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What is the likelihood that a hypothetical material — the combination of a composition and crystal structure
— can be formed? Underpinning the reliability of predictions for local or global crystal stability is the choice
of thermodynamic potential. Here, we discuss recent advances in free energy descriptions for crystals including
both harmonic and anharmonic phonon contributions to the vibrational entropy. We critically discuss some
of the techniques and descriptors, including data-driven machine learning approaches, being developed to
assess the stability and synthesisability of solids. Avenues are highlighted that deserve further attention
including thermodynamic and kinetic factors that govern the accessibility of metastable structures away from
equilibrium.

Crystal chemical space is vast, and only a fraction of
it has been explored. To guide expensive experimen-
tal efforts, computational materials design is increas-
ingly applied to screen crystal chemical space to discover
elemental compositions and crystal structures with de-
sired functionality. But how many of these are realisable
and how can we avoid ‘plausible predictions of fantasy
materials’?1

When a certain chemical composition in a crystal
structure is predicted to exhibit a desired set of prop-
erties, the question one must ask is whether this mate-
rial will be stable and synthesisable. In virtual materials
screening studies, the stability is often defined in terms
of athermal internal energies, typically referred to as to-
tal energies, and (synthesisable) materials with an energy
above the energetic convex hull are termed metastable.

Using this metric, analysis of almost 30,000 total en-
ergies in the Materials Project indicated that 50.5% of
experimentally observed structures are metastable with
respect to competing phases with a median energy of
15 meV/atom above the convex hull.2 Since 90% of
the metastable structures were observed to have ener-
gies of less than 67 meV/atom above the convex hull, a
metastablity window of 100 meV/atom is often assumed
for a candidate material to be ‘accessible’.

However, as this accessible window is chemistry depen-
dent, an alternative descriptor has been proposed based
on the amorphous limit. Here, only crystalline phases
of lower energy than the amorphous ‘polymorph’ of the
relevant composition is considered accessible, as the bar-
rier for transformation to an amorphous state must be
low.3 Figure 1 illustrates this stability window. Here, two
phases are thermodynamically stable at different condi-
tions, one phase is metastable, and potentially synthe-
sisable, since it is of lower energy than the amorphous
phase, while the last phase is inaccessible, since it should
spontaneously decompose into the amorphous phase.
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The above definition of metastability includes both
materials that are thermodynamically stable at some
other set of conditions (e.g. high temperature or pres-
sure) and materials that are not thermodynamically sta-
ble at any set of equilibrium conditions, but may still
be formed under certain synthesis conditions and remain
kinetically stable. Thus, it is clear that for a full as-
sessment of stability, we must go beyond metrics based
on athermal energies. In this perspective, we assess the
current status of the field including advances in free en-
ergy descriptions and statistical models to assess crystal
stability and synthesisability.
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FIG. 1. Schematic of phase stability as a function of temper-
ature following Aykol et al.3 Two phases are thermodynam-
ically stable below the melting point, Tm, at low and high
temperature, respectively. Furthermore, two phases that are
never thermodynamically stable are indicated; one of these
can be metastable, whereas the other is unstable at all condi-
tions, since it is of higher energy than an amorphous phase.
The amorphous phase is depicted as a continuation of the
liquid phase, although small deviations are expected due to
differences in the structure of a liquid and an amorphous solid.
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I. LOCAL AND GLOBAL STABILITY

Before assessing how temperature dependent stability
metrics can be calculated, a more rigorous definition of
stability is warranted. Stability can be defined in many
complementary ways, but importantly, we must distin-
guish between local and global stability.

The local stability of a material determines if the ma-
terial will spontaneously transform into a different struc-
ture. Macroscopically, the local stability can be defined
in terms of its volume (V) and pressure (P) through a
positive bulk compressability

βT = − 1

V

(
∂V

∂P

)
T

> 0 (1)

or defined more precisely using elastic constant
relations.4

On a microscopic level, local stability requires that no
infinitesimal (collective) atomic displacements result in a
decrease in energy. This means that all vibrations should
have positive frequencies (ω) to ensure that all deforma-
tions of the atomic positions have an energetic penalty.
Thus, the phonon frequencies become imaginary, ω2 < 0,
for a locally unstable crystal structure.

Note however, that the phonon frequencies are in gen-
eral dependent on pressure and temperature. Thus, if lo-
cal stability is examined in a screening study based on its
temperature independent (harmonic, see below) phonon
dispersion, a material may be deemed unsuitable due to
a local instability. Thus, materials that are stable at am-
bient conditions may be rejected due to low temperature
instabilities.

Global stability is defined in terms of thermodynamic
potentials, i.e. a material is globally stable if for a set of
thermodynamic conditions, it is the global minimum of
the relevant thermodynamic potential. For most practi-
cal cases, the relevant thermodynamic potential will be
the Gibbs free energy, but others may be relevant depend-
ing on conditions. When considering global stability, it
is important to note that the stability must be consid-
ered with respect to all competing phases—i.e. to both
polymorphs of the same compositions, and to separation
into multiple phases.5

II. METASTABILITY

Based on our definitions of local and global stability, we
can define metastable materials more generally as materi-
als that are locally stable, but globally unstable at a given
set of conditions. Metastable materials can, in principle,
transform to a lower energy state, but in many cases,
they have sufficient lifetimes for preparation, characteri-
sation, or practical applications. Common examples are
anatase TiO2

6 and diamond.7 One case is the synthesis
of wurtzite-derived β-CuGaO2, which usually adopts a
delafossite structure, by ion exchange of NaGaO2.8
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FIG. 2. Free energy as a function of order parameter, η,
for (left) a material with a first-order phase transition, and
(right) a material with a second order phase transition. In
both cases two different phases are globally stable at high
and low temperature, respectively, but only in the left case, a
metastable phase can be retained.

Figure 2 illustrates competing phase stability as a func-
tion of an order parameter, which for simplicity can be
imagined as an atomic displacement. In the left panel,
two phases are locally stable at low temperature, and
the phase at negative order parameter is globally stable,
whereas the other phase is metastable. With increasing
temperature, the phase at positive order parameter be-
comes globally stable. In this case, a first order phase
transition with hysteresis is expected between the two
phases, since each phase will remain metastable in (part
of) the temperature region, where the competing phase
becomes globally stable. In the right panel, a phase at
zero order parameter is both locally and globally stable
at high temperature, whereas the phase at finite order
parameter becomes both locally and globally stable at
low temperatures. This is expected to result in a second-
order phase transition between the phases with no hys-
teresis. Importantly, only in the case of the left figure,
the high temperature phase can be retained to low tem-
perature, since it remains locally stable.

III. PHASE COMPETITION

To asses the stability of a material, first one has to
consider with respect to “what” the material should be
stable. This is done in the form of an appropriate chem-
ical reaction.

The stability of a crystal (ABC) with respect to atoms

A(g) + B(g) + C(g) −→ ABC (2)

or ions

A+(g) + B+(g) + C2−(g) −→ ABC (3)

is a poor discriminator as it will be exothermic for most
materials. A more realistic reference is the elemental
standard states

A(s) + B(s) + C(g) −→ ABC (4)
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but this is unlikely to be a limiting factor for stability.
In multi-component solids, secondary phases that form
from disproportionation reactions are often in close com-
petition, such as

ABC −→ A(s) + BC(s) (5)

or

2 ABC −→ A2C(s) + B2C(s) (6)

In some cases, it may be appropriate to consider an ex-
ternal environment such as oxygen or water, which can
form additional degradation products.9

ABC +
3

2
O2 (g) −→ AO(s) + BO(s) + CO(s) (7)

This approach can be generalised to n-component chem-
ical systems using convex hull analysis. An overview of
this method for equilibrium phase stability over large
chemical spaces has been provided by Bartel.5

IV. THERMODYNAMIC POTENTIAL

To determine whether a material is stable at all, or
only under a specific set of conditions, requires a suitable
thermodynamic potential to be chosen. Here, we focus
on quantities accessible from atomistic modelling, which
is widely used to accelerate chemical discovery.

A. Internal energy (∆U)

A common choice of energy for prediction of stabil-
ity is the internal energy of a system, which is the rel-
evant thermodynamic potential to be minimised under
constant entropy and volume. These conditions are, how-
ever, hardly realisable and the athermal internal energy,
typically referred to as the total energy, is more often
used as a low-cost approximation to the full free energy.

The total energy is fundamental to density functional
theory and is readily obtainable from static simulations
of the ground state crystal structure. It is a functional
of the electron density (n0) as

UDFT[n0] = 〈Ψ[n0]|H|Ψ[n0]〉, (8)

where the Hamiltonian operator (H) encompasses the
range of electron/nuclear interaction terms and Ψ is the
electron wavefunction, itself a functional of the electron
density.10,11

In practice, absolute values of internal energy are
rarely useful in isolation, and we must focus on energy
differences (∆U) between the different species for bal-
anced chemical reactions such as those considered above.
The total energies of different materials cannot be di-
rectly compared between codes and a set of common pa-
rameters must be chosen for each study. To overcome

this limitation, systematic calculations are performed to
compile a dataset, e.g. as curated within the Materials
Project12 or the Open Quantum Materials Database.13

The internal energy is easily extended to include pres-
sure effects through the enthalpy. The associated PV
term is usually negligible for condensed phases at ambient
conditions due to the low compressibility of solids, but
becomes important at elevated pressures such as those in
the Earth’s mantle.14

B. Free energy (∆G)

Many materials only appear on phase diagrams at
‘high’ temperature, so a treatment of thermal effects is
essential for prediction of materials stability at ambient
and elevated temperatures. The central role of entropy
in thermodynamics is evident from the Gibbs free energy

G = U + PV − TS = F + PV, (9)

where T is temperature and F = U−TS is the Helmholtz
free energy. The balance between enthalpy and entropy
underpins many crystal processes, including defect for-
mation and the miscibility limits for solid solutions of
two or more crystals.15 As noted by Dunitz, enthalpy—
entropy compensation is a general feature of chemical
reactions, and phase transitions in particular.16

For most crystals, the dominant entropy term is vibra-
tional and there are several descriptions to consider.

1. Harmonic phonons

Even in a perfect crystal, atoms vibrate around their
average crystallographic positions giving rise to thermal
disorder (entropy). The extent of the atomic displace-
ments depends on the temperature and the vibrational
frequencies of the crystal. Lower energy vibrations give
rise to greater thermal disorder.

The vibrational entropy, Svib, can be obtained by
summing a systems phonon modes over bands (ν) and
wavevectors (q).17 The associated phonon density of
states can be calculated (e.g. lattice dynamics) or mea-
sured (e.g. inelastic neutron scattering). Within the har-
monic approximation (HA), the vibrational entropy is
given by

Svib =
1

2T

∑
ν,q

~ωqv coth(~ωqν/2kBT )

− kB

∑
ν,q

ln[2 sinh(~ωqν/2kBT )], (10)

where ωνq is the phonon frequency for band ν and
wavevector q. While the absolute value of Svib can easily
exceed 100 kB,18 in balanced reactions such as Eq. 5, the
resulting change

∆Svib =
∑

products

Svib −
∑

reactants

Svib (11)



4

is smaller and typically in the range 0− 5 kB.
In practice, rather than the vibrational entropy, the vi-

brational free energy, Fvib, is used for convenience. The
expression also includes a correction to the internal en-
ergy due to zero-point motion

F
(HA)
vib =

1

2

∑
ν,q

~ωqv+

kBT
∑
ν,q

ln [1− exp (−~ωqv/kBT )] . (12)

Beyond free energies, phonon calculations come with
an additional indicator of crystal stability. Displace-
ments that result in a lower energy structure manifest
as imaginary phonon frequencies. Thus, a material with
no imaginary frequencies is locally stable. If the instabil-
ity involves a phonon mode away from the centre of the
Brillouin zone, this structural transition will require an
expansion of the crystallographic unit cell along a partic-
ular direction. For example, most cubic perovskites fea-
ture instabilities associated with octahedral tilting that
require expansions of the unit cell to describe.19–21

In practice, many structures, including a wide range of
cubic perovskites, predicted to be dynamically unstable
from harmonic phonon theory are in fact stable at finite
temperatures. This results from thermal renormalisation
of the phonon frequencies, which will be considered in
detail below. Furthermore, the vibrational free energy in
Eq. 12 becomes ill-defined for imaginary modes. Thus,
harmonic phonon theory will fundamentally fail to pre-
dict the thermodynamic stability of these structures at
elevated temperatures—also when the HA is only used to
compare free energies. To model such cases, anharmonic
contributions are essential.

2. Quasi-harmonic approximation

Despite its merits, harmonic phonon theory fails to
predict several important physical phenomena, includ-
ing thermal expansion and lattice thermal conductivity.
The former can be modelled within the quasi-harmonic
approximation (QHA), which is arguably the simplest
treatment of anharmonic effects.22 Here, the effect of vol-
ume on the phonon frequencies is considered and the free
energy at a given temperature is minimized with respect
to volume as

G(T, P ) = min
V

(U(V ) + Fvib(T, V ) + PV ) . (13)

The QHA often gives reasonable predictions of the an-
harmonic Grüneisen parameter (γν = − V

ων
∂ων
∂V ) and the

thermal expansion in materials — either as a a result of
negligible intrinsic anharmonic effects or due to a fortu-
itous cancellation of errors.23,24

The change in unit cell volume can have profound
impact on phonon frequencies, and thus the free en-
ergy. This can affect the relative stability of different

phases or polymorphs and lead to more accurate predic-
tions of stability ranges. Indeed, there are many exam-
ples of temperature-driven (first-order) phase transitions
that are well described within the QHA, including the
monoclinic-to-tetragonal phase transition in ZrO2

25 and
the α-to-β transition in elemental Sn,26 through to more
complex hybrid organic-inorganic crystals.18

3. Anharmonic phonon theory

The (Q)HA breaks down in multiple cases. Most
strikingly, this happens when imaginary phonon modes
are present in the harmonic phonon dispersion.27 This
is the case in displacive phase transitions in general
and for several technologically important materials, in-
cluding the aforementioned perovskite family. Even for
a seemingly simple material such as NaCl, predictions
of some thermal properties are inaccurately described
within the QHA.24. Anharmonic theories extend the
reach of phonon-based approaches significantly beyond
the (Q)HA.

In recent years, one of the most common applications
has been the calculation of mode lifetimes for predictions
of lattice thermal conductivity. To a first approximation,
thermal conductivity from finite lifetimes due to phonon–
phonon scattering can be calculated from perturbation
theory on top of the harmonic phonon dispersion, typi-
cally based on third-order force constants.28 This pertur-
bative treatment, however, does not result in a correction
to imaginary modes or modification of the free energy.

For predictions of crystal stability including anhar-
monic effects, two approaches can be taken. In the
first case, the aim is to obtain temperature renormalised
phonon dispersion to predict when a material will become
dynamically (and therefore locally) stable. In the second
case, the anharmonic vibrational free energy is used to
compare the stability of different phases.

Temperature dependent phonon information can be
obtained in several ways. The most popular meth-
ods are based on the temperature dependent effec-
tive potential (TDEP),29 self-consistent phonon theory
(SCPH),30,31 stochastic self-consistent harmonic approx-
imation (SSCHA),32 and the velocity auto-correlation
function from molecular dynamics trajectories.33 The
features of several software packages that employ these
approaches are compared in Table I. These methods have
become accessible thanks to increased computing power,
as well as novel methods for efficient force constant ex-
traction, such as those based on compressive sensing.34

The stabilisation of high temperature phases
has been reported based on renormalised phonon
dispersion.30,35–37 Temperature dependent phonons are
particularly well suited for the description of second
order, soft-mode phase transitions, which can be clearly
described from the softening of a single phonon mode.
Thus, the temperature above which a high temperature
(higher symmetry) phase is stable can be predicted
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from the temperature at which an imaginary mode
becomes real. Generally, experimental phase transition
temperatures for second-order phase transitions are
reproduced with reasonable accuracy using this method,
but examples show that care must be taken to include
high enough orders of anharmonicity.35,36 It is important
to note that several anharmonic phonon methods require
all phonon frequencies to be real by definition. Thus
when predicting phase transition temperatures from
these methods care must be taken to evaluate the
frequency as a function of temperature well above the
transition temperature, from which the frequency can
be extrapolated to zero.30

For predictions of global stability, the anharmonic vi-
brational free energy is required. The first choice is to use
the expression for the harmonic free energy from Eq. (12)
with the renormalised phonon frequencies instead of the
harmonic ones. This allows for calculation of free energies
for phases with dynamic instabilities in their harmonic
phonon dispersion. However, importantly, an extra cor-
rection term must be included to fulfil the first-order cu-
mulant expansion. Within SCPH, the first-order term
including the harmonic contributions with renormalised
frequencies is given as38

F
(SCP)
vib = kBT

∑
ν,q

ln [2 sinh (~Ωqv/2kBT )]

− 1

4

∑
ν,q

[
Ω2

qv −
(
C†qνΛ(HA)

qν Cqν

)
jj

]
αqν , (14)

where Ωqv are the renormalised frequencies, the last
term in the second sum corresponds to a unitary
transformation of harmonic frequencies, and αqν =

~
2Ωqv

[1 + 2n(Ωqv)] where n(ω) is the Bose–Einstein dis-

tribution. The first sum corresponds to a simple rear-
rangement of Eq. (12).

Within TDEP, a slightly different approach is taken,
where the free energy reads

F (TDEP) = U0 + Fvib, (15)

Fvib is given as in Eq. (12), but with thermally renormal-
ized phonon frequencies, and U0 is a temperature depen-
dent renormalized baseline energy.39

Phonon free energies, including the SCPH and
TDEP expressions, can be augmented by perturbative
corrections40. These include the so-called bubble correc-
tion based on third-order force constants as well as higher
order corrections.24,38,41

These free energy methods have seen their merits in
predicting thermal expansion beyond the QHA, includ-
ing the negative thermal expansion of ScF3.24,38,41 For
applications to phase stability, TDEP has been used to
obtain a phase diagram of SnSe, for which the high tem-
perature Cmcm phase is dynamically unstable,42 and for
CrN, for which the vibrational entropy contributes signif-
icantly to the magnetic and structural phase transition.43

Two recent examples for phase stability using the SCPH

methodology are the pressure induced wurtzite to rock-
salt transition in GaN,44 and the relative free energy be-
tween four phases of CsPbI3.45

Finally, rather than relying on calculating the free en-
ergy based on the phonon dispersion to a given anhar-
monic order, it is also possible to minimize the free energy
during structure optimisation.46–48 This is the approach
used in the stochastic self-consistent harmonic approxi-
mation (SSCHA) method, where the free energy surface
is sampled stochastically.32 It has been successfully em-
ployed to predict the ground-state structure of supercon-
ducting LaH10 including zero-point anharmonic effects,49

and to study the phase transitions in several materials,
including SnSe.37 So far, the main use of this method
has been in terms of phase stability for materials with
second-order phase transitions but, as it gives access to
the free energy directly, predictions of stability between
phases that are not related through soft-mode transitions
should be straightforward.

4. Thermodynamic integration

The anharmonic phonon methods reviewed in the pre-
vious section can be used to extend free energy estima-
tions beyond the reaches of the (Q)HA. They have the
advantage of providing intelligible, closed form, approx-
imations for the free energies. It is, however, difficult
to gauge the size of errors once strong anharmonicity is
present.

A way to include anharmonicity fully in free energy
predictions is provided by thermodynamic integration
(TI). These set of techniques are based on performing
a series of molecular dynamics (MD) simulations where
an external parameter (real or artificial) is varied and
free energy differences are obtained by integration of a
related quantity.

The most common such technique is the so called Kirk-
wood coupling constant integration, where a parameter
λ is used to connect the Hamiltonians of two states, typ-
ically in the form H(λ) = H0 + λ (H1 −H0). The free
energy difference between these two states is then ob-
tained as50

F (V, T, λ = 1)− F (V, T, λ = 0) =

∫ 1

0

∂F

∂λ
dλ

=

∫ 1

0

〈V1 − V0〉λ dλ.

(16)
Here, V0 and V1 are the potential energies at λ = 0 and
1, respectively and the notation 〈...〉λ signifies that the
average should be taken over an MD simulation (NVT
ensemble) of the Hamiltionian H(λ). In practice, the
states at λ = 0 and 1 are typically taken as a harmonic
system with free energy given by Eq. 12 and the fully
anharmonic system as given by DFT, respectively. Sim-
ulations are then performed at different values of λ (by
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mixing harmonic and DFT forces) and the free energy is
determined through numerical integration.

There exists several other useful TI variants. These
include the free energy shift on changing the temperature
from a reference value T0 to T1:

F (V, T1)

kBT1
− F (V, T0)

kBT0
= −

∫ T1

T0

U(T )

kBT 2
dT. (17)

Practically, a set of MD simulations are performed at
temperatures varying from T0 to T1, from which the aver-
age internal energy U(T ) is extracted and the integral in
Eq. 17 is numerically evaluated. Other TI expressions are
also available to obtain the free energy shifts on changing
volume or on arbitrary crystal deformations51,52.

TI based approaches have been applied to calculate
relative phase stabilities in systems ranging from simple
elemental metals to complex molecular crystals or high-
entropy alloys51,53–56. Other applications include defect
formation free energies53,54 and melting points57,58. If
the integration is coupled with ab initio molecular dy-
namics, the computational cost is large. Thus, there
is great promise in reducing the burden with modern
machine-learned force fields to obtain accurate free en-
ergies for more complex crystals.54,56,59

5. Beyond vibrational entropy

While the difference in vibrational entropy is dom-
inant for many temperature-driven phase transforma-
tions, there are other sources of entropy that may be
relevant for particular systems.

Configurational entropy stabilises disordered crystals
and solid-solutions. Mixing ABC and DBC to form
(AxD1–x )BC results in a regular solution entropy change
assuming random distribution of A and D

∆Sconfig(x) = −kB[x lnx+ (1− x) ln(1− x)] (18)

which has a maximum of 0.7kB at x = 1
2 . Related contri-

butions will play a role in materials with other degrees of
freedom such partial occupancy of crystallographic po-
sitions (e.g. non-stoichiometric Fe1–xO)60 or magnetic
ordering (e.g. for magnetocaloric materials).61 Configu-
rational entropy can also be extended to multiple species,
most strikingly in the case of high entropy alloys.62

In many cases, the assumption of randomly distributed
species is too simple because of short-range order. Lo-
cal ordering results in a decrease in enthalpy at the cost
of a lower entropy. The cluster expansion method cou-
pled with Monte Carlo simulations63 and the symmetry-
adapted enumeratuion method64 have been successful in
modelling these effects.

For organic and hybrid organic-inorganic crystals,
molecular orientational disorder, which can be consid-
ered a form of configurational disorder, is common and
has important implications for phase stability.65 In cases

where local order is significant, methods taking such ef-
fects into account are needed.66

Degrees of freedom related to electronic and magnetic
excitations may also be important for assessing phase
stability in certain cases. For metals, there is always
an entropic contribution from electronic excitations near
the Fermi level. This term is typically small, but must
be included when phase competition happens between
metallic and insulating phases. Furthermore, effects of
electronic entropy are also present in mixed valence com-
pounds, in which it takes a role similar to configurational
entropy, but for different charge states of the same ele-
ment. This has been shown to be of importance in the
ionic conductor LixFePO4.67

Another complex entropic stabilisation mechanism is
related to ionic conductivity. For superionic conductors,
this is considered a partial melting of one sublattice, and
analogously to the increased entropy of a liquid, there
must be an entropic stabilisation associated with the su-
perionic state. For example, the oxygen sublattice melt-
ing in Bi2O3, La2Mo2O9 and Bi4V2O11.68 The entropy of
the disordered system can be estimated from simple con-
siderations based on available interstitial sites,69 or more
elaborate methods based on thermodynamic integration
can be applied.52 As ionic conductors are important for
applications in batteries and fuel cells, it will be advan-
tageous if simple but accurate models for prediction of
their stability can be established.

V. SYNTHESISABILITY

Traditional solid-state synthetic methods take advan-
tage of global stability through a direct reaction of com-
ponents under equilibrium conditions that favour ther-
modynamically stable products. However, global stabil-
ity is not a necessary condition for a material to be syn-
thesised. There are alternative soft chemical methods
such as sol-gel synthesis and chemical vapour deposition
that provide low temperature processing routes to isolate
metastable phases. One notable example is the formation
of previously unknown metastable metal nitride semicon-
ductors from high-energy precusors.72

While the space of hypothetical materials is infinite,
a subset can be defined as locally stable following the
criteria previously discussed. We posit that if a mate-
rial is locally stable, there is a non-zero probability of
it being synthesised by a motivated expert—with the
caveat indicated in Fig. 1 that phases with a higher
energy than a competing amorphous phase are unlikely
to be kinetically stable. A synthetic chemist is aided
by the diversity of possible synthetic strategies, which
can include extreme conditions (e.g. high pressure73,74),
non-equilibrium approaches (e.g. plasma-electrochemical
methods75), or even nuclear transmutation (e.g. Zn to
Cu decay76). Figure 3 illustrates this suggestion. Note
how both local and global stability must be evaluated at
the relevant thermodynamic conditions.
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TABLE I. A collection of software packages that support anharmonic phonon and free energy calculations

Package Anharmonic phonon method Force constant extraction Free energy method

Alamodea Self-consistent phonon theory Compressive sensing Renormalized phonons + higher orders
Dynaphopyb Projected velocity auto-correlation Effective harmonic Renormalized phonons

hiPhivec Effective harmonic models Compressive sensing Harmonic only
Phonopyd Quasi-harmonic Finite displacements Harmonic only
TDEPe Effective harmonic models Stochastic sampling or MD Renormalised phonons + higher orders
SSCHAf Stochastic self-consistent phonons Stochastic sampling Direct minimisation

a https://github.com/ttadano/alamode70
b https://abelcarreras.github.io/DynaPhoPy33

c https://hiphive.materialsmodeling.org71
d http://phonopy.sourceforge.net17
e http://ollehellman.github.io29
f http://sscha.eu32
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FIG. 3. Schematic workflow for determining stability and po-
tential synthesisability of a material at the relevant thermo-
dynamic conditions. Note that for local stability, we consider
only pressure (P ) and temperature (T ) as the relevant ther-
modynanmic variables, whereas for global stability competing
stoichiometries must be account for as indicated by the chem-
ical potential (µ).

Synthesis of metastable crystals can be guided by the
free energy methods described above. Traditional equi-
librium pressure–temperature methods give access to the
global stability and can identify ground state phases at
selected synthesis conditions. If these phases are locally
stable at ambient conditions, they have the potential to
be quenched and persist outside of the synthesis environ-
ment where they are no longer the lowest energy phase.

It has been argued that most metastable phases are
remnants of phases that were globally stable at another
set of thermodynamic conditions during the synthesis
process.2 While this may be true for conventional solid-
state synthesis, the examples above using high-energy
precursors argue that this cannot be generally true for
any synthesis route. Indeed organic chemistry is built
upon the fact that it is possible to synthesise and sta-
bilise molecules that are unstable with respect to decom-
position.

One approach to further quantifying the synthesiabil-
ity of a new compound is to build statistical models based
on data of known compounds. This can be treated as
classification (yes/no) problem or as regression problem
based on probability of success. While there is positive
labelled data, i.e. the set of known materials, negative

data on ‘unsynthesisable’ materials is generally unavail-
able. There has been successes in using information from
failed experiments,77 but probabilistic models are more
generally built from positive and unlabelled data for spe-
cific classes of material.78,79 For more universal models, a
large amount of diverse data is required. There has been
progress in text mining of synthesis information from the
literature. Kononova et al. 80 extracted 19,488 recipes
for inorganic crystals including a breakdown into precur-
sors, operations, and processing conditions. Such data
can then be used to make predictions of optimal crystal
synthesis procedures.81

Even if the synthesis of a specific metastable mate-
rial is possible, a related question is its lifetime before
transformation into a lower energy equilibrium configu-
ration. The answer requires knowledge of the free en-
ergy landscape and the corresponding barriers and ki-
netics of the system.82 For molecules and nanoparticles,
this is relatively straightforward to explore computation-
ally and a range of techniques are available. However,
for extended crystals modelled within periodic boundary
conditions it requires prior knowledge of the pathways
between two or more structures. For crystals connected
by group–subgroup relations this can be straightforward
(e.g. from a cubic to tetragonal perovskite83), and the
methods from anharmonic phonon theory can be useful
to establish the (local) stability range of high tempera-
ture phases. However, there are many transitions where
no smooth pathway is accessible (e.g. incommensurate
polymorphs84).

Enhanced sampling techniques, including parallel tem-
pering, hyperdynamics, and metadynamics, have been
developed to probe complex free energy surfaces.85,86

They have traditionally been too expensive to apply to
complex crystals. However, longer-timescale simulations
enabled by lower-cost forcefields and more powerful com-
puter hardware provide a promising direction for expand-
ing their range of applicability to assessing the lifetimes
of metastable materials.
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VI. CONCLUSION

The predictive modelling of previously unknown mate-
rials is now common. Established protocols to filter out
implausible candidates include: (i) the absence of imagi-
nary phonons modes as an indicator of local stability; and
(ii) endothermic decomposition reactions as an indicator
of global stability. These filters are commonly based on
harmonic phonon dispersion and athermal internal en-
ergies, respectively, which both have known limitations
that will result in unreliable predictions.

In this perspective, we discussed modern free energy
methods beyond the harmonic approximation, which al-
low one to extend stability predictions to finite tempera-
tures. This gives access to both local and global stability
as a function of thermodynamic variables. Thus, these
methods can be used to explain and predict relevant syn-
thesis conditions and stability ranges of materials with
desired functionalities.

More accurate free energy methods should generally
lead to better labelling of potentially synthesisable ma-
terials. This will allow one to avoid both false positives,
where predicted stable phase only exists at very low tem-
perature, and false negatives where a phase is deemed
unstable either locally or globally, but is in fact stable at
finite temperature. Phases that are locally unstable at
athermal conditions, but locally stable at ambient con-
ditions, can be avoided by employing an appropriate an-
harmonic description of the phonon dispersion and free
energy of the system.
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Belov, F. Tasnádi, N. Shulumba, F. Trybel, I. A. Abrikosov and
N. Dubrovinskaia, Nature, 2022, 605, 274–278.

75J. Patel, L. Němcová, P. Maguire, W. Graham and D. Mariotti,
Nanotech., 2013, 24, 245604.

76E. Wheeler, J. L. Boone, J. Farmer and H. Chandrasekhar, J.
Appl. Phys., 1997, 81, 524–526.

77P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny,
A. Mollo, M. Zeller, S. A. Friedler, J. Schrier and A. J. Norquist,
Nature, 2016, 533, 73–76.

78N. C. Frey, J. Wang, G. I. Vega Bellido, B. Anasori, Y. Gogotsi
and V. B. Shenoy, ACS nano, 2019, 13, 3031–3041.

79G. Gu, J. Jang, J. Noh, A. Walsh and Y. Jung, npj Comp. Mater.,
2022, 8, 71.

80O. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun,
V. Tshitoyan and G. Ceder, Scientific Data, 2019, 6, 1–11.

81H. Huo, C. J. Bartel, T. He, A. Trewartha, A. Dunn, B. Ouyang,
A. Jain and G. Ceder, arXiv:2204.08151, 2022.

82D. J. Wales and T. V. Bogdan, Potential energy and free energy
landscapes, 2006.

83W. Zhong, D. Vanderbilt and K. Rabe, Phys. Rev. B, 1995, 52,
6301.

84R. Cowley and A. Bruce, J. Phys. C., 1978, 11, 3577.
85A. Laio and M. Parrinello, Proc. Nat. Am. Sci., 2002, 99, 12562–

12566.
86A. F. Voter, Phys. Rev. Lett., 1997, 78, 3908–3911.


	Free energy predictions for crystal stability and synthesisability
	Abstract
	Local and global stability
	Metastability
	Phase competition
	Thermodynamic potential
	Internal energy (U)
	Free energy (G)
	Harmonic phonons
	Quasi-harmonic approximation
	Anharmonic phonon theory
	Thermodynamic integration
	Beyond vibrational entropy


	Synthesisability
	Conclusion
	Acknowledgments
	References


