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ABSTRACT: Aziridines are readily available C(sp3) precursors that afford valuable β-functionalized amines upon ring-opening. In 
this article, we report a Ni/photoredox methodology for C(sp3)−C(sp3) cross-coupling between aziridines and methyl/1⁰/2⁰ aliphatic 
alcohols activated as benzaldehyde dialkyl acetals. Orthogonal activation modes of each alkyl coupling partner facilitate cross-selec-
tivity in the C(sp3)−C(sp3) bond-forming reaction: the benzaldehyde dialkyl acetal is activated via hydrogen atom abstraction and β-
scission via bromine radical (generated in situ from single-electron oxidation of bromide), whereas the aziridine is activated at the Ni 
center via reduction. We demonstrate that an Ni(II) azametallacycle, conventionally proposed in aziridine cross-coupling, is not an 
intermediate in the productive cross-coupling. Rather, stoichiometric organometallic and linear free energy relationship (LFER) stud-
ies indicate that aziridine activation proceeds via Ni(I) oxidative addition, a previously unexplored elementary step. 

INTRODUCTION 
Selective cross-coupling of two different carbon electro-

philes, commonly known as cross-electrophile coupling, has 
emerged as an enabling strategy for C–C bond formation.1 
These processes often operate on readily available and stable 
organic (pseudo)halides under mild conditions. Extensive pro-
gress has been made in developing C(sp3)–C(sp2) cross-electro-
phile coupling reactions, with Ni catalysis offering a particu-
larly general platform.2 Mechanistic studies on select Ni-cata-
lyzed reactions have revealed that distinct, hybridization-de-
pendent activation mechanisms give rise to the cross-selectivity 
with C(sp2) and C(sp3) electrophiles.3,4 In contrast, methods for 
selective coupling of two C(sp3) electrophiles remain underde-
veloped, owing to the more subtle differences in reactivity be-
tween the two reaction partners (Figure 1A).5 Nevertheless, 
there has been important recent progress made in this area using 
Ni6 or Cu catalysis7 with chemical reductants and electrochem-
ical methods.8 These approaches typically rely on substrate stoi-
chiometry, differences in (pseudo)halide identities or differ-
ences in substitution at the carbon center to achieve selectivity. 
Alternatively, redox-neutral metallaphotoredox catalysis9 can 
provide a platform for the development of chemoselective 
C(sp3)–C(sp3) cross coupling in part by relying on orthogonal 
redox-dependent activation mechanisms of the two alkyl cou-
pling partners. This approach offers the opportunity to use non-
traditional reaction partners beyond alkyl (pseudo)halides while 
retaining many of the positive attributes of cross-electrophile 
coupling. For example, researchers have recently found success 
coupling two C(sp3) fragments arising from carboxylic acids, 
activated alcohols, alkyl halides, and C–H bonds.10 These ex-
amples highlight how the identification of strategies that engage 
distinct classes of C(sp3) coupling partners in C(sp3)–C(sp3) 
bond formation can be of broad value from a synthetic and 
mechanistic perspective.   

Figure 1. Cross-electrophile coupling with C(sp3) electrophiles. 
 
Aziridines have been employed successfully as C(sp3) elec-

trophiles in a number of cross-coupling reactions. Work from 

A. Prior art: C(sp3)–C(sp3) cross-electrophile & redox-neutral metalla-
photoredox coupling

Alkyl YAlkyl X + AlkylAlkyl

RHN Ar RHN Alkyl

(pseudo)halide
electrophiles

organometallic 
nucleophiles

B. Prior art: Cross-coupling reactions with aziridines

LnNi0
Alkyl

NiILn

RN NiIIILn

Alkyl

C. This work: Ni/photoredox C(sp3)–C(sp3) coupling with aziridines

RN NiIILn

+

This work: Ni(I/III) OA w/ 
aziridines (unprecendeted)

R
N

Ar X Alkyl X

Ar M Alkyl M

R
N RHN Alkyl

unknown reactivity

basis for prior stoichiometric 
studies & catalytic methods

[Reduced] [Oxidized]

Ni PC X

Ph OR

O
Alkyl

X, Y = (pseudo)halides

e. g. Br, I, pyrdinium salts, RAE

X = (pseudo)halide

Y = CO2H, OR, H

abundant coupling partners access to sp3-rich products

cross-electrophile coupling redox-neutral coupling

numerous opportunities to expand scope & address challenges in cross-selectivity



 

our lab,11 Michael,12 Jamison,13 Takeda/Minakata,14 May15 and 
Xiao16 has demonstrated that coupling reactions with aziridines 
can afford access to substituted ethylamines, important nitro-
gen-containing motifs in medicinal chemistry (Figure1B).17 Or-
ganometallic nucleophiles such as organozinc halides or or-
ganoboron reagents, have been employed as coupling partners 
to form both C(sp3)–C(sp2) and C(sp3)–C(sp3) bonds (Figure 
1B, top). Recently, our lab demonstrated that aziridines can also 
participate in cross-electrophile coupling reactions with aryl io-
dides, using either a stoichiometric inorganic reductant18 or a 
photo-assisted reductive coupling (PARC) strategy.19 Like 
other C(sp3)–C(sp2) cross-electrophile coupling reactions, these 
methods take advantage of the difference in hybridization of 
each coupling partner to impart selectivity (Figure 1A, bot-
tom).20 Unfortunately, direct extension of the methods for cross-
selective C(sp3)–C(sp3) coupling with unactivated alkyl halides 
was not possible as both precursors undergo indiscriminate re-
duction at the Ni center. To address this challenge, we ques-
tioned whether we could design a selective redox-neutral 
C(sp3)−C(sp3) cross coupling with aziridines by using an alter-
native C(sp3) partner where the activation mode is decoupled 
from that of aziridines.  

Herein, we report progress toward this goal in the develop-
ment of a redox-neutral Ni/photoredox-catalyzed alkylation of 
aziridines to generate 2°–Me, 2°–1°, 2°–2° alkyl bonds (Figure 
1C). The method facilitates the synthesis of a range of b-substi-
tuted sulfonamides that were previously inaccessible by tradi-
tional cross-coupling methods with aziridines. Benzaldehyde 
dialkyl acetals serve as the second C(sp3) coupling partner in 
the method, functioning to activate unactivated alcohols toward 
homolytic C(sp3)–O cleavage in an oxidative process21 that is 
orthogonal to aziridine activation via reduction. Differentiation 
of the activation modes affords an opportunity to independently 
tune the rate of reaction of the two partners to achieve cross-
selectivity using easy to manipulate variables like light inten-
sity. Mechanistic studies suggest that these conditions favor a 
Ni(0)−(I)−(III) cycle wherein aziridine activation does not oc-
cur via Ni(0) oxidative addition, but rather via Ni(I), an elemen-
tary step that has no prior stoichiometric or catalytic prece-
dent.22,23 

RESULTS AND DISCUSSION 
Reaction Optimization 

We began reaction optimization using 2-(4-fluorophenyl)-1-
(p-tolylsulfonyl)aziridine (1a) and benzaldehyde dimethyl ace-
tal (2a) as a methyl radical precursor. On the basis of prior stud-
ies, including our own recent work,21 we explored the use of 
halide salts as precursors to halogen radicals for HAT. We were 
pleased to find that using 2.5 mol% Ni(cod)2, 5 mol% NH4Br 
(E1/2 [Br−/Br∙] = +0.80 V vs SCE in DCE), and 2 mol% 
Ir[dF(Me)ppy]2(dtbbpy)PF6(IrII/IrIII* = +0.97V vs SCE in 
MeCN)2g,24 with a 427 nm Kessil lamp at 25 ℃, the desired 
cross-coupled product 3a was formed in 22% yield (Table 1, 
entry 1). Because hydrolysis of the acetal 2a was also observed 
under these conditions, we next evaluated non-protic bromide 
salts, including LiBr, which led to the formation of 3a in 32% 
yield (Table 1, entry 2). In both these reactions, numerous un-
desired side products also accompanied product formation, in-
cluding the dimerized aziridine (4), sulfonamide 5,25 and the di-
rect product of cross-coupling with the 3° carbon of the acetal 
(6). Since 4 and 5 both presumably arise from unproductive 
consumption of an azanickellacycle intermediate, we hypothe-
sized that increasing the rate of methyl radical formation from 

2a might lead to better selectivity for the cross-coupled product 
3a.26 Consistent with this hypothesis, we found that simply add-
ing another lamp and increasing the lamp intensity, variables 
that should both differentially impact the HAT cycle, afforded 
3a in 70% yield (Table 1, entry 3-4). Increasing the acetal 
equivalents from 1.8 to 2.4 also afforded a modest improvement 
in the yield of 3a (Table 1, entry 5).  
 
Table 1. Optimization of aziridine alkylation with benzal-
dehyde dialkyl acetals.  

 
Reactions performed on 0.1 mmol scale, with 1-fluoronaphtha-
lene as the external standard (19F NMR yield for 3,4,6, 1H NMR 
yield for 5). Entries 1-2 were performed at 0.04M, and entries 
3-10 were performed at 0.057M. For reactions with 25% inten-
sity, vials were placed 1.5 cm away from Kessil lamp and for 
50% intensity, vials were placed 3cm away. Entries without 
(rsm) showed full conversion of the aziridine. a NH4Br was used 
instead of LiBr b Three fans were used to cool the reaction. c No 
fans were used to cool the reaction. Reaction with either no 
light, no photocatalyst, no nickel, or no nickel/ligand all gave 
0% yield of the desired product.  
 

Although the conditions in entry 5 afforded a high yield of 
the desired product, we sought to test the robustness of the re-
action under a more simplified light set-up. Interestingly, while 
only one lamp with fan-cooling afforded 34% yield of 3a, 
simply removing the fans to increase the reaction temperature 
gave a significant increase in the yield of 3a to 72% (Table 1, 
Entry 6,7), potentially because higher temperatures facilitate β-
scission and increases the concentration of Me radical in solu-
tion. Finally, evaluation of Ni precatalyst identity showed that 
NiBr2∙glyme gave a 10% increase in yield over Ni(cod)2 (Table 
1, Entry 8).  
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With these optimized reaction conditions, we were pleased to 
find that 3a can be obtained in useful yield even with reduced 
equivalents of the acetal (Table 1, Entries 9 & 10). Moreover, 
although NiBr2∙glyme can serve as the sole source of bromide 
for HAT, control reactions omitting LiBr led to diminished re-
activity, consistent with previous observations that the counter 
cation of the additive may facilitate stabilization of the anionic 
sulfonamide and product release (Table, Entry 11).20c 
Substrate scope 

Methylation of C(sp3) carbons is a powerful strategy in me-
dicinal chemistry that can lead to an increase in potency, higher 
selectivity among bioreceptors, alteration in solubility, and en-
hanced protection against enzyme metabolism.27 Accordingly, 
amines and sulfonamides bearing β-methyl groups are a highly 
sought structural motif in pharmaceuticals.28 Nevertheless, 
methylation of aziridines has only been accomplished with 
highly nucleophilic organometallic reagents, such as Grignard 

reagents, organocuprates, and AlMe3, and often results in poor 
regioselectivity.29 Moreover, there have been no reports of suc-
cessful Ni- or Pd-catalyzed cross-coupling of aziridines with 
methyl nucleophiles.11-14 Therefore, with the optimized reaction 
conditions in hand, we investigated the scope of the reaction 
with various aziridines using benzaldehyde dimethyl acetal as a 
methylating reagent.  

We were excited to find that a broad range of styrenyl aziri-
dines were compatible with this Ni/photoredox methylation re-
action (Table 2). Substrates bearing electron-deficient groups 
such as p-CF3 (3b) or p-CN (3c) gave the b-methylated sulfon-
amide products in 77% and 50% yield, respectively. An unsub-
stituted styrenyl aziridine (3d) as well as those baring electron-
donating groups such as p-t-Bu (3e) or p-OPh (3f) also afforded 
the methylated products in good yield. The reaction showed 
minimal sensitivity to steric hindrance on the arene, with 3g 
formed in 59% yield.  

 
Table 2. Reaction substrate scope with aziridines and benzaldehyde dialkyl acetals. 	

Reactions performed on 0.2 mmol scale. 0.48 mmol of the acetal coupling partner was used. a 48 h instead of 20 h b Ratio of ring-
closed to ring-opened isomers. c 5,5’-difluoro-2,2’-bipyridine was used instead dtbbpy. ‘rr’ denotes regiomeric ratio of 
branched/linear ring opened aziridines. d 1:1 dr at the benzylic stereogenic censer of the trans cyclobutane. 
 
As sulfonamides have been frequently employed in medicinal 
chemistry, we also investigated aziridines with sulfonyl substit-
uents other than a tosyl group. Both aryl (3h-3j) and alkyl sul-
fonamides,30 such as methanesulfonamide (3k)30c and 

cyclopropanesulfonamide (3l)30d,e were tolerated in the reaction, 
albeit the alkyl sulfonamides were formed as mixtures of regi-
oisomers with methylation favoring the benzylic position. Fi-
nally, an unsubstituted aziridine was also converted to the 
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deuteromethyl- and methylated products 3m and 3n in 75% and 
76% yield, respectively. A current limitation of the methodol-
ogy is that aliphatic aziridines give poor conversion to the prod-
uct, even with prolonged reaction times (3o). 

We next explored the scope of the acetal partner using 2-(4-
fluorophenyl)-1-(p-tolylsulfonyl)aziridine (1a). We found that 
deuteromethyl (3p) as well as other unactivated linear alkyl 
groups such as Et (3q), n-propyl (3r), n-pentyl (3s), and isoamyl 
(3t) all afforded the desired products in 52–83% yield. Alkyl 
groups bearing heteroatom substitution (3u) were also compe-
tent substrates, albeit lower yielding. Moreover, β−substituted 
alkyl coupling partners such as neopentyl (3v) were effective in 
the reaction. As another example, a methylene cyclobutyl group 
could be transferred in 51% yield (3w), wherein both the direct 
cross-coupling (3w1) and the radical ring-opened terminal al-
kene (3w2) were observed in a 4:1 ratio. 

We were also excited to observe reactivity between 2⁰ alkyl 
coupling partners and aziridines, given that cross-coupling of 2⁰ 
alkyl groups with aziridines is not feasible under reported 
Negishi conditions.11,13 Moreover, 2⁰−2⁰ C−C bond formation 
presents a particular challenge in cross-electrophile strategies, 
with only a few examples reported to date.6d,e When testing the 
reactivity between 2⁰ alkyl coupling partners and aziridines, we 
found that application of 5,5’-difluoro-2,2’-bipyridine rather 
than dtbbpy as ligand enabled higher conversion to the desired 
product (See supporting information). Both cyclic and acyclic 
secondary alkyl groups underwent coupling. The reaction was 
most efficient with cyclobutane derivatives (3x and 3y). A de-
crease in yield was observed as the ring size was expanded to 
cyclopentylation (3z). Interestingly, use of isopropyl acetal as 
the 2⁰ coupling partner afforded cross-coupled product with a 
1:1.5 ratio of branched and linear propyl groups (3aa). Isomer-
ization was also observed when using an unsubstituted aziridine 
as coupling partner (3ab), indicating that isomerization is not 
restricted to only congested 2⁰−2⁰ C–C bond formation (vide in-
fra). 

 
Possible mechanistic pathways  

Oxidative addition of aziridines to Ni(0) has been established 
in stoichiometric studies,22 with the resulting Ni(II) azametal-
lacycle proposed as a common catalytic intermediate in cross-
coupling reactions with aziridines.11-13,15,16,23 Therefore, at the 
outset of our reaction design, we initially hypothesized that the 
oxidative addition of Ni(0) I to generate Ni(II) azametallacycles 
II would be operative; subsequent capture of the alkyl radical 
to generate Ni(III) III followed by reductive elimination would 
furnish the desired product (Scheme 1, eq1). Alternatively, 
Ni(II) complex IV could instead arise via oxidative addition of 
Ni(0) to benzylbromide 7 generated in situ, given the catalytic 
presence of bromide in solution (Scheme 1, eq 2).19,23b 

Nevertheless, the generation of linear/branched isomers us-
ing acyclic secondary alkyl reaction partners appeared incon-
sistent with these pathways (Table 2, 3aa, 3ab). In particular, 
β-hydride elimination and reinsertion should be much more fa-
vorable at a low-valent Ni(I) VI center as opposed to the Ni (III) 
intermediate III in eqs 1 and 2 since isomerization necessitates 
a vacant coordination site and an intermediate with a relatively 
long lifetime.31 Interestingly, the intermediacy of a Ni(I) alkyl 
VI would imply that aziridine activation takes place by 
Ni(I)−Ni(III) oxidative addition, an elementary step that does 
not have precedent in stoichiometric studies for aziridines 
(Scheme 1, eq3). Or an analogous Ni(I)−Ni(III) pathway could 
also be proposed with benzyl bromide 7 (Scheme 1, eq 4). 

  
Scheme 1. Possible mechanistic pathways for accessing 
Ni(III) to enable product formation. 

 
 
Mechanistic Investigations 

To interrogate the mechanism of aziridine activation, we first 
sought to synthesize the Ni(II) II oxidative adduct and test its 
intermediacy in the coupling reaction (Scheme 1, eq1). Com-
plex IIa was independently synthesized by reacting Ni(cod)2 
with 1a in the presence of dtbbpy (Scheme 2A). The stoichio-
metric reaction of IIa under the standard reaction conditions did 
not result in the formation of product. Instead, IIa underwent 
conversion (30%) to a mixture of aziridine dimer 4a, sulfona-
mide 5 and reduced aziridine (see supporting information). To 
determine if IIa accesses a catalytically-relevant intermediate 
and if the attached aziridine in the Ni complex can be directly 
converted to the desired methylated product, a crossover exper-
iment was designed using p-CF3 styrenyl aziridine 1b as a sub-
strate in the presence of 10 mol % azametallacycle IIa as the 
sole nickel catalyst source (Scheme 2B). However, less than 1% 
of the product originating from IIa (3a) was obtained, whereas 
the product from 1b was formed in 32% yield. These results 
provide evidence against the pathway shown in Scheme 1, eq 1. 
Furthermore, when a time-course experiment was performed, 
IIa was never spectroscopically observed (see supporting infor-
mation for details). 
 
Scheme 2. Crossover experiment and stoichiometric studies 
with azametallacycle IIa. 
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1-fluoronaphthalene was used as the external standard for 19F 
NMR yield. 
 

Next, we investigated the intermediacy of benzylbromide 7, 
pertinent to Scheme 1, eq2 or eq4, which could be generated by 
the 7.5% of bromide (2.5% from NiBr2∙glyme and 5% from 
LiBr) in the reaction mixture. When benzyl bromide 7a was 
subjected to the reaction, only 1% of the product was generated. 
Instead, the majority of bromide 7a was converted to dimer 4a 
and reduced aziridine 8 (Scheme 3A).  
 
Scheme 3. Reactivity of benzylbromide 7a. 

 
 (A) Reaction performed 0.1 mmol scale using stoichiometric 
amount of benzylbromide 7a vs. (B) catalytic amount of ben-
zylbromide 7a (0.01 mmol) and aziridine (0.09 mmol). Ar1 = p-
F-benzene Ar2= p-CF3-benzene. Yields are based on 0.1 mmol 
1-fluoronaphthalene as the external standard by 19F NMR.  
 
When 7a was used in catalytic quantities in the presence of 
aziridine 1b, as a way to simulate the catalytic formation of 7a 
under the standard condition, 1.6% of the product originating 
from 7a was observed, whereas the product derived from 1b 
was formed in 51% yield (Scheme 3B). Based on these obser-
vations, we propose that any in situ generated 7 most likely 

leads to off-cycle byproducts, presumably via oxidative addi-
tion of the benzyl bromide or halogen abstraction to generate 
the benzylic radical, followed by free-radical recombination, a 
common off-cycle pathway in aryl benzylation with benzylic 
halides.32 

 
Ni(0)−Ni(I)−N(III) mechanistic pathway 

Taken together, these data are most consistent with a 
Ni(0)−Ni(I)−Ni(III) pathway wherein Ni(I) undergoes oxida-
tive addition to the aziridine (Scheme 1, eq 3). Since this step 
has not been previously observed, we sought direct experi-
mental evidence for the stoichiometric oxidative addition of 
Ni(I) to aziridine 1a. Unfortunately, an isolable dtbbpyNi(I)(al-
kyl) complex has not previously been prepared. However, in 
their investigation of the reactivity of CO2 at Ni(I), the Martin 
group reported the synthesis of a (mesityl-phenanthro-
line)Ni(I)(CH2t-Bu) VII (Scheme 4).33 Therefore, we sought to 
test this Ni(I) alkyl complex for oxidative addition reactivity 
with 1a. Prior to exploring stoichiometric studies with VII, we 
established that mesityl-substituted phenanthroline (L2) gives 
similar yield as dtbbpy (L1) in the catalytic reaction. Indeed, 
mesityl-substituted phenanthroline afforded 33% yield of 3v, in 
close agreement with the 36% yield of 3v seen with dtbbpy 
(Scheme 4A).  

 
Scheme 4. Stoichiometric studies with Ni(I) complex. 

 
(A) Control experiments with L1 (4,4’-di-tert-butylbipyridine) 
and L2 (2,9-dimesityl-1,10-phenanthroline) (B) Reactivity of 
L2Ni(CH2t-Bu) complex VII with aziridine 1a. 

 
Having confirmed the catalytic competence of L2, we turned 

our attention to the stoichiometric reaction (Scheme 4B). VII 
was generated in situ, by adding a solution of neopentylMgBr 
to L2Ni(I)Br,32 with the resulting complex then subjected to 
aziridine 1a. This led to a full consumption of the aziridine, af-
fording 11% of the cross-coupled product 3v and 28% of en-
amide 9, which could result from oxidative addition at the Ni(I) 
center, followed by elimination.34 It is possible that enamide 9 
serves as a source for sulfonamide formation 5, which is ob-
served under the catalytic conditions with L1 and L2. Taken 
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together, these data support the catalytic relevance of a Ni(I) 
species for aziridine activation. 

Having established the catalytic relevance of Ni(I), we sought 
to understand the mechanism of aziridine activation via Ni(I) by 
evaluating the impact of aziridine substitution on the catalytic 
reaction outcome (Hammett analysis). Rather than using the rel-
ative rate of product formation as a readout, we chose to use the 
branched/linear ratio of product arising from alkylation with i-
Pr acetal 2aa. Isomerization of the Ni(I)(i-Pr) can occur prior to 
oxidative addition, and aziridines that undergo faster oxidative 
addition to Ni(I) should therefore afford higher branched/linear 
ratios of the product according to our proposed mechanism 
(Scheme 5A).  

Two sites of the aziridine were independently evaluated: the 
benzene sulfonamide (Scheme 5B) and the benzylic arene 
(Scheme 5C). When the electronics on the arene ring of the sul-
fonamide were varied, we observed a high linear correlation be-
tween the log(kX/kH) (k = branched/linear) with a positive ρ 
value (R2 = 0.98, ρ = 1.1) (Scheme 5B). The positive, but rela-
tively low magnitude, slope indicates that electron-withdrawing 
groups on the sulfonamide facilitate faster oxidative addition, 
consistent with either a single-electron transfer or concerted ox-
idative addition. When the electronics of the benzylic aryl group 
were modified and plotted against Hammett–Brown constants 
σ+,35 or with Jiang’s spin-delocalization substituent constants 
σJJ

• (indicative of a radical stabilization effect),36 a negative cor-
relation was observed with log (kx/kH) (for σ+, R2 = 0.76, ρ = –
0.15; for σ JJ

• R2 = 0.87, ρ = –0.15) (Scheme 5B). The negative 
slopes for both σ+ and σJJ

• indicate that a more electron-donating 
group on the benzylic fragment facilitates oxidative addition. 
The correlation with σJJ

• also suggests a buildup of radical char-
acter on the benzylic carbon. These trends are consistent with 
analyses of benzyl halide oxidative addition to Co(I),37 where it 
is proposed that after halogen abstraction by Co(I) to generate 
a benzylic radical, a radical addition back onto the Co(II) metal 
center generates Co(III); it is the latter step which would be ac-
celerated by electron-donating (nucleophilic) benzyl groups.  

Overall, the opposite slope of ρ for the arene on the sulfona-
mide versus the arene on the benzylic site is most consistent 
with a single electron transfer oxidative addition, where Ni(I) 
reduces the aziridine to generate a Ni(II)-sulfonamide complex 
and a benzylic radical, which is followed by recombination of 
benzylic radical to afford Ni(III).11a The observed LFERs are 
inconsistent with a concerted oxidative addition, which would 
be expected to have a positive ρ value for both experiments. 
Although SN2-type oxidative addition has been proposed for 
Ni(0) and negative ρ values have been observed for Lewis-acid-
catalyzed nucleophilic ring opening of styrenyl aziridines,38 the 
higher R2 for a radical descriptor σJJ

• over σ+ and the low mag-
nitude of the ρ value are inconsistent with this mechanism.38 It 
is also worth noting that these results contradict the possibility 
of isomerization occurring at Ni(III) (Scheme 1, eq1), where 
more electron-deficient arenes on the benzylic site would also 
be expected to lead to faster reductive elimination and reduced 
isomerization (i.e.. both ρ values > 0).39 Furthermore, the higher 
magnitude of the ρ value of sulfonamide arene than that of the 
styrenyl arene further corroborates the lack of participation of 
benzyl bromide 7a as a productive intermediate in the catalytic 
cycle (Scheme 1, eq 2 or 4).  
 
Scheme 5. Hammett plot analysis. 

 
(A) Isomerization of branched to linear alkyl species at Ni cen-
ter. (B) Hammett plot of branched vs linear product against var-
ying substituents on aryls on sulfonamide and (C) styrenyl 
arene. Reaction was performed on 0.2 mmol scale using under 
standard condition. a Standard condition for 2⁰ alkyl cross-cou-
pling, where 5,5’-difluoro-2,2’-bipyridine was used instead 
dtbbpy. 
 
 
Proposed Catalytic Cycle 

On the basis of our mechanistic investigations, we propose 
the following catalytic cycle (Scheme 6A, black). Upon irradi-
ation with blue light, the excited Ir photocatalyst oxidizes bro-
mide anion. The resulting bromine radical can abstract the 3⁰ 
benzylic C−H of the benzaldehyde dialkyl acetal, followed by 
β−scission to generate the alkyl radical and ester byproduct.21b 
Concurrently, the NiBr2∙glyme precatalyst can be reduced to 
Ni(0) I by Ir(II) to enter the Ni catalytic cycle, which can cap-
ture the alkyl radical generated from the β−scission event. 
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Based on our stoichiometric, catalytic and spectroscopic obser-
vations, we propose that Ni(I) I undergoes oxidative addition to 
the aziridine by a single electron transfer mechanism. Reductive 
elimination from the resulting Ni(III) III complex then affords 
the cross-coupled product with regeneration of Ni(I) VIII. Fi-
nally, VIII would be reduced by the Ir(II) species to turnover 
the catalytic reaction.40  

We also identified off-cycle pathways that lead to undesired 
byproducts (Scheme 6B, gray). For instance, if aliphatic radical 
generation by HAT/b-scission or trapping by Ni(0) I is slow, 
Ni(0) I oxidative addition to the aziridine would afford Ni(II) 
azametallacycle II and resulting degradation products. Moreo-
ver, any generation of benzylbromide 7 could lead to undesired 
dimer 4 and reduced aziridine 8. Sulfonamide 5 and styrene for-
mation may arise from inefficient cross-coupling, on the 

grounds of observing enamide 9 formation using Ni(I) oxidative 
addition in the stoichiometric studies. 

This proposed competition of light-mediated cross-reactivity 
with off-cycle speciation pathways is further supported by com-
paring the relative product and dimer formation with varying 
light intensity (Scheme 6C, see SI for details). For example, 
when performing a time-course study comparing the ratio of 
product 3a to dimer 4a at high versus low light intensity (64 
kLux, Table 1, condition 7 vs 4.5 kLux, condition 6), the lower 
light intensity conditions result in the formation of nearly 1:1 
ratio of the desired product to the dimer. Suppression of off-
cycle speciation is therefore partially dependent on having suf-
ficient light penetration to favor the productive catalytic path-
way. 

 
 

 
Scheme 6. Proposed mechanistic pathway and off-cycle pathways.

 
a Strong light emission: 50% light intensity where the vials were placed 3 cm away from the Kessil lamp, maintained at 38 ℃. Weak 
light emission: 25% light intensity where the vials were placed 20 cm away from the Kessil lamp while heating in an oil bath at 38 ℃. 
 
CONCLUSION 
In conclusion, we have developed a C(sp3)–C(sp3) cross-cou-
pling methodology between aziridines and benzaldehyde dial-
kyl acetals as latent alkyl radical sources. The transformation 
employs a diverse set of styrenyl aziridines with varying substi-
tution on the sulfonamide. Moreover, methyl, 1⁰ and 2⁰ unacti-
vated aliphatic coupling partners can be installed efficiently. 
The orthogonal activation of each coupling component and li-
gation at distinct Ni oxidation states imparts cross-selectivity 
between two C(sp3) precursors. Specifically, mechanistic stud-
ies support a pathway for activation of aziridines via Ni(I)–
Ni(III) oxidative addition, distinct from the commonly pro-
posed oxidative addition of aziridines to Ni(0). These mecha-
nistic studies shed light on the nature of the activation modes 
for unconventional C(sp3) precursors, which we anticipate can 
lead to the expansion of C(sp3)–C(sp3) cross-coupling method-
ologies in future studies. 
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