process design and relative volatility estimation

We now quantify how the differences between the models MB through MBT,K impact pro-

cess design and IL screening calculations. We calculate a flash unit from Shiflett et al.12

described in the Methods (Step 5), which is a proxy for the overall separation process de-

sign. In Figure 5, we systematically vary the outlet temperature from 280 K to 325 K to

compare the predicted HFC-32 vapor recovery fraction. From the results, we observe a 4%

to 20% difference between the vapor recovery fraction predictions from the models at low

temperatures. The difference in models is consistent with Figure 4. MB and MB,K show a

maximum discrepancy of 10% of the vapor recovery fraction. Additionally, MBT and MBT,K

reconcile the models calibrated with binary data and MT . The models that show the highest

difference in predicted HFC-32 vapor recovery (20%) are MB,K and MT . We also note that

the flash vapor is enriched in HFC-32 (above 98 mol%), at which, as seen in Figures 2(a)

and 2(c), MT solubility predictions show a MAPE of only 5%. However, as shown in Figure

2(d), MT should be used with caution when calculating equilibrium at pressures above 0.25

MPa and temperatures different than 298 K and in mixtures with concentrations of HFC-

125 above 10 mol%. The fact that any of the models can qualitatively predict the vapor

recovery fraction of the flash calculation shows that we can perform early process design

with our models and one or both data sets. If multiple unique data sets are available, i.e.,

both binary and ternary solubility data, we recommend using the EoS model calibrated with

the most data for process design. Leave-one-out (i.e., jackknife resampling) analysis can be

used to estimate the out-of-sample prediction uncertainty which can be propagated through

the process design analysis (as described below).

To determine if the qualitative results translate to relative volatility, we calculate the

phase equilibrium of a 0 mol% HFC-125, 70 mol% HFC-32, and 30 mol% of [bmim][PF6]
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mixture. We then increased the concentration of HFC-125 by 5 mol% and reduced the HFC-

32 by the same amount until 70 mol% of HFC-125 had been reached and recalculated the

relative volatility. We do this for all the models and plot the results in Figure 6. We observe

the same qualitative trend of 2.8 to 3.4 relative volatility consistent across all the models, as

the flash calculation results shown in Figure 5. We note the experimental relative volatility

was calculated with ternary data and, as a consequence, MT gives the best relative volatility

prediction because it was calibrated with the same ternary data. However, these results

suggest that MB, the simplest model, is sufficient for ranking ILs as candidate entrainers.

The framework evaluates candidate IL entrainers in minutes

Ultimately, we envision using this framework to facilitate data-driven IL entrainer screening

and selection (Step 7). To demonstrate this, we calculate the relative volatility of HFC-125

with respect to HFC-32 in six different ILs at varying liquid concentrations of HFC-125,

shown in Figure 7(a). Visually, the relative volatility metric does not seem to vary with

HFC-125 liquid composition. However, there is a 5% decrease in volatility as the HFC-125

liquid mole fraction increases, which is consistent across all of the six ILs studied. This result

is on the same order of magnitude as findings from Li et al.33 which showed that with a 30

mol% IL feed, relative volatility decreased by approximately 14% as the composition of the

other mixture component changed. We hypothesize this small change in volatility as liquid

HFC composition changes results from weak molecular-level interactions between HFCs in

the liquid phase, i.e., if there were more interactions between the liquid phase HFCs, there

would be more significant relative volatility variations. This suggests that in the search for

an IL entrainer, the focus should be given to ILs which interact more strongly with HFCs

to prevent further HFC interactions. For IL screening, these results show that evaluating

the relative volatility metric at a single composition is sufficient. These results guide us to

select [bmim][PF6] as the entrainer for separating R-410A from the set of ILs in this study.

We note that even though the relative volatility is an essential factor in an HFC separation
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process, it is necessary to model other properties, such as the density, viscosity, and heat

capacity of the ILs so that their impact on the economics of the process can be analyzed.

We profile computational times of the workflow using a Windows PC with Intel(R)

Core(TM) i7-7500U CPU with 2.90 GHz and 16 GB of RAM. Overall, implementing the

entire workflow to screen a single IL takes between 7 and 25 minutes, depending on the

amount of available data and the thermodynamic model. The time requirements of Steps

1 and 2 is negligible. In Step 3, thermodynamic model parameter estimation, for a data

set containing six data points (e.g., [bmim][Ac], [hmim][FAP], [hmim][Cl]), parameterization

took two minutes, while for a data set containing sixty data points (e.g., [bmim][PF6]), pa-

rameterization took twenty minutes. (The optimal parameters for each HFC/IL dataset are

reported in Table 3). We believe there are opportunities to optimize the model initializa-

tion in IDAES-PSE and parmest to reduce this time significantly. Steps 4, 5, and 7, which

are necessary for performing the relative volatility and screening analysis, took on average

five minutes to complete. Thus, Step 3 is the most computationally demanding step of the

workflow. We emphasize that this framework can be used for entrainer screening via other

metrics, such as ternary diagram evaluation or selectivity analysis because phase equilibrium

(Steps 4 and 5) can be computed in minutes. In total, we applied the complete framework

to the six ILs in two hours, analyzing each IL sequentially. However, we note that the cal-

culations in this workflow, which are independent for each IL, would be trivial to parallelize

with multiple CPU cores or computers.

Table 3: Binary interaction parameters for model MB for HFC-32 or HFC-125 solubility in
various ILs.

IL Model Parameter HFC-32/IL IL/HFC-32 HFC-125/IL IL/HFC-125 HFC-32/HFC-125 HFC-125/HFC-32
[bmim][BF4] MB κAi,j -0.0068 -0.0282 0.0645 0.5715 0.0093 0.0074
[bmim][Ac] MB κAi,j -0.0254 -0.0313 -0.0214 -0.1105 0.0093 0.0074

[emim][Tf2N] MB κAi,j -0.0261 -0.0704 -0.0215 -0.1106 0.0093 0.0074
[hmim][Cl] MB κAi,j 0.0271 -0.2974 -0.0469 -0.0550 0.0093 0.0074

[hmim][FAP] MB κAi,j -0.0254 -0.0155 -0.0418 -0.1354 0.0093 0.0074
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What experimental precision is adequate for IL screening?

To aid experimental design we estimate how measurement uncertainty impacts relative

volatility calculations by applying the Monte Carlo and bootstrap algorithms (Step 8). In

Figure 7(b), we plot the mean of the volatility calculated using MB and the standard devi-

ation versus the percentage of experimental error. Table 3 presents the mean and standard

deviation of the regressed parameters, which are consistent using both uncertainty quantifi-

cation techniques.

From Figure 7(b) and Table 3, we observe that a 5% error in experimental measurements

translates 5% deviation in relative volatility. We also observe that the standard deviation

is higher in systems where the volatility is higher and where data at different temperatures

is available, as is the case for [bmim][PF6] and [bmim][BF4]. We observe that the error bars

induced are more significant than the change in volatility compared to Figure 7(a). We

note that the experimental precision required depends on the closeness of the volatilities

of the mixtures and the type of data from which the parameters are fitted. In the case

of the ILs being compared in this study, only error values above 8% to 9% (when the

error bars overlap) could change the decision from [bmim][PF6] to [bmim][BF4]. Recall,

each error bar corresponds to one standard deviation in the relative volatility estimate.

Thus the probability of experimental errors at the upper extreme for one IL candidate, e.g.,

[bmin][PF6], and lower extreme for another, e.g., [bmin][BF4], is low. Based on the results

for these two ILs, we conclude a 10% experimental precision is adequate to rank ILs with a

relative volatility difference of 0.3 (≈ 3.03− 2.74 at 50 mol% HFC-125) based on Fig. 7(a).

To our knowledge, this is one of the first studies to recommend a quantitative threshold

for acceptable experimental error based on process metrics such as relative volatility for IL

screening.
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Table 4: Uncertainty in binary interaction parameters for model Mone for HFC-32 or HFC-
125 solubility in [bmim][PF6].

Model Stat MB MB MB MB MB MB

1% error 2% error 5% error 9% error 10% error bootstrap
HFC-32/[bmim][PF6] mean -0.0272 -0.0274 -0.0276 -0.0276 -0.0276 -0.0271
HFC-32/[bmim][PF6] standard deviation 0.0001 0.0004 0.0004 0.0006 0.0006 0.0022
[bmim][PF6]/HFC-32 mean -0.0781 -0.0757 -0.0751 -0.0724 -0.0724 -0.0886
[bmim][PF6]/HFC-32 standard deviation 0.0007 0.0071 0.0139 0.0200 0.0201 0.0391
HFC-125/[bmim][PF6] mean 0.0584 0.0579 0.0534 0.0468 0.0470 0.0636
HFC-125/[bmim][PF6] standard deviation 0.0014 0.0019 0.0034 0.0043 0.0050 0.0074
[bmim][PF6]/HFC-125 mean 0.3367 0.3331 0.3365 0.3320 0.3348 0.4941
[bmim][PF6]/HFC-125 standard deviation 0.0163 0.0276 0.2338 0.2397 0.2440 0.2065
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Figure 4: Predicted HFC-32/HFC-125/[bmim][PF6] ternary absorption compared to experi-
mental data from Baca et al.28 MB and MB,K were only calibrated with experimental binary
solubility data. MT was calibrated with only with experimental ternary solubility data. MBT

and MBT,K where calibrated with both experimental binary and ternary solubility data.
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Figure 5: HFC-32 vapor phase recovery from [bmim][PF6] versus temperature predicted with
models MB to MBT,K .

28



Figure 6: Relative volatility predictions for HFC-32 and HFC-125 in [bmim][PF6] calculated
with models MB to MBT,K .
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(a) Relative volatility calculate with experimental binary solubility data for HFC-32
and HFC-125 in six ILs.

(b) Mean of the relative volatility versus relative error of the experimental data.
Error bars are the standard deviation of the relative volatility.

Figure 7: Comparing the relative volatility of HFC-32 and HFC-125 in different ILs provides
a qualitative reason for understanding which ILs may be optimal entrainers.
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Conclusions and Future Work

We developed a data analysis toolkit, built upon the open-sourced IDAES-PSE framework

and Pyomo ecosystem, to calculate the VLE of HFC and IL mixtures and then rapidly screen

IL entrainers. The approach calibrates PR EoS binary interaction parameters to binary and

first-of-their-kind ternary HFC and IL mixture data. We harness the fitted EoS to study

phase predictions, flash calculations, and in-sample and out-of-sample error metrics. Next,

relative volatility of HFCs is computed for IL screening. Finally, Monte Carlo and bootstrap

methods are used to quantify and propagate uncertainty in the data and EoS models through

process design calculations and to inform experimental design. We applied this frame-

work to screen six ILs ([bmim][PF6], [bmim][BF4], [emim][Tf2N], [bmim][Ac], [hmim][FAP],

[hmim][Cl]) and found that [bmim][PF6] is the ideal entrainer for HFC-32/HFC-125, which

comprise the refrigerant R-410a, separations. This workflow can be implemented in minutes

to hours to rapidly assess up to hundreds of IL entrainers, if data is available. We emphasize

that the proposed framework is flexible and can be easily extended to consider additional

thermophysical properties such as density, viscosity, and heat capacity, and other environ-

mentally important systems in need of rapid evaluation techniques, such as CO2 capture and

biomass energy sources (tert-butanol/ethanol/water mixtures).

Using the proposed framework, we gained several insights regarding the search for IL

entrainers to facilitate separations of HFC refrigerants for their reuse and recycle. We found

that experimental binary HFC/IL solubility measurements taken at multiple temperatures

are more valuable than the new ternary HFC/IL mixture measurements conducted at a

single temperature. The reason for this is two-fold: a) accurate phase predictions, flash cal-

culations, and ternary mixture predictions can be made using PR EoS models parameterized

with binary solubility data; and b) the binary interaction parameters are influenced by tem-

perature, indicating the need for data measured at a range of temperatures. Additionally,

we show that binary data is sufficient to show qualitative results for IL entrainer screening

and preliminary process design. Finally, we found that for a given IL, the relative volatility
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between the two HFCs studied remains relatively constant as the HFC composition within

the mixture changes. This implies that that qualitative screening of ILs can be rapidly ac-

complished via straightforward relative volatility calculations at a single HFC/IL mixture

composition. Our results show that these IL screening decisions can be made with up to ten

percent error in a given data sets.

Thus, moving forward, we recommend a multistage IL screening approach. First, relative

volatility of HFCs in many ILs should be measured at a single composition to facilitate initial

IL screening and down-selection. Second, binary HFC/IL data at multiple temperatures

should be gathered for the most promising ILs. Third, using this data, thermodynamic

and process modeling calculations with uncertainty analysis should be performed. Fourth,

for the best IL entrainer separation systems, sparse ternary mixture measurements should

be made to validate liquid phase predictions. Thus, for IL screening, emphasis should be

placed on gathering a variety of data over experimental accuracy. While not essential for

preliminary HFC separation process design and IL entrainer screening, ternary data is useful

in the further validation and refinement of predictions made with models parameterized with

binary data and can provide additional enrichment of a data set.

We note that our recommendations are pragmatically engineering focused and may be at

odds with current practices of gathering full isotherm data for each HFC/IL mixture before

considering process scale implications. Hence, this work highlights a possible tension be-

tween scientific goals, e.g., understanding mechanisms and publishing full HFC/IL solubility

isotherms, and engineering needs. Our intention with these findings is to guide both labo-

ratory and molecular simulation data generation efforts, which have been focusing in recent

years more on studying ILs at a single temperature and creating new tools to gather increas-

ingly complex data (e.g., ternary mixture measurements), by understanding what data are

sufficient for molecular and process design decisions. Within this context, there are several

outstanding research questions which can be addressed in the future with extensions of our

proposed framework: a) Which thermodynamic model is best in terms of fit and simplicity
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for a given HFC/IL mixture? b) Are alternate parameter temperature dependencies (be-

yond linear) supported by the data? c) How do properties other than relative volatility and

phase equilibrium, such as density, viscosity, and heat capacity, affect the cost of an HFC

separation process? d) How does uncertainty impact the optimal flowsheet configuration

and detailed process design for each HFC/IL system? More broadly, these open questions

are pertinent to practically all green solvent design applications.

Nomenclature

Sets and Elements

C Components

D Data sets

O Outlet streams

Indices

i, j ∈ C Component

d ∈ D Data set

in Inlet stream

l ∈ O Outlet streams

liq Liquid phase

vap Vapor phase
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Variables

αi,j Volatility of component i relative to component j

am a unlike-interaction parameter

bm b unlike-interaction parameter

F Flow (mol/s)

P Pressure (MPa)

Φphase,i Fugacity of component i

T Temperature (K)

T1 Intermediate temperature variable (K)

Tbubble Bubble temperature (K)

Teq Equilibrium temperature (K)

Tdew Dew temperature (K)

P̂ Calculated obtained pressure (MPa)

V Volume

x Liquid molar composition

y Vapor molar composition

Parameters

a Attraction between molecules

b Volume occupied by molecules

ε1 Smoothing parameter 1

ε2 Smoothing parameter 2

κ Binary interaction parameter

Pc Critical pressure (MPa)

R Ideal gas constant

Tc Critical temperature (K)
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Abbreviations

EoS Equation of State

EPA Enviromental Protection Agency

GWP Global Warming Potential

HFC Hydrofluorocarbon

IDAES Institute for the Design of Advanced Energy Systems

IL Ionic Liquid

MAPE Mean absolute percentage error

VLE Vapor-Liquid Equilibrium
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