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Electrons-to-molecules conversions have emerged as a route to integrate renewable 

electricity into chemical production processes and ultimately contribute to the decarbonization of 

chemistry. The practical implementation of these conversions will depend on the optimization of 

many electrolyzer design and operating parameters. Bayesian optimization (BO) has been shown 

to be a robust and efficient method for these types of optimization problems where data may be 

scarce. Here, we demonstrate the use of BO to improve a membrane electrode assembly (MEA) 

CO2 electrolyzer, targeting the production of CO through dynamic operation. In a system with 

intentionally unoptimized components, we first demonstrate the effectiveness of dynamic voltage 

pulses on CO Faradaic efficiency (FE), then utilize BO for 3D and 4D optimization of pulse times 

and current densities to achieve a CO partial current density of 189 mA cm-2. The methodology 

showcased here lays the groundwork for the optimization of other complex electrons-to-molecules 

conversions that will be required for the electrification of chemical manufacturing.  
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High-performing electrochemical reactors could enable electrification and subsequent 

decarbonization of the chemical industry,1-4 a sector responsible for 7% of the global greenhouse 

gas (GHG) emissions and 10% of the worlds energy, primarily in the form heat derived from fossil-

fuel-combustion.5, 6 Deploying electrochemical processes to replace current thermochemical 

routes of chemical production relies on the development of continuous reactors that operate at 

high-throughput, selectivity, energy conversion efficiency, and leverage low-cost chemical 

feedstocks. To accelerate the development of such reactors, rapid optimization approaches are 

needed to identify conditions of operation that maximize their performance. Optimizing these 

types of reactors is challenging because of the large number of design (e.g., electrocatalyst 

compositions, device geometries, membrane chemistry) and operating parameters (e.g., 

temperatures, potentials, flowrates, pressure and their dynamic modulation), which often results in 

an intractable experimental design space. A promising data-driven optimization strategy to identify 

global optima with the minimum amount of experimental input is Bayesian Optimization (BO).7-

14 BO methods for reactor optimization rely on a surrogate model to statistically predict the mean 

and uncertainty of a desired performance metric for any possible combination of operating 

parameters. These surrogate models are then used to decide what experiments will provide the 

most information from the reactors and allow the identification of the optimum conditions with 

the minimum number of experiments.15 Many areas of the chemical sciences have started to use 

BO to accelerate optimization campaigns, including applications in materials discovery,16-26 design 

of chemical reactions,27-37 and device optimization.38-41 In this study, we demonstrate a general 

methodology to optimize the operation of electrochemical conversion devices for chemical 

manufacturing, using dynamic CO2 electroreduction to CO as a model reaction. This model 

reaction was chosen (i) because its optimization may lead to a path to upconvert CO2 into useful 
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products and possibly reduce carbon emissions,42-47 (ii) because stable and efficient silver (Ag) 

electrocatalysts have been widely studied,48-61 and (iii) because learnings from this reaction can be 

translated to the optimization methodology of other emerging electrochemical conversion 

processes of relevance to chemical manufacturing (e.g., ethylene or propylene production and 

functionalization).62-68  

To demonstrate the effectiveness of BO in optimizing CO2 electroreduction, we developed 

a methodology to maximize CO production under dynamic potential pulsing with current densities 

and pulse times as optimization parameters. Pulsed potentials, and resultingly current density, can 

elicit favorable transient behavior, affecting hydrodynamics, the electrocatalyst double layer, 

reactant concentration, and the presence or absence of different intermediates and adsorbates on 

the electrode surface microenvironment.69-71 More specifically, previous studies have shown that 

the use of dynamic voltage pulses can control selectivity and/or stability of CO2 electroreduction.56, 

72-84 All of these studies used a systematic approach to determine optimal operation conditions 

leading to large information gaps between the tested experimental conditions and possibly sub-

optimal parameter selection. In this study, we leverage these previous findings to demonstrate the 

use of BO to rapidly optimize the dynamic operating conditions in industrially relevant zero-gap 

electrochemical conversion devices. Our findings demonstrate the ability to map performance 

metrics in large design spaces with high accuracy while also identifying optimal operation 

strategies with a low number of experiments.  

 To understand the baseline performance of the reactor, constant current experiments were 

performed to characterize the CO Faradaic efficiency (FECO). Figure 1A shows that the FECO 

increases with current density until 200 mA cm-2, and then decreases as the current density 

increases to 500 mA cm-2. This trend is consistent with observations from other studies on CO 
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production on silver electrodes.48, 51, 52, 57, 59 As an initial comparison of constant current operation 

versus pulsed operation, six combinations of active pulse time (tact) and resting pulse time (trest) 

were tested. For these experiments, the active voltage was set to 3 V and the resting voltage set to 

1.1 V, leading to an active total current density of 200-240 mA cm-2. Our results show that FECO 

can be improved when appropriate pulsed potentials are applied [Figure 1(B)], as previously 

demonstrated in other reactor configurations56, 69, 76, 81-83. These initial results serve as a baseline 

for determining the optimal combination of active and resting pulse durations using BO. 

 

Figure 1. Faradaic efficiency of CO for (A) constant current experiments and (B) pulsed 

experiments. For the pulsed experiments, the active voltage was set to 3 V and the resting 

voltage was set to 1.1 V.  

In order to gain insights on the effects that active pulse duration and rest pulse duration 

have on FECO and production rate, two-dimensional (2D) maps were constructed based on a 

Gaussian process regressor surrogate model (GPR SM) trained with experimental data. Figure 2 

shows scatter plots of FECO and CO partial current density obtained from 34 experiments where 
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operating conditions were randomly selected throughout the design space (i.e., Pulse times in the 

range 10-1500 ms). The background of each plot shows the SM predictions based on the 

experimental data collected. Figure 2A shows the relationship between the pulse times and FECO. 

These results suggest that pulse time combinations with similar tact and trest have the highest FECO.  

 Figure 2B shows that the average CO partial current density (jCO) generally improves as 

the total active time increases. jCO averages the partial current density over both the active and 

resting pulse times. This result is likely because longer active times allow for a larger quantity of 

CO2 to be reduced, despite the fact that maximum FECO may be achieved with lower active times. 

To better understand the effect of the total active time on reactor performance, Figure S1 in the 

Support information shows FECO and jCO as a function of the ratio between tact and trest. As the ratio 

increases, the jCO increases monotonically, until it reaches a value of 2.5 when it asymptotically 

starts to approach the limit of jCO at a constant current of 200 mA cm-2. This result suggests the 

main driver of performance is the amount time the cell is active. However, analyzing CO partial 

current density during the active time (jCO
act) at various pulse time combinations (Figure S2), it is 

evident that longer rest duration allowed for higher jCO
act, possibly due to an increased CO2 

concentration near the electrode. Our results identified conditions with maximum FECO of 0.79 at 

trest = 170 ms and tact = 350 ms, and maximum jCO of 126 mA cm-2 at trest= 10 ms and tact= 830 ms. 

While FECO is an important metric for some applications where maintaining maximum energy 

efficiency is desirable, we decided to focus this study on the optimization of jCO to achieve reactor 

operations with high throughput.  
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Figure 2. 2D maps of (A) FECO and (B) CO partial current density while varying tact and trest. 

Experimental conditions are shown with a black outline. The background displays the GPR 

prediction based on the observed experimental values. Active current density was set to 200 mA 

cm-2 and resting current density was set to 0 mA cm-2. 

While results presented above demonstrated the potential to modulate reactor performance by 

controlling pulse times, to achieve higher production rates it was important to include the current 

density of active pulses (jact) as an optimization parameter. Given the increase in design space and 

the resulting requirement for larger data sets, we implemented a BO approach to identify the 

optimal conditions for maximum jCO. A total of 50 experiments were performed in the optimization 

campaign in batches of four. Figure 3A shows how the experiments selected by the BO algorithm 

explored the entire design space initially and focused on parameters with high CO production 

during later stages of the search. Figure 3B shows jCO during the optimization process. The 

maximum production rate was found at trest = 10 ms, tact = 435 ms, and jact = 300 mA cm-2 at 
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experiment 42, leading to a jCO = 189 mA cm-2, representing only a small increase from the case 

where a constant total current density of 300 mA cm-2 was applied and jCO = 180 mA cm-2.  

2D slices of predictions from SM trained with data from the 50 experiments performed are shown 

in Figure 3C-E. The predicted jCO are shown in Figure 3C at jact = 100 and 300 mA cm-2. For jact = 

300 mA cm-2, the predicted maximum jCO was at tact = 545 ms and trest = 48 ms, while for jact of 

100 mA cm-2, the optimum jCO was at tact = 545 ms and trest = 10ms. As jact increases, the predicted 

maximum jCO increased from 53.5 to 119 mA cm-2. These results agree with the results from the 

2D experiments, in which the tact/trest ratio and jCO increase together. The FECO predictions are 

shown in Figure 3D. At jact = 100 mA cm-2, the maximum FECO is predicted to be 0.83 at tact = 

1500 ms and trest = 736 ms. As jact increases, the location in the pulse time design space of the 

maximum FECO shifts towards a shorter tact. This results in the predicted maximum FECO at jact = 

300 mA cm-2 to be 0.84 at tact = 583 ms and trest = 660 ms. The shift towards shorter tact at higher 

jact is likely due to the faster depletion of CO2 which results in the need for lower tact to not deplete 

the CO2 concentration at or near the electrocatalyst surface. In order to provide insights into the 

prediction accuracy of the GPR SM, Figure 3E shows the normalized standard deviation of the 

predictions throughout the design space. At jact = 100 mA cm-2, the predictions in a large fraction 

of the space have near-average standard deviations due to extensive exploration around this jact by 

the BO algorithm, while at 300 mA cm-2, accurate predictions are mostly concentrated near the 

optimal conditions due to the large numbers of experiments performed around optimal conditions 

during the exploitation stage of BO. 
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Figure 3. (A) Location in 3D design space of the 50 experimental conditions studied in the 

optimization campaign, varying jact, tact, and trest. Color of the marker indicates the CO partial 

current density at that condition. (B) CO partial current density throughout the optimization 

campaign.  Black markers indicate the experimental points and the blue line indicates the highest 

value achieved. (C-E) 2D slices at jact = 100 mA cm-2 and 300 mA cm-2 showing the GPR 
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predictions of (C) CO partial current density, (D) COFE, and (E) normalized standard deviation, 

based on the 50 observed experiments. Resting current density was set to 0 mA/cm2. 

Having identified optimal tact, trest, and jact with a fixed resting current density, jrest = 0 mA 

cm-2, the next step in the optimization was to explore possible improvements by modulating jrest. 

Figure 4A presents the 50 experimental conditions tested in the entire design space, showing a few 

conditions dispersed in the entire design space that were selected during the exploration stage of 

BO, and a concentration of experiments near high jact and tact, and low trest during the exploitation 

stage when the algorithm seeks to identify the optimal conditions. Figure 4B displays the 

improvement in jCO as a function of experiments performed and identifies conditions that lead to 

a CO partial current density of 166 mA cm-2 after the 50 experiments. It must be noted that this 

jCO is lower than the one found in the 3D optimization campaign with the same number of 

experiments. This suggests that the increased dimensionality of the optimization problem requires 

a larger number of experiments to approach the optimum. Furthermore, our results demonstrate 

that the impact of jrest is not significant in the performance of the reactor, possibly because optimal 

trest values are small and thus any change in jrest would only impact a small fraction of the operation 

time. These results underscore the need to carefully select optimization parameters so that the 

tradeoff between potential performance improvements and the need for larger experimental 

campaigns is balanced. 

To gain insights into the effects of the 4 optimization parameters on the CO partial current 

density, Figure 4C shows the SM predictions of jCO as 2D slices at the optimal location of the other 

two variables. These results are consistent with those of the 2D and 3D optimizations, where the 

high jCO values are found at low trest, and high tact, and jact. 2D slices of the FECO predictions are 

shown in Figure 4D. The trends observed for FECO predictions are different than for jCO, with high 
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FECO found at low trest, tact and jact. Figure 4E shows the standard deviations from the SM 

predictions of the 2D slices. As observed from the results, the increase in dimensionality results in 

larger standard deviations for a large fraction of the design space, underscoring the need for large 

datasets when the number of optimization parameters increase.  
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Figure 4. (A) Location in the 4D design space of the 50 experimental conditions studied in the 

optimization campaign, varying jact, tact, and trest. Size of the marker indicates the jrest value and the 

color of the marker indicates the CO partial current density at that condition. (B) CO partial current 

density throughout the optimization campaign. Black markers indicate the experimental points and 

the blue line indicates the highest value achieved. (C-E) 2D slices at the optimal locations for CO 

partial current density of the other two variables, which are shown on the graph. The slices show 

the GPR predictions of (C) CO partial current density, (D) COFE, and (E) normalized standard 

deviation, based on the 50 observed experiments. 

The study described above introduces a BO methodology to improve the performance of 

dynamic electrochemical conversion devices for electrons-to-molecules conversions. This 

methodology allowed us to identify pulsed operation regimes in a CO2 electrolyzer with improved 

selectivity and production rates. 3D optimization of trest, tact and jact with only 50 experiments 

showed improvements from jCO = 115 mA cm-2 in the initial set of 10 experiments, to a maximum 

of 189 mA cm-2.  In the case of 4D optimization of trest, tact, jact and jrest, the optimization campaign 

achieved an improvement from jCO = 91 mA cm-2 in the initial set of 10 experiments, to a maximum 

of jCO = 166 mA cm-2. Because of the lower optimum value discovered in the 4D optimization, the 

50 experiments in this case were not as effective at searching the design space as the 3D 

optimization.  This result underscores the need for larger datasets at higher dimensions, and the 

need to carefully select optimization variables or to implement dimensionality reduction 

approaches (e.g., principal component analysis) to minimize the number of experiments required 

in high dimensionality space. Furthermore, the statistical GPR surrogate models used in the BO 

methodology allowed us to develop performance (i.e., jCO or FECO) maps covering conditions 

beyond the ones tested. These maps provide further insights into the behavior of electrochemical 
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devices across the parameter space. While this study focused on implementing a BO methodology 

for CO2 electrolyzers as a test case, the framework presented here can be generalized to the 

optimization of other electrochemical devices for the production of high-value chemicals that 

require complex reactions and the delicate control of the electrode microenvironment.    
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