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Abstract

Discovering new structures in the chemical space is a long-standing challenge and
has important applications to various fields such as chemistry, material science,
and drug discovery. Deep generative models have been used in de novo molecule
design to embed molecules in a meaningful latent space and then sample new
molecules from it. However, the steerability and interpretability of the learned
latent space remains much less explored. In this paper, we introduce a new task
named molecule manipulation, which aims to align the properties of the generated
molecule and its latent activation in order to achieve the interactive molecule editing.
Then we develop a method called Chemical Space Explorer (ChemSpacE), which
identifies and traverses interpretable directions in the latent space that align with
molecular structures and property changes. ChemSpacE is highly efficient in terms
of training/inference time, data, and the number of oracle calls. Experiments show
that the ChemSpacE can efficiently steer the latent spaces of multiple state-of-the-
art molecule generative models for interactive molecule design and discovery.

1 Introduction

Designing new molecules with desired properties is a critical problem with a range of applications in
drug discovery and material science [1]. Traditional pipelines require exhaustive human efforts and
domain knowledge, which are difficult to scale up. Recent studies exploit deep generative models to
solve this problem by encoding molecules into a meaningful latent space, from which random samples
are drawn and decoded to new molecules [2]. Such deep molecule generative models facilitate the
design and development of drugs and materials [3].

Despite the promising results of deep generative models for molecule generation, much less effort has
been made to understand the learned representations. Most of the existing models are based on deep
neural networks, which are known to be black-box lacking transparency[4]. Outside of the molecule
generation domain, many attempts have been made to improve the interpretability of deep learning
models from various aspects, e.g., representation space [5], model space [6], and latent space [7, 8].
In the molecule generation field, interpretability can be studied in two ways: (1) the interpretation of
the learned latent space where traversing the value of latent vectors could lead to smooth molecular
property change and (2) the interpretation of the chemical space that adjusting the molecular property
could observe smooth structure change of molecules.

In addition, it remains challenging to generate molecules with desired properties. Previous works
tackle the problem with optimization-based, reinforcement learning-based, and searching-based
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methods to achieve property control of the generated molecules [9, 10]. Specifically, reinforcement
learning-based algorithm [11] equips the model with rewards designed to encourage the molecule
generative models to generate molecules with specific molecular properties. Optimization-based
algorithm takes advantage of the learnt latent space by molecule generative models and optimize the
molecular properties via Bayesian Optimization [12]. Searching-based algorithm instead searches
directly from the chemical space for molecules with optimal properties [13]. However, these work
often have three major issues. (1) They require many times of expensive oracle calls to provide
feedback (i.e., property scores) of the intermediate molecules during the searching or optimization
process. (2) They often only focus on the outcome of the process while ignoring the intermediate
steps of the process which may lead to interpretable manipulation path or even rule of chemical space.
(3) The molecular properties considered in the existing work are limited to a small set of molecular
properties, such as penalized logP (octanol-water partition coefficient), QED (drug-likeness), DRD2
activity (binding affinity), etc [10, 9, 12, 14].

To tackle the above challenges, we formulate a new task, molecule manipulation, which aims at
manipulating the properties of generated molecules by improving the steerability and interpretability
of molecule generative models. Based on the observation that molecules sharing similar struc-
tures/properties tend to cluster in the latent space, we develop ChemSpace Explorer, a model-agnostic
and efficient method to manipulate molecules with smooth changes of molecular structures and
properties. Specifically, ChemSpace Explorer first identifies the property separation hyperplane
which defines the binary boundary corresponding to some molecular property (e.g., drug-like or drug-
unlike) in the learned latent space of a generative model. Based on the identified property separation
hyperplane, we estimate the latent directions that govern molecular properties, which enable smooth
change of the molecular structures and properties without re-training the given molecular generative
model. To the best of our knowledge, this work is one of the earliest attempts to achieve interactive
molecule discovery through the manipulating of pre-trained molecule generative models.

The experiments demonstrate that our method can effectively steer the state-of-the-art molecule
generative models for molecule manipulation with a very small amount of training/inference time,
data, and oracle calls. To quantitatively measure the performance of molecule manipulation, we
design two new evaluation metrics named strict success rate and relax success rate, which evaluate the
percentage of successful manipulations with smooth property-changing molecules over manipulations
of a group of molecules. To facilitate the interactive molecule design and discovery for practitioners,
we further develop an interface to visualize the real-time molecule manipulations and smooth
molecular structure/property changes. Our main contributions are summarized as follows:

• We formulate molecule manipulation, a new task that steers the latent space of molecule
generative models to manipulate the chemical properties of the output molecule.

• We develop an efficient model-agnostic method named ChemSpace Explorer for molecule
manipulation, which can be incorporated in various state-of-the-art molecule generative
models.

• Comprehensive experiments demonstrate the effectiveness of our method in quantifying the
steerability of various molecule generative models. An interface is developed to exhibit the
real-time molecule discovery and design.

2 Related Work

Molecule Generation. Recent studies have explored a variety of deep generative models for
molecule generation, such as variational autoencoders (VAEs) [10], generative adversarial networks
(GANs) [15], normalizing flows [16, 9, 17], energy-based models (EBMs) [18], reinforcement
learning [19–21], etc [22, 14, 23–25]. To be specific, JT-VAE [10] proposes a VAE-based architecture
to encode both atomic graphs and structural graphs for efficient molecule generation. MolGAN [15]
exploits GANs for molecule generation, where discriminators are used to encourage the model to
generate realistic and chemically-valid molecules. MRNN [26] extends the idea of GraphRNN [27]
to formulate molecule generation as an auto-regressive process. GCPN [11] formulates the molecule
generation process as a reinforcement learning problem where it obtains a molecule step by step
by connecting atoms and reward is used for steerable generation. GraphNVP [16] first introduces
normalizing flows for molecule generation, where the generation process is invertible. Later works
improve the flow-based models via auto-regressive generation [9], valency correction [28], and
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discrete latent representation [17]. GraphEBM [18] introduces energy-based models based on the
density of molecule data.

Controllable Molecule Generation. Another key point for molecule generation is to generate new
molecular samples which possess certain properties. Early work [29] enforces bias on the distribution
of the data and train the generative models with known desired properties to generate molecules
with desired properties, while recent works mainly leverage optimization-based [9, 11, 30, 31],
reinforcement learning-based [28, 10, 32], latent condition-based [33–38], and searching-based [39,
22, 13] approaches to generate molecules with desired properties. Optimization-based methods are
quite flexible and can work directly on both the molecules [40, 14, 25, 41] and the learned latent
vectors [42, 43, 31, 44, 45]. Latent condition-based methods usually take advantange of the learned
factorized latent space via VAE-based method and interpret the latent variable as condition for
molecular property. Reinforcement learning-based methods usually formulate controllable generation
as a sequential decision-making problem and require a score-function to reward the agent. Searching-
based approaches [39, 22, 13] are also capable of searching chemical space for molecules with
desired properties. Besides, a few works [46, 47] leverage the learned latent space and achieve
controllable generation by accepting/rejecting sampled molecules based on a molecular property
predictor. Despite the ability to generate molecules with desired properties, existing works usually
suffer from the unrealistic assumption of the unlimited number of oracle calls [48]. Additionally, it
is difficult to understand the generation process and the chemical rules that govern the generation
process [49].

3 Preliminaries

Molecule Graph. A molecule can be presented as a graph X = (V, E , E, F ), where V denotes
a set of N vertices (i.e., atoms), E ⊆ V × V denotes a set of edges (i.e., bonds), F ∈ {0, 1}N×D

denotes the node features (i.e., atom types) and E ∈ {0, 1}N×N×K denotes the edge features (i.e.,
bond types). The number of atom types and bond types are denoted by D and K, respectively.

Deep Molecule Generative Models. In molecule generation, a generative model M encodes the
molecular graph X as a latent vector Z ∈ Rl with l being the dimension of the latent space and is
capable of decoding any latent vector back to the molecular space. Specifically, variational auto-
encoder (VAE) [50] and flow-based model (Flow) [51] are the two most commonly used models for
molecule generation tasks. Both of them encode the data from molecular space to latent space, which
is usually modeled as a Gaussian distribution; then they decode the latent code back to molecular
space. They can be formulated as:

z = f(x), x′ = g(z), (1)

where x and x′ are the ground-truth and reconstructed/sampled data respectively, and z ∈ Z
represents a latent vector in the latent space, f(.) and g(z) are the encoder and generator/decoder of
the generative model.

4 Problem Formulation of Molecule Manipulation

To improve the steerability and interpretability of molecule generative models, we propose a new
task, molecule manipulation, which interprets and steer the latent space of the generative model in
order to manipulate the properties of the output molecule. To be specific, a deep generative model
contains a generator g : Z → X , where Z ∈ Rl stands for the l-dimensional latent space, which is
commonly assumed to be Gaussian distribution [50, 51]. There exist property functions fP which
define the property space P via P = fP (X).

Formulation. The input to molecule manipulation is a list of n molecules X = {x1, x2, · · · , xn}
and a list of m molecular properties P = {p1, p2, · · · , pm}. We aim to manipulate one or more
molecular properties p of a given molecule in a k consecutive steps and output the manipulated
molecules with properties p′ = {p(1), p(2), · · · , p(k)}. By manipulating the given molecule, we can
observe the alignment of Z → X → P , where the relationship between Z and X explains the latent
space of molecule generative models. The relationship between X and P reveals the correlations
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Figure 1: ChemSpacE framework: (1) the tested molecule generative model generates novel molecules
by sampling random vector from the latent space and then feeding it into the generator, (2) off-the-
shelf oracle function is used to predict molecular properties from the chemical space, (3) ChemSpacE
identifies latent directions which govern molecular properties via the property separation hyperplane.

between molecular structures and properties. By traversing latent space, we can generate molecules
with continuous structure/property changes.

Evaluation criteria. There are two important measures to evaluate the molecule manipulation task:
smooth structure change and smooth property change. To be specific, we design two new evaluation
metrics named strict success rate (SSR) and relaxed success rate (RSR) that measure the quality of the
identified latent direction in controlling the molecular property. Under strict success rate, we consider
a manipulation path to be successful only if we generate molecules with monotonically-changing
properties and structures in consecutive k steps of manipulation. The constraints are formulated as
follows:

ϕSPC(x, k, f) = 1[∀ i ∈ [k],s.t., f(x(i))− f(x(i+1)) ≤ 0], (2)

ϕSSC(x, k, δ) = 1[∀ i ∈ [k],s.t., δ(x(i+1), x(1))

− δ(x(i), x(1)) ≤ 0], (3)

ϕDIV (x, k) = 1[∃ i ∈ [k],s.t., x(i) ̸= x(1)], (4)

where f is a property function which calculates certain molecular property, δ denotes structure
similarity between molecules x(i), x(i+1) generated in two adjacent manipulation steps. ϕSPC
defines the strict property constraint; ϕSSC defines the strict structure constraint; ϕDIV defines the
diversity constraint. The strict success rate is defined as:

SSR− L(P,X, k) =
1

|P | × |X|
∑

p∈P,x∈X

1[ϕSPC(xp, k, fp) ∧ ϕSSC(xp, k) ∧ ϕDIV (xp, k)], (5)

As monotonicity is rather strict, we propose a more relaxed definition of success rate, namely relaxed
success rate, constructed via relaxed constraints, as follows:

ϕRPC(x,k, f, ϵ) = 1[∀ i ∈ [k], s.t., f(x(i))− f(x(i+1)) ≤ ϵ], (6)
ϕRSC(x,k, δ, γ) =

1[∀ i ∈ [k], s.t., δ(x(i+1), x(1))− δ(x(i), x(1)) ≤ γ], (7)

ϕDIV (x,k) = 1[∃ i ∈ [k], s.t., x(i) ̸= x(1)], (8)

where ϵ is a predefined tolerance threshold that weakens the monotonicity requirement. We also
provide two implementations of relaxed success rate, which defines different tolerance variables ϵ
with local relaxed constraint (RSR-L) and global relaxed constraint (RSR-G). For global constraint,
we obtain ϵ by calculating the possible values (ranges) of the molecular properties in the training
dataset, while for local constraint, we obtain ϵ by calculating the possible values (ranges) of the
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Figure 2: (a) Molecule clusters in the latent space, the number represents structure similarity [52],
where the red box represents the base molecule, x and y axes denote two random orthogonal directions
to manipulate. (b) Linear interpolation of two (top and bottom) molecules.

molecular properties only in the specific manipulation paths. The formulation of RSR-L and RSR-G
is as follows:

RSR− L(P,X, k, ϵl, γ) =
1

|P | × |X|
∑

p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵl) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (9)

RSR−G(P,X, k, ϵg, γ) =
1

|P | × |X|
∑

p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵg) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (10)

Note even though it is more challenging for the model to pass RSR-L with local constraint (smaller
range) while evaluating the successful path, its extra benefit is to take into account the ability of the
model to manipulate one molecular property (i.e., the larger the range, the higher the tolerance score,
thus the better chance to achieve successful manipulation).

5 ChemSpacE for Molecule Manipulation

5.1 Latent Cluster Assumption

We examine the property of latent space learned by the generative models and have the following
observations, (1) molecules with similar structures tend to cluster in the latent space, (2) interpolating
two molecules x1 and x2, represented by latent vectors z1 and z2, can lead to a list of intermediate
molecules whose structures gradually change from x1 to x2. As molecular structures determine
molecular properties [53], the observations imply that molecules with similar property values of
certain molecular property would cluster together and interpolating two molecules with different
values of the molecular property could lead to gradual changes in molecular structures. As shown in
Fig. 1, there may exist two groups of molecules, drug-like and drug-unlike, where each group cluster
together and linear interpolating two latent vectors with one molecule from each group could lead to
a direction that crosses the property separation boundary. These observations also match the analysis
from the prior work [42, 28]. To verify our assumption, we visualize the latent space of the pre-trained
MoFlow model trained on QM9 dataset in Fig. 2. The left figure shows that molecules close in the
latent space are similar in structures. The right figure shows that interpolating two molecules in the
latent space could lead to smooth structure changes.

5.2 Identifying Latent Directions

Latent Separation Boundary. With the verifications above and the previous work of analyzing
the latent space of generative models [7, 54–56], we assume that there exists a separation boundary
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which separates groups of molecules for each molecular property (e.g., drug-like and drug-unlike)
and the normal vector of the separation boundary defines a latent direction which controls the degree
of the property value (in Fig. 1). When z moves toward and crosses the boundary, the molecular
properties change accordingly (e.g., from drug-unlike to drug-like). A perfect separation boundary
would have molecules with different properties well separated on different sides. From that, we can
find a separation boundary for each molecular property with a unit normal vector n ∈ Rl, such that
the distance from any sample z to the separation boundary as:

d(z, n) = nT z (11)

Latent Direction. In the latent space, the molecular structure and property change smoothly towards
the new property class when z moves towards the separation boundary and vice versa, where we
assume linear dependency between z and p:

fP (g(z)) = α · d(z, n), (12)

where fP is an oracle function and α is a degree scalar that scales the changes along that corresponding
direction. Extending the method to multiple molecular properties manipulation, we have:

fP (g(z)) = ANT z, (13)

where A = Diag(a1, · · · , am) is the diagonal matrix with linear coefficients for each of the m
molecular properties and N = [n1, · · · , nm] represents normal vectors for the separation boundaries
of m molecular properties. We have the molecular properties P following a multivariate normal
distribution via:

µP = E(ANT z) = ANTE(z) = 0, (14)

ΣP = E(ANT zzTNAT )

= ANTE(zzT )NAT = ANTNAT . (15)

We have all disentangled molecular properties in P if and only if ΣP is a diagonal matrix and all
directions in N are orthogonal with each other. Nevertheless, not all molecular properties are purely
disentangled with each other. In that case, molecular properties can correlate with each other and
nT
i nj is used to denote the entanglement between the i-th and j-th molecular properties in P .

5.3 Molecule Manipulation

After we find the separation boundary and identify the latent direction, to manipulate the generated
molecules with desired properties, we first move from latent vector z along the direction n with a
degree scalar α, and the new latent vector is

z′ = z + αn (16)

To this end, the expected property of the new manipulated molecule is

fP (g(z + αn)) = fP (g(z)) + kα, (17)

where k is a scaling factor between molecular vector space and property. Based on our assumption
to find a separation boundary for each molecular property, we could utilize any linear model (e.g.
linear Support Vector Machine) [57] to find the separation boundaries which best separate the two
classes of the data. For each molecular property, we train an individual model from a group of
randomly sampled latent vectors and utilize a property function fP to calculate the corresponding
molecular properties. Then, we find the separation boundary for each molecular property. The normal
vectors N of separation boundaries are finally utilized as identified latent directions that govern the
molecular properties. Additionally, our method is highly efficient in terms of data, training time and
offline oracle calls thanks to leveraging shallow models with only a small number of data and their
pre-calculated molecular properties.

6 Experiments

6.1 Setup

Datasets. We use three molecule datasets, QM9, ZINC250K , and ChEMBL [58–61]. QM9 contains
134k small organic molecules with up to 9 heavy atoms (C, O, N, F). ZINC is a free database of
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Table 1: Quantitative Evaluation of Molecule Manipulation over a variety of molecular properties
(numbers reported are strict success rate in %, -R denotes model with random manipulation, -L
denotes model with the largest range manipulation, -O denotes optimization-based manipulation, -C
denotes model with ChemSpacE. The best performances are bold.

Datasets Models Avg. QED LogP SA DRD2 JNK3 GSK3B MolWt

QM9

MoFlow-R 1.65 1.50 0.00 0.50 0.00 0.00 0.00 0.50
MoFlow-L 3.43 1.50 1.00 0.50 0.00 1.50 0.00 0.50

MoFlow-O N/A 3.50 6.00 6.50 2.00 8.00 8.50 7.50

MoFlow-C 37.52 12.50 9.00 10.00 11.00 45.50 16.50 10.50
HierVAE-R 29.29 1.00 1.50 0.50 0.50 1.00 1.00 0.50
HierVAE-L 30.69 0.50 0.00 0.00 0.50 2.00 0.00 0.50

HierVAE-C 66.23 27.00 32.00 35.00 41.50 51.50 30.00 39.50

ZINC

MoFlow-R 4.25 1.50 1.50 2.50 3.00 3.50 1.50 2.00
MoFlow-L 5.61 1.50 6.50 2.00 6.00 2.50 4.00 1.50

MoFlow-O N/A 1.50 9.50 0.50 2.00 15.50 23.00 0.00

MoFlow-C 58.08 52.00 53.50 51.50 55.00 56.50 55.50 53.50

ChEMBL
HierVAE-R 25.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HierVAE-L 22.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HierVAE-C 47.70 0.50 3.00 3.00 6.00 7.50 5.50 4.50

Table 2: Efficiency in terms of training/inference time, data, and number of oracles of ChemSpacE
compared to the optimization-based method.

Model Dataset Training(s) Inference/Path(s) # Data # Oracle calls

Opt-based QM9 137.03 0.02 120k 120k
ZINC 1027.26 0.04 200k 200k

ChemSpacE QM9 0.05 0 300 300
ZINC 0.95 0 400 400

Speedup QM9 2740× 0.02 ↑ 400× 400×
ZINC 1080× 0.04 ↑ 500× 500×

Figure 3: Manipulating QED, MolWt and LogP properties of sampled molecules. The backbone
model is CGVAE trained on QM9 dataset.
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commercially-available compounds for drug discovery. On average, the molecules in ZINC are bigger
(∼23 heavy atoms) and structurally more complex than QM9. We take a sampled 250K molecules
version [42] from the larger database. ChEMBL is a manually curated database of bioactive molecules
with drug-like properties and contains ∼1.8 million molecules.

Baselines. We include two baseline methods of identifying latent direction that governs the molecular
property and one optimization-based method, which optimizes the molecular property of the generated
molecules via gradient ascent/descent for comparisons. Random manipulation randomly samples
latent directions for molecular properties. Largest range manipulation draws latent vectors from
the training set and defines the directions via calculating the direction between one molecule with
the largest property score and another molecule with the smallest property score for each molecular
property. Optimization-based method optimizes the molecular property of the generated molecules
by searching a latent vector with the optimized molecular property via gradient ascent/descent.

Implementation Details. We take the publicly available pre-trained models from the GitHub
Repository of HierVAE and MoFlow, respectively. We utilize the implementation of linear models
from Scikit-Learn1.

6.2 Evaluation Protocols

Pre-trained Models. We apply ChemSpacE, as well as baselines, on two state-of-the-art molecule
generative models with publicly available pre-trained models. HierVAE [62] embeds molecular
structure motifs into a hierarchical VAE-based generative model; MoFlow [28] designs a normalizing
flow-based model which learns an invertible mapping between input molecules and latent vectors.

Molecular Properties. We study molecular properties identified in the chemistry community through
open-source cheminformatics software, RDKit2 and protein binding affinity, synthesis accessibility
oracles in TDC3. In total, we analyze 212 molecular properties from multiple dimensions, including
distributions, inter-correlations, etc. Details can be found in Appendix B. Due to the page limit,
we mainly report results for 7 molecular properties, including 4 very common yet important ones,
drug-likeness (QED), molecular weight (MolWt), partition coefficient (LogP), synthesis accessibility
(SA), and 3 binding affinity scores.

Quantitatively, we evaluate the ability of the model to manipulate the given molecular property
of molecules with the proposed strict success rate and relaxed success rate-L/G metrics (see
Sec. 4). We evaluate the model’s efficiency by comparing the training process of the linear models
with a neural network-based predictor for a commonly used optimization-based method in terms
of training/inference time, data, and number of oracle calls. Qualitatively, we visualize molecule
manipulation including property distribution shift during manipulation, single and multiple property
manipulations.

6.3 Quantitative Evaluation of Molecule Manipulation

In Table 1 and 2, we report the quantitative evaluation results for molecule manipulation with
both strict success rate and relaxed success rate-L/G and training, inference time, data, oracle calls
efficiency, which are evaluated on 212 molecular properties. According to the table, we can obtain
the following insights.

(1) Our proposed method, ChemSpacE, as the first attempt for molecule manipulation, achieves
excellent performance to manipulate properties of molecules with two state-of-the-art molecule
generative models (VAE-based and Flow-based). For some important molecular properties (e.g.,
QED), we (with MoFlow) achieve 52% manipulation strict success rate in ZINC dataset. We
outperform the baseline methods 6× on average.

(2) The baseline (random manipulation) method sometimes “finds” directions that control molecular
properties. As shown in Fig. 2, the molecules are well-clustered in the latent space with respect to
structures that determine molecular properties [53]. However, the largest range manipulation works

1https://scikit-learn.org/
2https://www.rdkit.org/docs/index.html
3https://tdcommons.ai/
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Figure 4: Manipulating QED and LogP properties of sampled molecules simultaneously with MoFlow
model trained on QM9 dataset (the repeated molecules are removed for better visualization).

Figure 5: A Real-time Interactive System Interface. Please refer to Appendix E demo video for
interactive molecule discovery.

worse possibly due to its strong assumption in determining the direction via the molecules with
extreme properties (largest property and smallest property) in the dataset.

(3) The ChemSpacE method outperforms the popular optimization-based method in both generating
smooth manipulation path, time and data efficiency. In Table 2, ChemSpacE speeds up the training
time for at least 1000×, required data for at least 400×, and required oracle calls for at least 400×.

6.4 Qualitative Evaluation of Molecule Manipulation and Interpretation

In Fig. 10, we visualize the property distributions of QED, MolWt and LogP along a 7-step manipula-
tion path. For each step, we draw a property distribution. The candidate molecules are at place 0 and
we attempt to manipulate the molecular property to the left (lower) and the right (higher). From the
figure, we can clearly observe that the property distribution shifts to the left and right accordingly
when we manipulate the molecule to the left and right. For example, when we manipulate the
molecules three steps to the left, the range of QED shifts from [0, 0.7] to [0, 0.5]; when the molecules
are manipulated three steps to the right, there are much more molecules that have QED > 0.5 than
the base distribution. Similar trends can also be seen for MolWt and LogP properties.

Single Property Manipulation. To qualitatively evaluate the performance of our method for molecule
manipulation, we randomly select the successful manipulation paths from all three generative models
in Fig. 3. The figures show that our method successfully learns interpretable and steerable directions.
For example, for HierVAE in Fig. 3, we can find that gradually increasing LogP of a molecule may
lead to the removal of the heavy atoms O and N from the structure. With respect to QED, the molecule
drops double bonds, as well as heavy N and O atoms, when increasing QED for the HierVAE model.
A similar trend can be observed in the MoFlow model that increasing QED drops double bonds and
O atoms on the left of Fig. 3. An interactive demo is provided at https://drive.google.com/
drive/folders/1N036p_5OfvGZybgPJ3Vw1ONXHVepimSR?usp=sharing and shown in Fig. 5.

Multi-Property Manipulation. When it comes to multi-property manipulation, the goal is to control
multiple molecular properties of a given molecule at the same time. In Fig. 4, we show how our
method manipulates multiple molecular properties. For simplicity, we remove the duplicate molecules
and only leave the distinct molecules during the manipulation. From the figure, we can observe some
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correlations between LogP and QED since when we increase QED, LogP also increases accordingly.
However, it is not always the case as moving the molecules to the right in the second row does not
increase the QED scores. One potential reason is that the chemical space is vast, discrete and complex,
and it is nontrivial to manipulate only one property while keep others the same of a molecule.

7 Conclusion

In this work, we formulate a new task of molecule manipulation and develop an efficient method
called ChemSpacE to improve the steerability and interpretability of molecular generative models.
The interface illustrates the promising application of interactive molecule design and discovery.
Nevertheless, exploring the chemical space with unbiased pre-trained generative models is still
nascent, we plan to learn a biased latent space for more effective molecule manipulation in our future
work.
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Appendix for
“ChemSpacE: Toward Steerable and Interpretable

Chemical Space Exploration”

A Molecule Generative Models

In Table 3, we summarize a list of representative molecule generative models, which span various
types of deep generative models, including the type of generative models, the type of generation
process and whether latent space is learned. We also provide the formulation for two types of deep
generative models (VAE and Flow) in Section A that are very popular for molecule generation task.

Table 3: A summary of mainstream molecule generative models.

Prior Work Generative Model Sequential Latent Space
JT-VAE [10] VAE ✓ ✓
CGVAE [12] VAE ✓ ✓
MRNN [26] RNN ✓
GraphNVP [16] Flow ✓
GCPN [11] RL ✓
GraphAF [9] Flow ✓
MoFlow [28] Flow ✓
HierVAE [62] VAE ✓ ✓
GraphEBM [18] EBM
GraphDF [17] Flow ✓

A.1 Molecule Generative Model Formulation

VAE. gets a lower bound (ELBO) for the data log probability by introducing a proposal distribution.

log p(x) = log

∫
z

p(x|z)p(z)dz

≥ log[Eq(z|x)[p(x|z)] + KL(q(z|x)||p(z))]
(18)

Flow. The key of Flow model is to design a invertible function with the following nice property:

z0 ∼ p0(z0)

zi = fi(zi−1)

zi−1 = f−1
i (zi)

pi(zi) = pi−1(zi−1)
∣∣∣det

df−1
i

dzi

∣∣∣ = pi−1(f
−1
i (zi))

∣∣∣det
df−1

i

dzi

∣∣∣,
(19)

where fi is invertible function. To be more concrete, we can take z0 as some tractable noise
distribution, like Gaussian distribution, and repeating this for K steps will lead to the data distribution,
i.e.,:

x = zK = fK ◦ fK−1 ◦ ... ◦ f1(z0).
Thus, the log likelihood of the data is as follows:

log p(x) = log pK(zK)

= log pK−1(zK−1)− log
∣∣∣det

dfK
dzK−1

∣∣∣
= log pK−2(zK−2)− log

∣∣∣det
dfK−1

dzK−2

∣∣∣− log
∣∣∣det

dfK
dzK−1

∣∣∣
= ...

= log p0(z0)−
K∑
i=1

log
∣∣∣det

dfi
dzi−1

∣∣∣
(20)
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B Study of Molecular Properties

List of Molecular Properties. In total, study 208 molecular properties from the open
chemistry library RDKit4 and 4 important molecular properties including synthesis acces-
sibility and binding affinity scores from TDC5. They are MaxEStateIndex, MinEStateIn-
dex, MaxAbsEStateIndex, MinAbsEStateIndex, qed, MolWt, HeavyAtomMolWt, Exact-
MolWt, NumValenceElectrons, NumRadicalElectrons, MaxPartialCharge, MinPartialCharge,
MaxAbsPartialCharge, MinAbsPartialCharge, FpDensityMorgan1, FpDensityMorgan2, FpDen-
sityMorgan3, BCUT2D_MWHI, BCUT2D_MWLOW, BCUT2D_CHGHI, BCUT2D_CHGLO,
BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRHI, BCUT2D_MRLOW, BalabanJ,
BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n, Chi2v, Chi3n, Chi3v,
Chi4n, Chi4v, HallKierAlpha, Ipc, Kappa1, Kappa2, Kappa3, LabuteASA, PEOE_VSA1,
PEOE_VSA10, PEOE_VSA11, PEOE_VSA12, PEOE_VSA13, PEOE_VSA14, PEOE_VSA2,
PEOE_VSA3, PEOE_VSA4, PEOE_VSA5, PEOE_VSA6, PEOE_VSA7, PEOE_VSA8,
PEOE_VSA9, SMR_VSA1, SMR_VSA10, SMR_VSA2, SMR_VSA3, SMR_VSA4, SMR_VSA5,
SMR_VSA6, SMR_VSA7, SMR_VSA8, SMR_VSA9, SlogP_VSA1, SlogP_VSA10, SlogP_VSA11,
SlogP_VSA12, SlogP_VSA2, SlogP_VSA3, SlogP_VSA4, SlogP_VSA5, SlogP_VSA6,
SlogP_VSA7, SlogP_VSA8, SlogP_VSA9, TPSA, EState_VSA1, EState_VSA10, EState_VSA11,
EState_VSA2, EState_VSA3, EState_VSA4, EState_VSA5, EState_VSA6, EState_VSA7,
EState_VSA8, EState_VSA9, VSA_EState1, VSA_EState10, VSA_EState2, VSA_EState3,
VSA_EState4, VSA_EState5, VSA_EState6, VSA_EState7, VSA_EState8, VSA_EState9,
FractionCSP3, HeavyAtomCount, NHOHCount, NOCount, NumAliphaticCarbocycles, Nu-
mAliphaticHeterocycles, NumAliphaticRings, NumAromaticCarbocycles, NumAromaticHeterocy-
cles, NumAromaticRings, NumHAcceptors, NumHDonors, NumHeteroatoms, NumRotatableBonds,
NumSaturatedCarbocycles, NumSaturatedHeterocycles, NumSaturatedRings, RingCount, MolLogP,
MolMR, fr_Al_COO, fr_Al_OH, fr_Al_OH_noTert, fr_ArN, fr_Ar_COO, fr_Ar_N, fr_Ar_NH,
fr_Ar_OH, fr_COO, fr_COO2, fr_C_O, fr_C_O_noCOO, fr_C_S, fr_HOCCN, fr_Imine, fr_NH0,
fr_NH1, fr_NH2, fr_N_O, fr_Ndealkylation1, fr_Ndealkylation2, fr_Nhpyrrole, fr_SH, fr_aldehyde,
fr_alkyl_carbamate, fr_alkyl_halide, fr_allylic_oxid, fr_amide, fr_amidine, fr_aniline, fr_aryl_methyl,
fr_azide, fr_azo, fr_barbitur, fr_benzene, fr_benzodiazepine, fr_bicyclic, fr_diazo, fr_dihydropyridine,
fr_epoxide, fr_ester, fr_ether, fr_furan, fr_guanido, fr_halogen, fr_hdrzine, fr_hdrzone, fr_imidazole,
fr_imide, fr_isocyan, fr_isothiocyan, fr_ketone, fr_ketone_Topliss, fr_lactam, fr_lactone, fr_methoxy,
fr_morpholine, fr_nitrile, fr_nitro, fr_nitro_arom, fr_nitro_arom_nonortho, fr_nitroso, fr_oxazole,
fr_oxime, fr_para_hydroxylation, fr_phenol, fr_phenol_noOrthoHbond, fr_phos_acid, fr_phos_ester,
fr_piperdine, fr_piperzine, fr_priamide, fr_prisulfonamd, fr_pyridine, fr_quatN, fr_sulfide,
fr_sulfonamd, fr_sulfone, fr_term_acetylene, fr_tetrazole, fr_thiazole, fr_thiocyan, fr_thiophene,
fr_unbrch_alkane, fr_urea, sa, drd2, jnk3, gsk3b.

However, not all of the molecular properties are varied in the three datasets. Specifically, QM9
contains 29 frozen molecular properties, NumRadicalElectrons, SMR_VSA8, SlogP_VSA12,
SlogP_VSA7, SlogP_VSA9, EState_VSA11, VSA_EState10, fr_C_S, fr_N_O, fr_SH, fr_azide,
fr_azo, fr_barbitur, fr_benzodiazepine, fr_diazo, fr_hdrzine, fr_hdrzone, fr_isocyan, fr_isothiocyan,
fr_nitroso, fr_phos_acid, fr_phos_ester, fr_prisulfonamd, fr_sulfide, fr_sulfonamd, fr_sulfone,
fr_thiazole, fr_thiocyan, fr_thiophene, ZINC contains 4 frozen molecular properties, NumRadi-
calElectrons, SMR_VSA8, SlogP_VSA9, fr_prisulfonamd and ChEMBL contains only 3 frozen
molecular properties, SMR_VSA8, SlogP_VSA9, fr_prisulfonamd.

Inter-correlations of molecular properties. In Fig. 6, we visualize the linear correlations between
each pair of molecular properties across three datasets. From the heatmaps, we can observe that there
are no linear correlations between half of the molecular properties, and similar patterns are observed
in ZINC and ChEMBL datasets.

Molecular Property Distributions. We visualize 7 molecular property distributions reported in
section 6 in Fig. 7. From there, we can observe that the property distribution may vary a lot in terms
of different datasets. Notably, the distributions of some properties, e.g., QED, are very similar in
ZINC and ChEMBL datasets, while some are quite different, e.g., MolWt.

4https://www.rdkit.org/docs/index.html
5https://tdcommons.ai/

15

https://www.rdkit.org/docs/index.html
https://tdcommons.ai/


Figure 6: Inter-correlation heatmaps for studied molecular properties in QM9, ZINC and ChEMBL
datasets.

Figure 7: Property distributions of 7 randomly selected molecular properties on QM9, ZINC and
ChEMBL datasets.

QED MolWt LogP BalabanJ BertzCT CHGHI CHGLO

QM9

ZINC

ChEMBL

C Latent Space Evaluation

To evaluate the quality of the learned latent space, we utilize three disentanglement evaluation metrics,
disentanglement, completeness and informativeness [63]. To be specific, disentanglement measures
the degree to which each latent dimension controls at most one molecular property, completeness
measures the degree to which each molecular property is governed by at most one latent dimension,
and informativeness measures the prediction accuracy of molecular properties given the latent
representation. From Table 4, we find MoFlow learns a better and more disentangled latent space
than CGVAE and HierVAE. One possible reason is that MoFlow (369) has a larger latent space than
CGVAE (100) and HierVAE (32) since Flow restricts the latent size to be equal to the input size.
Similarly, CGVAE ranks the second likely because its latent space size is larger than HierVAE.

D Molecule Manipulation Experiments

D.1 Molecule Genration Evaluation

We evaluate the Validity, Novelty and Uniqueness of the generated molecules as proposed in
(author?) [64] in Table 5. We can observe that ChemSpacE not only improves the success rate from
the baseline methods, but also in general improves the novelty and uniqueness during manipulation.

Besides, in Fig. 8, we also report the SSR curves of molecule manipulations over three models on
QM9 and ZINC datasets with multiple manipulation ranges (distance in the latent space), [−1, 1],
[−5, 5], [−10, 10] and [−20, 20]. From the figure, we can observe that the trends in each of the curves
remain still when the manipulation range changes. In general, either too large or too small range is
not desired, we set it as a hyper-parameter and we observe that [−1, 1] is a reasonably good default
value. More experiments on molecule manipulation can be found in Appendix D.
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Table 4: Quantitative Evaluation of Disentanglement on Latent Space.

Datasets Models Disentanglement Compleness Informativeness

QM9 MoFlow 0.24 0.57 0.83
HierVAE 0.13 0.27 0.75

ZINC MoFlow 0.40 0.62 0.87

ChEMBL HierVAE 0.14 0.41 0.81

Figure 8: Molecule manipulation performance (average) with various manipulation ranges with three
models on QM9 (top) and ZINC (bottom) datasets.

D.2 Molecule Manipulation Evaluation

In this section, we report detailed results for all manipulation ranges [−1, 1], [−5, 5], [−10, 10],
[−20, 20] in terms of success rate and strict success rate in Table 6. Additionally, we visualize the
SSR curves of molecule manipulations over three models on QM9 and ZINC in Fig. 9 and SR/SSR
curves of molecule manipulation with HierVAE on ChEMBL datasets in Fig. 11. The manipulation
visualization of CGVAE on QED, MolWt and LogP is provided in Fig. 12.

Table 5: Quantitative Evaluation of Latent Manipulation.

Datasets Models Validity (%) Novelty (%) Uniqueness (%)

QM9

MoFlow 100.00 98.23 98.27
MoFlow-R 91.60 91.60 8.06
MoFlow-L 40.75 40.75 9.32
MoFlow-C 91.63 88.71 24.23

QM9

HierVAE 100.00 79.39 95.14
HierVAE-R 100.00 84.53 28.91
HierVAE-L 100.00 84.05 27.26
HierVAE-C 100.00 79.66 34.81

ZINC

MoFlow 100.00 100.00 100.00
MoFlow-R 69.98 69.98 29.04
MoFlow-L 43.36 43.36 24.87
MoFlow-C 71.26 71.26 15.82

ChEMBL

HierVAE 100.00 94.03 99.45
HierVAE-R 100.00 84.53 28.91
HierVAE-L 100.00 93.00 55.09
HierVAE-C 100.00 94.24 56.58
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Figure 9: Molecule manipulation performance with various manipulation ranges with three models
on QM9 (top) and ZINC (bottom) datasets (better seen in color).

Table 6: Quantitative Evaluation of Molecule Manipulation over a variety of molecular properties
(numbers reported are soft success rate-L / soft success rate-G in %, -R denotes model with random
manipulation, -L denotes model with largest range manipulation, -O denotes optimization-based
manipulation, -C denotes model with ChemSpacE. The best performances are bold.

Datasets Models Avg. QED LogP SA DRD2 JNK3 GSK3B MolWt

QM9

MoFlow-R 27.21 / 32.31 1.50 / 2.00 0.00 / 3.00 1.00 / 3.00 0.00 / 46.00 4.00 / 4.00 0.00 / 15.50 1.50 / 55.00
MoFlow-L 29.28 / 35.20 3.00 / 8.00 1.00 / 7.00 1.00 / 2.00 0.50 / 42.50 6.00 / 6.00 0.50 / 7.50 1.00 / 58.00

MoFlow-O N/A 4.50/6.50 6.50/8.50 8.50/13.00 3.00/15.0 10.50/10.50 10.50/17.50 8.50/22.00

MoFlow-C 53.97 / 61.56 16.00 / 28.00 13.50 / 28.00 17.50 / 39.50 17.50 / 72.50 58.50 / 58.50 21.50 / 49.00 15.00 / 72.00
HierVAE-R 2.62 / 26.06 1.00 / 1.00 1.50 / 1.50 0.50 / 0.50 0.50 / 1.50 1.00 / 5.50 1.00 / 3.00 0.50 / 2.50
HierVAE-L 3.25 / 27.33 0.50 / 1.00 0.00 / 1.50 0.00 / 5.50 0.50 / 4.00 2.00 / 8.50 0.00 / 2.50 0.50 / 1.50

HierVAE-C 46.72 / 61.49 27.00 / 35.00 32.00 / 44.00 35.00 / 42.00 41.50 / 48.50 51.50 / 60.00 30.00 / 33.50 39.50 / 45.50

ZINC

MoFlow-R 35.85 / 41.70 3.50 / 6.00 2.50 / 7.50 3.50 / 6.50 5.50 / 79.00 4.00 / 56.50 1.50 / 27.50 4.50 / 12.50
MoFlow-L 37.46 / 43.12 3.00 / 4.50 9.00 / 15.50 2.00 / 6.00 8.00 / 81.50 4.00 / 67.50 4.00 / 33.00 3.00 / 14.50

MoFlow-O N/A 1.50/2.00 10.50/15.50 1.00/2.50 2.50/5.50 18.00/21.50 23.50/28.50 0.50/1.50

MoFlow-C 60.54 / 63.23 53.50 / 57.00 57.00 / 73.50 54.00 / 61.50 55.50 / 65.50 57.50 / 63.50 56.00 / 68.00 56.00 / 71.00

ChEMBL
HierVAE-R 0.24 / 18.20 0.00 / 0.00 0.00 / 0.50 0.00 / 0.50 0.00 / 2.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00
HierVAE-L 0.25 / 17.88 0.00 / 0.00 0.00 / 2.50 0.00 / 0.00 0.00 / 0.50 0.00 / 1.00 0.00 / 0.00 0.00 / 2.00

HierVAE-C 13.76 / 36.26 0.50 / 2.50 3.00 / 3.50 3.00 / 5.00 6.00 / 11.00 7.50 / 15.00 5.50 / 9.00 4.50 / 9.00

E ChemSpacE Demo

As shown in Fig. 5, we design an interactive real-time system for molecule manipulation, where the
user can click random to randomly sample a molecule and freely select which model to interpret,
which property to interpret, and tuning the slide bar manipulates the molecule accordingly. The

Figure 10: Visualization of Molecular property distribution shift while manipulating molecules with
MoFlow on QM9 dataset (0 denotes the randomly sampled base molecule and +x and −x denote
manipulation directions and steps).
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Figure 11: Molecule manipulation performance with various manipulation ranges with HierVAE on
ChEMBL dataset (left SR, right SSR) (better seen in color).

Figure 12: Manipulating QED, MolWt and LogP properties of sampled molecules with CGVAE
model trained on QM9 dataset.

demo video is anonymously provided at https://drive.google.com/drive/folders/1N036p_
5OfvGZybgPJ3Vw1ONXHVepimSR?usp=sharing.
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