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ABSTRACT  

Spin-orbit coupling (SOC) is crucially important for the correct description of the electronic 

structure and transport properties of inorganic semiconductors, and for assessing topological 

properties as in topological insulators. We present a consistent set of SOC parameters for the 

density-functional based tight-binding (DFTB) method covering the elements throughout the 

periodic table. The parameters are based on atomic SOC data calculated at the level of density-

functional theory (DFT). We tested these parameters for representative systems with significant 
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SOC, including transition metal dichalcogenide two-dimensional crystals, III-V bulk 

semiconductors, and topological insulators. Our parameterization opens the door for DFTB-

based electronic structure and transport calculations of very large systems, such as twisted van 

der Waals heterostructures.  

Introduction  

Density-functional theory (DFT) has become the quasi-standard for the description of 

molecules and materials1,2 due to its satisfactory accuracy and computational scalability. 

Nonetheless, chemistry and physics of materials are constantly requiring the calculation of 

systems incorporating thousands of atoms, as for example in proteins, metal-organic frameworks, 

or in van der Waals heterostructures. One of the most prominent quantum-mechanical methods 

that is capable to tackle these systems is the density-functional based tight-binding (DFTB) 

scheme.3–5 As an approximation to DFT, physical extensions can be implemented in a straight-

forward fashion, including spin polarization,6 relativistic corrections such as scalar-relativistic 

treatment of the core electrons7 and spin-orbit coupling.6 The applicability of DFTB relies on the 

availability of accurate and transferable parameters. We have reported parameters throughout the 

periodic table to calculate electronic structures,8 and also energies and forces,9 albeit the latter are 

subject to larger error bars. Here, we focus on the extension of DFTB to include spin-orbit 

coupling (SOC), for which we provide parameters for the atoms throughout the periodic table. 

This will allow for electronic structure calculations of a large variety of systems at low 

computational cost. 

SOC is a relativistic term originating intrinsically from the solution of Dirac equation, the 

relativistic analogue of the non-relativistic Schrödinger equation.  A common approach to 

account for relativity as add-on to the Schrödinger equation is to apply first scalar relativistic 
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corrections to the inertial mass of the electron through pseudopotentials or other approaches, 

such as in zeroth order regular approximation (ZORA),10,11 followed by including SOC by 

coupling the spin of the electron with the magnetic field in the reference frame of the electron, 

known as L-S coupling model. In the present work, we used QUASINANO2013 parameters for 

DFTB, which include scalar relativistic effects through ZORA, while we account for SOC 

effects with the L-S coupling model through calculated SOC parameters. 

The electronic states of periodic structures are typically depicted in reciprocal space as band 

structures. While SOC typically is a small perturbation, it can play an important role in reshaping 

the band structure, especially near the fermi level in 3D semiconductors, for example GaAs, 

InSb, and ZnSe.12 The SOC-imposed band splittings can be as large as 1 eV, and thus strongly 

affect the electronic properties of the materials, including their charge carrier mobility and 

transport properties. Transition metal dichalcogenides (TMDCs) are 2D materials, where SOC 

effects make valleytronic and spintronic applications possible. MoS2 monolayer shows large 

SOC,13 which vanishes in bilayers because of inversion symmetry,14 but can be re-introduced by 

symmetry breaking imposed by applying small external electric fields.14–16 Hence, a correct 

theoretical description of SOC is pivotal to analyze the electronic structure of TMDC 2D 

crystals. In topological insulators (TIs) SOC lies at the origin of the physical phenomenon and 

must be considered in their theoretical description.17–19 

Hence, SOC is a crucial physical effect necessary to for the correct description of various 

materials properties. SOC approximations to DFTB have been proposed and successfully utilized 

earlier.20 As further advantage, the computational cost of SOC-corrected DFTB does not exceed 

that of a non-relativistic spin-polarized DFTB calculation. However, for most elements there are 

no DFTB parameters including SOC available.  
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Therefore, in the present study we have calculated the spin orbit splitting parameters 

throughout the periodic table. We tested them on different benchmark materials where the SOC 

is important, including TMDC 2D crystals, topological insulators, and bulk III-V 

semiconductors. For those materials, we could directly compare the impact of SOC on the band 

structures both for DFTB and DFT. We observe excellent agreement between both methods, that 

is, the error bar of our SOC correction is typically lower than that expected for the band 

structures. 

Method 

Theoretical background of SCC-DFTB Hamiltonian: A popular DFTB derivation results 

from the Taylor expansion of the total energy functional in Kohn-Sham DFT.5,7 The ground state 

density, 𝑛(𝑟), is the sum of reference density, 𝑛!(𝑟), and density fluctuations 𝛿𝑛(𝑟). The total 

energy is then given by: 
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Here, 𝐸-#  is the exchange correlation energy, 	𝑁	is the total number of atoms, 𝛼 and 𝛽 

represent two different atoms. Following the Linear Combination of Atomic Orbitals (LCAO) 

ansatz, orbital 𝜓) is expanded in the minimal basis set 

𝜓) =(𝑐3)𝜙3
3
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and only the valence electrons are considered. The atomic orbitals 𝜙3 are calculated employing 

DFT calculations of atoms subject to a harmonic confinement potential. The Hamiltonian matrix 

𝐻34!  is given within the LCAO scheme as a two-center approximation to the Hamiltonian 𝐻-[𝑛!];  

𝐻34! = )𝜙3+𝐻-[𝑛!]+𝜙40 

𝐻34! = G𝜙3 H−
1
2𝛻

2 + 𝑉[𝜌5 + 𝜌(]H 𝜙4K 

𝜇 ∈ 𝐴, 𝜈 ∈ 𝐵 

Here 𝜇 and 𝜈	are the atomic orbitals of atoms 𝐴	and 𝐵 respectively, and 𝜌5 and 𝜌( are the 

atomic densities of atoms 𝐴	and 𝐵 respectively. Charge fluctuations are accounted within the 

self-consistent charge (SCC) approach:5 

𝐻34 = 𝐻34! + 𝐻342 		with 

𝐻342 =
𝑆34
2 (S𝛾(#6 + 𝛾5#6 U𝛥𝑞#

0

#

 

Here, 𝑆34 is the overlap matrix and ∆𝑞+ is the charge fluctuation of atom 𝐶 with respect to the 

neutral atom. 𝛾5(6  is the modified interaction of two different atoms 𝐴 and 𝐵	given as: 

𝛾5(6 =4>
1
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Here, 𝐹78.  denotes the normalized radial dependence of the density fluctuation on atom 𝐴 for 

the corresponding angular momentum. Expansion of SCC-DFTB with respect to spin-

fluctuations leads to spin-polarized Hamiltonian expression: 
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𝜇 ∈ 𝑙 ∈ 𝐴, 𝑣 ∈ 𝑙, ∈ 𝐵 

Here 𝜇 and 𝜈 are atomic orbitals with angular quantum number 𝑙 and 𝑙′ for atoms A and B 

respectively in two center approximation. 𝛥𝑝58!! is the Mulliken population differences for up 

and down spin for angular momentum shell 𝑙′′ at atom 𝐴. 𝑊588!! is an atomic constant 

approximating the second derivative of 𝐸-#(𝜌,𝑚), 𝑚 is the magnetization density as difference 

of densities of spin up and spin down electrons. Final Hamiltonian 𝐻3? without spin orbit 

coupling is as follows: 

𝐻3? = 𝐻34! + 𝐻342 + 𝐻34
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Writing the wave function of the systems as two-component spinors instead of scalar 

wavefunctions, the total electronic and magnetization density can be given as the linear 

combination of the Pauli matrices: 
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A straightforward modification of the spin independent Mulliken analysis for spinor 

wavefunction is given as: 

𝑞35( =((𝑛)𝑆3?𝑐)3.
∗𝑐)?
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Here 𝑐)3.  and 𝑐)?
/  are wavefunction coefficients. The density becomes quaternion-like spinor with 

a vectorial spin and leads to the non-collinear Hamiltonian as: 
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With a secular equation:  
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Addition of SOC to the spin-polarized SCC-DFTB Hamiltonian in LS coupling model gives 

the Hamiltonian expression as:  

𝐿m 	∗ 	𝑆o 	= 	
1
2 >
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𝐻-"J = 	𝜀	(𝐿m 	∗ 	𝑆o) 
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𝐻-3?@
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𝜇 ∈ 𝑙 ∈ 𝐴, 𝑣 ∈ 𝑙, ∈ 𝐵, where 𝜖 is the spin-orbit coupling parameter, 𝐿m is the angular momentum 

operator and 𝑆o is spin operator. 𝐻-"Jis the Hamiltonian matrix including spin orbit coupling 

contributions in on site approximation, while 𝐻-3?@
A 	∗	"D  is the hamiltonian matrix for dual spin orbit 

coupling.6 Final Hamiltonian matrix including spin-orbit coupling is given as: 
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Calculation of SOC Parameters: We have calculated the SOC parameters for free atoms  

employing AMS-BAND21 software with two component relativistic corrections at SOC-ZORA 

level and then renormalized as outlined below. As in the calculation of the QUASINANO2013 

parameter set, GGA-PBE22 exchange correlational functional, and scalar ZORA10,11 (zeroth order 

regular approximation) were used. Parameters throughout the periodic table were calculated with 

TZP basis sets in all electron approach. All elements are in their ground state atomic 

configuration.  

Dirac equation is a well-established quantum mechanical theory. In the non-relativistic limit up 

to 1/𝑐2, and in the static spherical potential, the spin-orbit energy can be given as: 
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𝐻%KL5#$"J# = −
𝑒ℏ

4𝑚2𝑐2 𝜎 ∙ [𝐸 × 𝑝] 

Where 𝜎 is the Pauli matric, 𝐸 is the electric field of the nucleus and 𝑝 is the momentum of the 

electron. Substituting the electrical field 𝐸 with potential 𝑈(𝑟), and rearranging 𝜎 with 𝑆, spin of 

the particle, and using the Bohr magneton 𝜇(; spin-orbit energy can be written as: 

𝛥𝐻%KL5#$"J# =
𝜇(

ℏ𝑚M𝑒𝑐2
1
𝑟
𝜕𝑈(𝑟)
𝜕𝑟 𝐿 ∗ 𝑆 

Classically, the spin-orbit coupling potential consists of two contributions. The first one is 

Larmor interaction energy, which stems from the interaction of the magnetic moment of the 

electron with the magnetic field of the nucleus in the reference frame of electron. Larmor energy 

𝛥𝐻@ is given as:  

𝛥𝐻@ =
2𝜇(

ℏ𝑚M𝑒𝑐2
1
𝑟
𝜕𝑈(𝑟)
𝜕𝑟 𝐿 ∗ 𝑆 

Here 𝜇( is Bohr magneton and 𝑈(𝑟) is spherical potential. In the classical picture, Larmor 

energy should account for the SOC energy, but it is two-fold larger than the SOC calculated from 

the Dirac equation to the order of 1/𝑐2, non-relativistic limit in the quantum mechanical picture. 

The second contribution is Thomas precession correction for the electron’s curved trajectory. It 

accounts for Thomas correction energy, 𝛥𝐻' which reduces Larmor energy by two-fold and 

matches the SOC energy from the Dirac equation, 𝛥𝐻%KL5#$"J# . Thomas precession is a 

relativistic correction and connects the angular velocity of the spin of a particle to the angular 

velocity of orbital motion. Here, 𝛺' is the Thomas precession rate and Lorentz factor 𝛾 is a 
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relativistic term quantifying the effect of the velocity of the particle on the measurement of time, 

space, and other physical properties. 

𝛾 = |1 −
𝑣2

𝑐2  

𝛺' = −𝜔(𝛾 − 1) 

𝛥𝐻' = 𝛺' ∗ 𝑆 

𝛥𝐻' = −
𝜇(

ℏ𝑚M𝑒𝑐2
1
𝑟
𝜕𝑈(𝑟)
𝜕𝑟 𝐿 ∗ 𝑆 

Here, Thomas precession factor reduces the Larmor energy by half because of the assumption 

that non-relativistic limit 𝛾 =1 for electron’s velocity v << c, where c is the speed of light. This 

approach is known as Thomas half, and only considers Thomas correction in the non-relativistic 

limit. In our approach we have used Thomas correction in its original form which considers 

Lorentz factor 𝛾 for the relativistic treatment in the above-mentioned Thomas precession. This 

additional precession originating from Lorentz factor approaches the non-relativistic limit for 

light elements and for the heavier elements adds the relativistic treatment. This approach results 

in decrement of Larmor energy by a factor different than half and gives 𝛥𝐻' as: 

𝛥𝐻' = −>
2𝛾N

𝛾 + 1@
𝜇(

ℏ𝑚M𝑒𝑐2
1
𝑟
𝜕𝑈(𝑟)
𝜕𝑟 𝐿 ∗ 𝑆 

In the non-relativistic limit of light atoms, where 𝛾 =1, the equation gives the previous 

equation of the Thomas Half approach. Spin-Orbit potential, 𝛥𝐻 in terms of	𝛥𝐻' and 𝛥𝐻@ can be 

given as: 

𝛥𝐻 = 𝛥𝐻' + 𝛥𝐻@ = >2 −
2𝛾N

𝛾 + 1@
𝜇(

ℏ𝑚M𝑒𝑐2
1
𝑟
𝜕𝑈(𝑟)
𝜕𝑟 𝐿 ∗ 𝑆 
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Where 𝛾 = ~1 − e H
;.
g
2"
  derived by using  4

+
= H

;.
 in 𝛾 = ~1 − 4"

+"
 

Here, 𝑍 is the atomic number of the atom, 𝑛 is the principal quantum number, and 𝛼 is the fine 

structure constant or Sommerfeld constant.  

We performed a renormalization of the parameters calculated above with the angular quantum 

number of the respective orbital. The renormalization with angular momentum 𝑙 stems from the 

admixture of higher angular momentum states in top of the valence bands.23,24 This resulted in 

spin-orbit coupling parameter expression given as: 

𝜖 = 2∆
8
e1 − P#

PIQ
g     

Here 𝛥 is the SO splitting from atomic calculations in BAND with SOC relativistic corrections 

at ZORA level, two-component relativistic approximation to Dirac equation; and 𝑙 is the angular 

quantum number for respective shells, and 𝜖 is the renormalized spin-orbit coupling constant. 

Table 1 contains the calculated SOC parameters throughout the periodic table. The spin-orbit 

coupling Hamiltonian matrix elements were calculated with the parameters in the LS coupling 

model and used variationally in the self-consistent field optimization. 

Table 1. Renormalized Spin-orbit coupling parameters calculated at GGA-PBE/SOC-ZORA/AE 

theory level. All values are in milli-Hartrees. 

 e(p) e(d) e(f)  e(p) e(d) e(f)  e(p) e(d) e(f)  e(p) e(d) e(f) 

H __ __ __ Ga 3.93 __ __ Pm 112.6 3.83 5.38 Pa 207.12 7.24 61.41 

He __ __ __ Ge 6.32 __ __ Sm 121.0 3.98 6.11 U 244.96 7.68 73.13 
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Li __ __ __ As 9.21 __ __ Eu 129.7 4.13 6.89 Np __ __ __ 

Be __ __ __ Se 12.63 __ __ Gd 138.8 4.27 7.71 Pu __ __ __ 

B 0.12 __ __ Br 16.65 __ __ Tb 148.4 4.40 8.59 Am __ __ __ 

C 0.31 __ __ Kr 21.30 __ __ Dy 158.3 4.52 9.53 Cm __ __ __ 

N 0.68 __ __ Rb 29.33 __ __ Ho 168.7 4.63 10.53 Bk __ __ __ 

O 1.29 __ __ Sr 38.61 __ __ Er 179.6 4.73 11.58 Cf __ __ __ 

F 2.24 __ __ Y 48.24 1.44 __ Tm 191.0 4.82 12.71 Es __ __ __ 

Ne 3.62 __ __ Zr 58.69 2.13 __ Yb 203.0 4.90 13.89 Fm __ __ __ 

Na 6.23 __ __ Nb 69.15 2.55 __ Lu 215.5 4.97 __ Md __ __ __ 

Mg 9.99 __ __ Mo 81.64 3.35 __ Hf 242.8 7.01 __ No __ __ __ 

Al 0.57 __ __ Tc 96.65 4.69 __ Ta 272.7 9.11 __ Lr 551.55 9.33 __ 

Si 1.11 __ __ Ru 110.5 5.26 __ W 305.2 11.33 __ Rf 612.09 13.07 __ 

P 1.87 __ __ Rh 127.0 6.39 __ Re 340.4 13.69 __ Db 677.68 16.73 __ 

S 2.92 __ __ Pd 143.8 7.07 __ Os 378.2 16.20 __ Sg 748.40 20.47 __ 

Cl 4.30 __ __ Ag 164.7 9.02 __ Ir 418.8 18.89 __ Bh 824.43 24.35 __ 

Ar 6.08 __ __ Cd 188.1 11.25 __ Pt 458.7 20.43 __ Hs 905.99 28.38 __ 

K 9.20 __ __ In 10.32 __ __ Au 505.0 23.40 __ Mt 993.39 33.81 __ 

Ca 13.19 __ __ Sn 14.69 __ __ Hg 558.4 28.07 __ Ds 1087.0 37.02 __ 

Sc 17.46 0.52 __ Sb 20.05 __ __ Tl 32.76 __ __ Rg 1187.1 41.64 __ 

Ti 22.45 0.79 __ Te 26.08 __ __ Pb 46.13 __ __ Cn 1294.1 48.62 __ 

V 28.28 1.12 __ I 32.82 __ __ Bi 60.46 __ __ Nh 93.31 __ __ 

Cr 34.44 1.31 __ Xe 40.33 __ __ Po 75.98 __ __ Fl 125.51 __ __ 

Mn 42.88 1.99 __ Cs 53.23 __ __ At 92.82 __ __ Mc 159.60 __ __ 
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Computational Details of the DFT benchmark calculations 

 We optimized geometries at periodic DFT level (PBE functional) as implemented in AMS-

BAND, in conjugation with scalar relativistic corrections at the ZORA level. All electron 

approach was used with TZP basis set at normal numerical quality. All DFTB calculations were 

performed within the SCC-DFTB formalism as implemented in DFTB+. QUASINANO2013 

Slater-Koster parameters were used for band structure calculations. These parameters were 

calculated with scalar ZORA approach and already account for scalar relativistic effects.10,11 It 

should be noted that the objective of QUASINANO2013 parameter generation was to match 

PBE band structures of monatomic materials, including the conduction band (both without 

including SOC).8 SOC effects were accounted in DFTB calculations through SOC parameters as 

given in Table 1. To compare the results with their corresponding PBE-DFT references, AMS-

BAND software was used with same theory level as in geometry optimization, but with SOC 

ZORA to consider the SOC contributions. All band structure calculations were done using a 

Monkhorst Pack k-space with 4*4*2 grid points for 3D semiconductors and 4*4*1 for the 2D 

TMDCs and topological insulators. For plotting band structures, kLine method was used in 

DFTB+ after initial single point calculations with proper k-sampling as mentioned above. For 

band structure calculations at DFT level, interpolation of ΔK was set to 0.1 Bohr-1. 

Fe 51.86 2.56 __ Ba 67.51 __ __ Rn 111.1 __ __ Lv 196.28 __ __ 

Co 62.09 3.22 __ La 81.52 3.06 2.88 Fr 141.9 __ __ Ts 235.98 __ __ 

Ni 72.77 3.64 __ Ce 89.01 1.96 3.46 Ra 175.0 __ __ Og 278.99 __ __ 

Cu 85.78 4.49 __ Pr 96.63 3.47 4.06 Ac 141.3 5.86 __     

Zn 101.5 5.90 __ Nd 104.5 3.66 4.70 Th 174.2 8.14 50.37     
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Benchmarking Spin-Orbit Coupling Parameters  

III-V Bulk Semiconductor 

GaAs is a 3D semiconductor with pronounced SOC-induced band splittings, most prominently 

close to the valence band maximum (VBM). Fig 1. depicts the resemblances between DFTB and 

DFT results with and without SOC. DFTB agrees well for the valence band, but overestimates 

(as known for other systems) the band gap (which is underestimated in PBE, but we will not 

discuss this point here). The SOC-triggered band splitting at the VBM is perfectly reproduced by 

SOC-SCC-DFTB.  
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Fig 1. Band Structure of 3D GaAs with and without spin orbit coupling at DFT and DFTB level. 

Fermi energy has been shifted to top of the valence band.  

We then calculated the SOC splittings for a range of other III-V semiconductors at the DFTB 

and DFT level, which show the expected increase when going to heavier elements (Figure 2). 

The excellent agreement between DFTB and other calculations and experiment is evident from 

the numerical slitting values at the high symmetry points of the Brillouin zone that are listed in 

Table 2. 
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(a) 
 

 
(b) 

 
(c)  
 
Fig 2. Band structure of III-V bulk semiconductors calculated at DFTB level, with and without 

the incorporation of spin orbit coupling. (a) GaAs (b) InSb (c) ZnSe. Conventions as in Figure 1. 

Fermi energy has been shifted to the top of the valence band. 

Table 2. Spin-orbit splitting for III-V bulk semiconductors calculated at DFTB. All values are in 

eV. Δ(Γ) and Δ(L) are the SO splitting of the valence band at Γ and L k-point. Δ(Γ′) and Δ(L′) 
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are the splitting of the conduction band at Γ and L point. 𝜎 is the standard deviation (SD) of SO 

splitting from reference values. 

 Δ (𝚪) Δ (𝚪′) Δ (L)  Δ (L′)  

 DFTB  

(This 
work) 

XPS23

/ER25 
PBE  

(This 
work) 

𝝈 
(SD) 

DFTB  

(This 
work) 

ROPM26/
ER27 

PBE  

(This 
work) 

𝝈 
(SD) 

DFTB  

(This 
work) 

XPS23

/ER25 
PBE 

(This 
work)  

𝝈 
(SD) 

DFTB  

(This 
work) 

ROPM26/
ER27 

PBE  

(This 
work) 

𝝈 
(SD) 

GaAs 0.355  0.340 
XPS 

0.338 0.01 0.181  0.260 
ROPM 

0.187 0.04 0.216  0.230 
XPS 

0.208 0.01 0.139  0.110 
ROPM 

0.085 0.03 

InSb 0.742  0.810 
XPS 

0.750 0.04 __ __ __ __ 0.461  0.500 
XPS 

0.471 0.02 __ __ __ __ 

ZnSe 0.381  0.450 
ER 

0.383 0.04 __ __ __ __ 0.211  0.300    
ER 

0.225 0.05 __ __ __ __ 

Si 0.050  0.044 
XPS 

0.050 0.01 __ __ __ __ 0.030  0.029 
XPS 

0.032 0.01 __ __ __ __ 

Ge 0.258 0.290 
XPS 

0.290 0.02 0.258  0.200   
ER 

0.214 0.03 0.176  0.200 
XPS 

0.186 0.01 0.169  0.266  
ER 

0.096 0.08 

*ER stands for Electroreflectance Spectra  

**ROPM stands for Relativistic Orthogonalized Planewave Model 

§XPS (X-Ray Photoemission Spectroscopy)  

 

Transition Metal Dichalcogenide 2D Crystals  

 

We chose TX2 monolayer, where T= W, Mo and X=S, Se, as reference structures for TMDC two 

dimensional crystals. In the monolayer form, these materials show SO splitting between 140-500 

meV,16,28 which vanishes in bilayer form due to the presence of inversion symmetry.14 Table 3 

lists the SO splittings for the reference TMDCs.  
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Table 3. Spin-Orbit splitting for TMDC two-dimensional crystals (monolayers), TX2 (T=W, Mo 

and X= S, Se), calculated at DFTB level. All values are in eV. The values are calculated at the 

direct band gap position in the Brillouin zone at the K point. 

Material DFTB  

(This work) 

TB-mBJ15 

(ADF/BAND/

TZP, TZ2P) 

PBE15 

(ADF/BAND/

TZP, TZ2P) 

PBE28 

(WIEN2K/ 

FLAPW) 

PBE29 

(Q.ESPRESSO

/VAN) 

PBE 

(This 

work) 

MoS2 0.153  0.147 0.147 0.148 0.150 0.149 

WS2 0.448  0.395 0.419 0.426 0.431 0.418 

MoSe2 0.185 0.176 0.180 0.183 0.188 0.181 

WSe2 0.474  0.428 0.449  0.456 0.473 0.444 

 

As expected from symmetry,15,16 DFTB yields no SO splitting in the TMDC bilayers (Figure 

3). All SO splitting values for all TMDC monolayers considered here show an excellent match 

with other available references. Zhu et al. obtained the SO splitting of 0.148, 0.183, 0.426, and 

0.456 eV for MoS2, MoSe2, WS2, and WSe2 respectively at K point of VBM using the full-

potential linearized augmented plane wave approach at PBE level.28 Using the plane wave 

approach with ultrasoft pseudopotentials at PBE level Cheng et al. obtained SO splitting of 

0.150, 0.188, 0.431, and 0.473 for MoS2, MoSe2, WS2, and WSe2 respectively.29 Zibouche et al. 

calculated SO splittings at K point of VBM at PBE level as well as with TB-mBJ potential, using 

slater type basis functions (table 3).15  
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Fig 3. Band structures of (TMDCs) two dimensional crystals, MX2 (M=Mo, W, X=S, Se) 

calculated at the DFTB level, with and without the incorporation of spin-orbit coupling. Fermi 

energy has been shifted to the top of the valence band.  

Topological Insulators 

As final test we tested if SOC results in the well-known band inversion known for 2D 

topological insulators (TIs), as reported, for example, for methyl functionalized Bi(111), 

Sb(111), and Pb(111) bilayers.30 In these three systems, large SO splittings and gap openings at 

the Dirac point have been found.30  
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Fig 3. Band structures of Me functionalized Bi(111), Pb(111), and Sb Bilayers(111) topological 

insulators at the DFTB level, with and without the incorporation of spin orbit coupling 

parameters. 

The SOC-induced band gap openings known from the DFT calculations of Ma et al. are 

reproduced for all three 2D TI systems, as shown in Figure 3, where the band gap splitting is 

indicated.30 SOC induced band gap openings in Me-Bi, Me-Sb, and Me-Pb are 0.858 eV, 0.418 

eV, and 1.048 eV, respectively, and thus in close accordance with the previous findings of 0.934 

eV, 0.386 eV, and 0.964 eV.30  

    

Conclusions  
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We have discussed the parameterization strategy of the spin orbit coupling for the framework 

of density functional based tight binding method and calculated parameters for the elements 

throughout the periodic table. We tested the SOC-SCC-DFTB formalism on the reference 

structures including III-V semiconductors, 2D TMDCs, and 2D topological insulators. None of 

these systems have been used either for generating the utilized QUASINANO2013 parameters 

nor for the calculation of the SOC parameters. The resulting SO splitttings are in close 

accordance with DFT-based reference calculations, with deviations smaller than those that are 

expected for DFTB band structures. This demonstrates excellent transferability and raises 

confidence that these parameters will be very useful for a wide range of applications where SOC 

is important. Examples include topological insulators in all dimensionalities, the calculation of 

charge carrier mobilities and the performance of electronic materials. 

With this work, it is now possible to incorporate SOC in all calculations without additional 

computational costs compared to the spin-polarized SCC-DFTB approach. This work also 

extends the parameters availability throughout the periodic table which was limited to a few p- 

and d-block elements in the works of Chadi et al.12  

As DFTB is a well-defined approximation to DFT, extensions to the Hamitonian are system 

independent and transferable within different parameterizations. Therefore, the presented 

parameters work well for various DFTB parameterizations as found at dftb.org and they have 

been tested in DFTB+ software.  

Our parameters are available at GitHub for incorporation of spin-orbit coupling for DFTB 

implementations beyond DFTB+ (https://github.com/gajh494c/SOC-DFTB).  

 

ASSOCIATED CONTENT 
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Supporting Information. Detailed information on the Spin-Orbit coupling parameters, and 

geometric parameters of all crystal structures considered in this work. This material is available 

free of charge. 
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