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Abstract 

 Predictions of chemical reaction outcomes using machine learning (ML) has emerged as a powerful 

tool for advancing materials synthesis. However, this approach requires large and diverse datasets, which 

are extremely limited in the field of nanomaterials synthesis due to inconsistent and non-standardized 

reporting in the literature and a lack of understanding of synthetic mechanisms. In this study, we extracted 

parameters of InP quantum dot (QD) syntheses as our inputs, and resultant properties (absorption, emission, 

diameter) as our outputs from 72 publications. We “filled in” missing outputs using a data imputation 

method to prepare a complete dataset containing 216 entries for training and testing predictive ML models. 

We defined the descriptor space in two ways (condensed and extended) based on either chemical identity 

or the role of reagents to explore the best approach for categorizing input features. We achieved mean 

absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for absorption, emission, and diameter 

respectively with our best ML model across diverse synthetic methods. We used these models to deploy an 

accessible and interactive webapp for designing syntheses of InP (https://share.streamlit.io/cossairt-

lab/indium-phosphide/Hot_injection/hot_injection_prediction.py). Using this webapp, we investigated the 

power of ML to uncover chemical trends in InP syntheses, such as the effects of common additives, like 

zinc salts and trioctylphosphine. We also designed and conducted new experiments based on extensions of 

literature procedures and compared our experimentally measured properties to predictions, thus evaluating 

the “real-life” accuracy of our models. Conversely, we used inverse-design to obtain InP QDs with specific 

properties. Finally, we applied the same approach to train, test, and launch predictive models for CdSe QDs 

by expanding a previously published dataset. Altogether, our data pre-processing method and ML 

implementations demonstrate the ability to design materials with targeted properties and explore underlying 

reaction mechanisms even when faced with limited data resources. 



 

 

1. INTRODUCTION 

Indium phosphide quantum dots (QDs) are a promising alternative to traditional Cd- and Pb- based 

materials for lighting, displays, and optoelectronic technologies1–3. However, due to its increased 

covalency, limitations in easily accessible precursors, and inherent distinctions in precursor reactivity and 

valency, the synthesis of InP has been met by more challenges when compared to their II-VI and IV-VI 

counterparts in terms of extracting generalizable design principles and targeted properties4. Since the first 

InP QD synthesis in 1994 that reported the use of chloroindium oxalate combined with 

tris(trimethylsilyl)phosphine (P(TMS)3) in a mixture of trioctylphosphine (TOP) and trioctylphosphine 

oxide (TOPO) using a heat-up method5, intense effort has been devoted to exploring new synthetic 

methodologies and new precursors (Figure 1). The most important synthetic developments include the hot-

injection method that typically produces ensembles with a high degree of monodispersity6, the magic-sized 

cluster-mediated method that exploits our understanding of the non-classical growth mechanisms observed 

under certain reaction conditions7,8, and the microwave-assisted method that uses inductive heating and in 

situ fluoride generation to develop a scalable InP synthetic platform that results in luminescent InP cores 

directly out of the synthesis9. Efforts to replace the highly reactive and challenging to handle 

tris(trimethylsilyl)phosphine (P(TMS)3) precursor to better separate nucleation and growth have resulted in 

a variety of new phosphorus precursors such as aminophosphines10, tris(trimethylgermyl)phosphine11, 

phosphine gas12, and white phosphorus13. In general, synthetic development has focused on narrowing size 

distributions, increasing quantum yields, and exploring more environmentally benign reagents. Other 

important considerations in this regard are tunability and reproducibility in particle size and emission 

wavelength, which are governed by different synthetic factors including but not limited to nucleation 

temperature, reaction time, precursor conversion kinetics, additives, and post-synthetic manipulations. 

Often, QDs with distinct sizes and excitonic emission wavelengths are isolated by taking aliquots from the 

reaction mixture at different reaction times. However, maximizing material yield and achieving precise 

synthetic control and reproducibility over particle size and emission wavelengths of InP QDs still remain a 

challenge.  

In recent years, machine learning (ML) has emerged as a powerful tool to accelerate chemical reaction 

design and materials discovery. ML techniques are effective at inferring patterns and uncovering trends 

from complex chemical processes or mechanisms when a database of a reasonable size is available. In the 

field of nanomaterials, ML has been used to extract data14–16, discover novel materials17–19, optimize 

chemical reactions20–22, reveal underlying mechanisms23,24, and predict synthetic outcomes25. For example, 

support vector machine classification and regression models were used to synthetically control layer 

thickness of perovskite halide nanoplatelets26. In another application, Bayesian optimization was applied to 

improve monodispersity of PbS QDs, leading to the narrowest reported half-width at half-maximum of 

absorbance of this material27. In 2020, Santos and coworkers published a study wherein different ML 



algorithms were applied to identify influential synthetic parameters and to predict the final size of a variety 

of metal chalcogenide QDs, including CdSe, CdS, PbS, PbSe, and ZnSe25. The Gradient Boosting Machine 

algorithm used in that study resulted in a high R2 value and revealed that growth temperature and time are 

the most influential synthetic parameters. In addition, several groups have used automated technology with 

feedback learning mechanisms to generate their own synthesis parameter space to create nanocrystals, 

including InP28, with desired characteristics20,29. The accuracy of predictions is typically limited by the size 

of the dataset, and the completeness and quality (i.e., cover a wide distribution of parameter space). While 

there are many valuable materials databases such as the Inorganic Crystal Structure Database, NREL 

Materials Database, Materials Project, Stanford Catalysis-Hub, and PubChem, in the field of nanomaterials, 

there are a limited number of adequate datasets largely due to inconsistencies in reporting and the lack of 

an organized, centralized data repository. 

In this work, we employ different predictive ML algorithms to gain insights into reaction condition 

control over particle diameter, absorption, and emission wavelength of InP QDs from reported data. ML 

methods are appropriate to help us gain deeper understanding of InP QD synthesis because of the 

complexity of factors that affect the physical and electronic structure of the QDs. In principle, particle 

diameter, excitonic absorption, and band-edge emission should be connected, but from experimental 

observations, nuances related to surface chemistry, stoichiometry, and size and morphological 

heterogeneity make direct correlations less obvious. We demonstrate a dataset pre-processing technique to 

overcome the challenge of having limited data from the literature. Different approaches to define input 

descriptors and machine learning model types are explored to find the best strategy for reaction prediction. 

Finally, we deploy an accessible user interface for external users and apply this interface to compare the 

results of new experiments with predicted results obtained from the ML models.  

 

Figure 1. Timeline and number of publications of InP QDs synthesis. 

 



2. METHODOLOGY 

2.1 Data Acquisition 

The dataset was created by manually extracting reaction conditions and resultant size and optical 

properties reported in the literature using Web of Science and Scifinder with search terms: “indium 

phosphide”, “indium phosphide quantum dots”, “InP”, and “III-V quantum dots”. We identified 179 articles 

from 1994 to June 2021 that reported syntheses of InP QDs. We then classified the articles by synthetic 

methods (e.g., heat-up, hot injection, magic-sized cluster-mediated, etc.). Since there are significant 

practical differences among these synthetic methods that can affect the accuracy of the predictions, only 

similar methods, where the reaction is performed using batch-type techniques with molecular indium and 

phosphorus precursors, were used for further data extraction. We also excluded syntheses that did not 

include any size, absorption, or emission data. This process resulted in an initial dataset that included 219 

syntheses from 72 different articles, in which the hot injection method, heat-up method, reactions using 

phosphine gas, reactions using white phosphorus, and reactions using sodium phosphide make up 73%, 

19%, 5%, 2%, and 1% of the syntheses respectively. An illustration of how the data extraction was done 

can be found in Figure S1.  

 

2.2 Datasets 

The data extracted from the 219 syntheses were split into input features and output targets. With 

the goal of predicting properties of QDs, the output targets contained particle diameter in nm measured 

directly from transmission electron microscopy (TEM), absorption wavelength in nm, and 

photoluminescence (PL) emission wavelength in nm. Although the three chosen outputs are physically 

related, e.g., QD size can be theoretically determined by the excitonic peak from absorption spectra, we 

wanted to investigate the ability of the ML models to recognize these relationships. 

While defining the output set was straightforward, determining the input features required more 

consideration. In general, the performance of a predictive model depends on finding representative input 

features30,31. Furthermore, using too many input features may lead to overfitting. This becomes challenging, 

especially for predictive chemical synthesis models, where the outcomes of syntheses are non-trivially 

affected by unknown, unreported, and/or seemingly trivial parameters. Therefore, to evaluate the effect of 

feature selection on our models, we defined two sets of input features and compiled two datasets: an 

extended dataset with 22 features and a condensed dataset with 18 features (Figure 2B). In the extended 

dataset, the additives beyond the indium and phosphorus sources were categorized by their functional 

groups (e.g., carboxylic acid, amine, thiol); while the condensed dataset grouped chemicals by their primary 

assumed role in the synthesis (e.g., ligands, solvents). (See the full list of input features in Table S1).  Using 

the extended dataset, we hoped to uncover trends of additives based on chemical identity such as fatty 

amines, zinc salts, and thiol-containing ligands that may play more than one role in the synthesis32–35. For 

example, since thiols and fatty amines are sometimes used as both coordinating solvents and capping 

ligands that directly affect the optical properties of QDs, it is more reasonable to separate these features 

from each other and from other features (solvents and acids) in the dataset with the risk of having a high 

dimensionality. On the other hand, features in the condensed dataset were chosen to reduce the number of 

input variables for better ML performance with the tradeoff of not observing unique behaviors of some 

additives. Prior to training machine learning models, the continuous values (In amount, P amount, reaction 

time, etc.) in the input set were scaled and the categorical features (In source, P source, etc.) were 

transformed to numerical features using one-hot encoding and the scikit-learn software package (sklearn)36. 

 



 
Figure 2. A. Workflow. B. Output and input feature selection. 

 

2.3 Data Imputation 

 
After defining the two datasets, we applied a data imputation process to both datasets. One of the 

biggest challenges when applying machine learning to materials chemistry is the lack of sufficient data. In 

our initial dataset, only 35 out of 219 syntheses had a complete set of output target values, because only a 

few articles reported all three targeted properties of InP QDs (Figure 3 – left). To “fill in” the output target 

values, we performed a data imputation process. Data imputation, or imputing, is a technique used for filling 

in missing entries in the dataset, when values are not measured or reported37,38. This method is simple when 

only a small fraction of the output set is missing and when the missing values can be calculated or easily 

predicted.  

In our study, since the three outputs are physically related to each other, i.e., optical properties in 

QDs are influenced by the size of the particles, which are in turn governed by synthetic parameters, we 

imputed the missing values by training a predictive model for each output feature, using the initial input set 

and the available output entries as training data. Since absorption was the most frequently reported output 

in the initial dataset (205 syntheses), data imputation was performed on absorption first, followed by 

emission, and finally diameter. Each imputative model was tuned by an exhaustive grid search to find the 

best parameters. (See details in Supporting Information S2). We then eliminated any syntheses that gave 

negative Stokes shift values, resulting in a final dataset of 216 syntheses, where excitonic absorption 

maxima ranged between 397 and 729 nm, band edge PL emission ranged between 470 and 775 nm, and 

diameters ranged between 1.5 and 8.3 nm (Figure 3 – right). 



 
Figure 3. Data imputation process (left) and descriptions of the imputed dataset (right). 

 

2.4 Machine Learning Models and Metrics 

After filling in the missing output targets, we trained our datasets by both single- and multi-output 

regressors. Single-output models predict each target individually, and the features do not depend on each 

other. Multi-output models predict all output targets simultaneously, and the output targets depend on each 

other and on the inputs features39. We tested six regression algorithms suitable for small datasets: Extra 

Trees, Decision Tree, Random Forest, k-NN, Bagging, and Gradient Boosting using sklearn. To create 

representative samples for testing and training, we performed random sampling and stratified sampling 

methods for our datasets; and used Extra Trees and Decision Tree models to evaluate which train/test 

partitions give better pre-training performance (See Supporting Information S4). For the stratified sampling 

method, we sorted our data based on the values in the "emission_nm" column and put them into 6 ‘bins’: 

[450, 500), [500, 550), [550, 600), [600, 650), [650, 700), and [700, 800). Then we sampled uniformly from 

each bin. Dividing this dataset by these bins avoids clustering of data since some specific QD sizes are 

more common synthetically than others. For all models, the datasets were split into 85% for training and 

15% for testing. Results for a 70/30 train/test partition are also shown in the Supporting Information S5. 

We optimized the hyperparameters for each model using grid search. The final hyperparameters used for 

each model are listed in the Supporting Information S11. We used the mean absolute error (MAE), the 

coefficient of determination (R2), and relative absolute errors (RAE) as metrics to assess the performance 

of all models. MAEs are sensitive to outliers since it is a linear score, in which all differences are weighted 

equally. Using MAEs also helps compare performances across datasets and models for three different 

output targets in a direct and intuitive manner. R2 indicates the proportion of variance for a dependent 

variable determined by an independent variable. RAEs consider all errors equally important and provide 

informative metrics to non-experts in the field of QDs. For each model in this study, we report the MAE, 

R2, and RAE of the predicted set versus the test set.  

2.5 Syntheses 

We conducted 8 new syntheses of InP QDs to test the prediction accuracy of our models. The 

experiments were designed based on four procedures found in the literature40–43 with minor adjustments 

such that all reaction parameters were not already included as entries in the dataset used to train the machine 



learning models. The reaction parameters were also selected such that they were not easily extrapolated 

from the parent procedures. (See synthesis details in Supplemental Information S7).    

 

3. RESULTS AND DISCUSSION 

3.1 Data Description 

After the data extraction process, the dataset contained 219 syntheses of InP QDs from 72 papers, 

with an average of 3 syntheses per paper. However, the dataset is biased towards hot-injection syntheses, 

with 71% of entries from this method. This bias reflects the most used technique to synthesize InP QDs 

found in the literature, since the hot-injection method has been proposed to assist the formation of 

monodisperse InP QDs due to rapid nucleation at elevated temperature44. Despite this bias, we also included 

comparable methods in the dataset to maximize the size and diversity of inputs in our dataset, even though 

every synthetic parameter (e.g., temperature ramp rate) could not be captured due to limited and inconsistent 

reporting. As can be seen, the most common In and P precursors were indium acetate, indium chloride, and 

P(TMS)3 (Figure 4). The addition of zinc salts is known to increase the photoluminescence quantum yield 

and the stability of the InP QDs45; around 41% of the syntheses in the dataset include a Zn additive, with 

ZnCl2 being the most common. The reaction temperatures ranged from 130 to 310 °C, in which the lowest 

temperatures correspond to reactions using chloroindium oxalate, and the highest temperatures correspond 

to reactions using indium tris(N,N’-diisopropylacetamidinato), indium trifluoroacetate, indium oxalate, 

indium palmitate, and indium myristate. Across the dataset, the reaction times were concentrated below 1 

hour, which is related to the widespread use of the hot-injection method. In contrast, the heat-up procedure 

requires much longer reaction times, due to progressive heating and typically lower precursor reactivity, 

resulting in long supersaturation times46. 

 

Figure 4. Description of the input set. Histograms of indium, phosphorus precursors, zinc additives, 

nucleation temperature, and reaction time of the syntheses in the initial dataset. 



Principal component analysis (PCA, Figure 5A) was performed using continuous features in the 

extended dataset (In amount, P amount, etc.).  The scree plot (Figure 5B) identifies the three directions 

(PC1, PC2, and PC3 capturing 29.68%, 10.01%, and 15.95% of the dataset respectively) along which the 

data have the largest spread. The features contributing the most to PC1 are total volume of reaction, solvent 

amount, and Indium precursor amount; while reaction temperature and phosphorus precursor amount 

contribute the most to PC2, and reaction time contributes the most to PC3. When shown as coefficients of 

PC1 vs PC2 and PC1 vs PC3, no clear relationship between these PCs and absorption wavelengths is 

observed. The spanning of syntheses along PC1 indicates that most InP QD syntheses in the dataset were 

conducted on a similar scale, while there are three syntheses that have a significantly larger scale than the 

rest of the dataset. The spanning of syntheses along PC3 indicates that most of the syntheses in the dataset 

were run for a similar duration, owing to their use of the hot injection method (typically less than 1h), while 

a portion of the syntheses were run for a much longer time. 

 

Figure 5. Principal component analysis (PCA) of the extended dataset before imputation, where continuous 

features are considered. A. PCA biplots with syntheses plotted in two dimensions using their projections 

onto the first three principal components (PC). The syntheses are colored according to the absorption 

wavelength (nm) of the synthetic outcomes. B. Scree plot indicating the variance of the PCs when PCA is 

applied to the dataset. C. Table of loadings shows which features contribute the most to the PCs. 

 The plot of absorption peak versus the emission peak from the datasets before and after imputation 

(Figure 6A) suggests a linear relationship between these two output targets. Figure 6B displays the 

dependence of the Stokes shift on the first excitonic absorption peak. Our observation from the dataset 

before imputation (e.g., only reported values) agrees with the size-dependent behavior of Stokes shifts in 

InP QDs in that Stokes shift increases as QD size decreases or as absorption peak energy increases47.  



 

Figure 6. Plots and best fit lines after excluding outliers (indicated by black crosses) for datasets before 

and after imputation. A. Emission peak versus the first excitonic absorption peak in nm and B. First 

excitonic absorption energy peak versus Stokes shift (energy difference between emission peak and 

absorption peak). Green line is from Micic et. al.   

In Figure 7, we plotted the band gap energy versus InP QD size and generated sizing curves from 

both the initial dataset and the imputed dataset. In the small particle size range (2 – 4 nm), both curves fit 

reasonably well with the empirical sizing curve developed by Micic et. al.5, the calculated sizing curves 

from Cho et. al.48 and Baskoutas & Terzis49, but the curve after imputing deviates in the larger size range  

The inverse square fitted sizing curve for the data before imputing is  

    (1) 

and the curve for the data after imputing is  

     (2) 

where E0 is the band gap in eV and d is the QD diameter in nm. The most likely reason for the deviation in 

the curves at larger sizes is the limited available data for high quality InP QDs larger than 4 nm. However, 

challenges associated with sample size polydispersity and surface oxidation may also be convoluting the 

reported data. It is also interesting to see the difference in the sizing curves before and after imputing in 

comparison to the empirically derived sizing curve from Micic. The imputed dataset seems to fit better than 

the raw dataset in the smallest size regime, but imputation appears to overestimate the band gap in the 2.5-

3.5 nm regime in some cases leading to a higher degree of curvature in the line of best fit. 



 

Figure 7. Band gap energy (eV) versus InP QD diameter determined by TEM. Red circles represent data 

points from the initial dataset, blue diamonds represent data points after the imputation step, the red and 

blue lines represent the sizing curves for InP QDs using dataset before and after imputation respectively 

after excluding outliers (indicated by black crosses). The cyan and green lines represent empirical sizing 

curves developed by Guzelian et. al.50 and Micic et. al.5, respectively. The black line represents the sizing 

curve calculated using density functional theory by Cho et. al.48 The orange line represents the sizing curved 

calculated by the potential-morphing method on effective mass approximation by Basloutas & Terzis49.   

3.2 Model Performance 

Figure 8 shows the performance of the best model for each output in each study case. Performance 

data for all other models are listed in Supporting Information S5. For most cases, the Extra Trees algorithm 

outperformed other algorithms. Considering that the datasets in this study are small, unbalanced, and 

contain noise, randomized tree-based algorithms such as Extra Trees would be expected to perform better 

than other methods, such as single decision tree or boosting algorithms. Extra Trees algorithm uses the 

entire set of learning entries to develop the tree and the decision rule is selected randomly, therefore bias in 

the datasets is minimized51.  

Among the three output targets, predictions of emission were the best, followed by absorption, and 

finally diameter. The differences in predictions among different synthetic outcomes might be attributed to 

the correlation between the reported outcome values and reported synthetic conditions. Emission and 

absorption peaks are often used to monitor QD reactions, while particle diameter, determined by TEM, 

must be done many hours after the synthesis finishes and most often following purification. Further, the 

size measurements are usually done manually without established best practices in the community. 

Therefore, data on particle size is not consistent and hence, more prone to poor correlations with synthetic 

conditions, leading to poor predictions when synthetic conditions are the descriptors.  

Although multi-output models were expected to give better predictions due to the strong correlation 

between the three output targets (See Supporting Information Section S3 for Pearson correlations), single-

output models showed better performance for both the condensed and the extended datasets, indicating that 

assuming a relationship among the output targets did not improve, but worsened the predictions. While 

there seems to be a linear relationship between emission and absorption wavelength (Figure 6A), the 

datasets failed to reflect the expected relationship between particle size and absorption. Thus, for these 

datasets, using different model selections for each output, would give a better prediction performance. 



When comparing the performance of the two descriptor sets using the models that gave the lowest 

MAEs, models that used the condensed dataset were expected to show better performance since they have 

lower dimensionality from manually combining some input features while retaining the same information. 

Figure 8 shows that models using the condensed dataset gave better predictions for absorption wavelength 

and diameter than models using the extended dataset, while emission prediction accuracy seemed to be 

similar in both cases. However, for the single-output Decision Tree model for diameter that used the 

condensed dataset, we saw that many predictions were centered around 3.3 nm for the observed range of 3 

– 4 nm (Figure 8A – right). This might be caused by the low complexity of the model and/or 

oversimplification of the descriptor set, leading to inaccurate predictions when a few input features have 

significantly higher influence on the model than others. When the Decision Tree model is applied to the 

extended dataset with similar complexity, this behavior seemed to be eliminated (Figure 7C – right). Thus, 

we note that to improve ML model performance for QD synthesis, oversimplification of feature engineering 

may directly affect the prediction accuracy. 



 

Figure 8. Parity plots of observed vs predicted values and the performance of single-output and multi-ouput  

models for the three outputs using the condensed and extended datasets. 

3.3 Validation 

Applying a complex algorithm to a small dataset can result in significant overfitting that leads to 

misleading predictions. Here, we used different methods, statistically and experimentally, to detect 

overfitting and test the accuracy of our ML models. 

3.3.1 Stratified k-Fold Validation 

 We first used the stratified k-fold validation method on both the condensed dataset and the extended 

dataset to justify the accuracy of our ML models. The data points were divided into 5 groups based on their 

emission wavelength output to ensure that test sets are uniformly sampled across the dataset (Figure 9). 



Then, a stratified test/train split of the dataset was performed to achieve the ratio of 15/85, consistent with 

the ratio used in this study. For the 4 cases, we applied the same ML algorithms as shown in Figure 8 and 

evaluated their performance by MAEs. Figure 10 indicates that the accuracy of all models was consistent 

over 5 iterations, and no considerable overfitting was observed. It should be noted that the hyperparameters 

used in the models for this validation step were adopted from the models in Figure 8, which led to a slightly 

higher MAEs when compared to the values in Figure 8. 

 

Figure 9. Visualization of the stratified k-fold validation in this study. 



 

Figure 10. Mean absolute errors over 5 iterations of stratified k-fold validation. 

3.3.2 Comparison with Non-imputed Models 

 Next, we trained and tested models with the initial or non-imputed datasets. Details on data 

processing and ML training on these datasets are shown in the Supplemental Information Section S6. Due 

to the small dataset size (205 datapoints for absorption, 85 datapoints for emission, and 72 datapoints for 

diameter), predictions using the non-imputed datasets gave higher errors especially for emission and 



diameter targets (Figure 11). This result indicates that it is necessary and reliable to effectively impute the 

missing data to improve the performance of predictive models for QD synthesis when the available datasets 

are limited. 

 

Figure 11. Performance comparison of models using the imputed datasets and the non-imputed datasets. 

3.3.3 Comparison with Experimental Data 

To further test the practical accuracy of the models, we conducted a series of 8 InP QD syntheses. 

The synthetic procedures were designed by varying the reaction conditions of existing syntheses of InP 

QDs found in the literature, such that they would not be entries in the initial dataset, and not easily 

extrapolated from the original reports (Section S7). The QDs from each synthesis were characterized by 

UV-Vis and photoluminescence spectroscopy, and the particle sizes were determined by TEM analysis. 

Only 5 out of 8 batches of InP QDs showed strong luminescence because as-prepared InP NCs generally 

exhibit poor luminescence due to non-radiative channels originating from surface states. The parity plots in 

Figure 12 showed that the models correctly predicted the actual synthetic outcomes in many cases. While 

predictions of experimental absorption and particle size had similar accuracy as the test sets, MAEs for 

emission predictions were high because there were only 5 datapoints for emission and MAEs are sensitive 

to large errors. It should be noted that models using the extended dataset had a much better performance 

than the models using the condensed dataset for prediction of particle size.  



 

Figure 12. Parity plots of experimental values vs. predicted values from the ML models.  

3.4 Interactive User Interface  

To allow external users, including researchers with no background in machine learning, to use our 

model to predict InP QDs synthesis outcomes and explore new synthetic methods, we deployed a user 

interface using an open-source Python library provided by Streamlit52. Streamlit is a framework for building 

interactive web applications with user-friendly components such as buttons, sliders, and plots. From the 

best ML models in this study, we deployed a Streamlit web app that enabled real time reaction analysis and 

prediction https://share.streamlit.io/cossairt-lab/indium-

phosphide/Hot_injection/hot_injection_prediction.py. The web app includes sections where users answer 

questions about QD synthetic conditions to get a prediction of diameter, emission, and the first excitonic 

absorption peak with a prediction interval as uncertainty. We anticipate that this webapp will enable more 

chemical insights into InP synthesis from machine learning. Although the best models from this study were 

used, inaccurate predictions i.e., absorption wavelength higher than emission wavelength, can sometimes 

https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py
https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py


be seen from the webapp due to inconsistency and low synthesis variety in the dataset. We expect the 

performance of the webapp to improve when a larger dataset becomes available. 

3.5 Synthetic Insights 

Using the best model for our four study cases, we calculated the feature importance from each 

model. Feature importance reflects the extent to which a variable is used for accurate predictions (i.e., the 

more a model uses a variable, the more important it is). Specifically in the case of Extra Trees and Decision 

Tree algorithms, feature importance is computed as the normalized total reduction of the criterion brought 

by that feature, which is also known as the Gini importance. As expected, temperature and time were found 

to be most important in all cases as they directly nucleation and growth kinetics. Interestingly, the presence 

of zinc additives also plays an important role (Figure 13) consistent with the reported observations of 

spectral shifts and size changes when a zinc salt is present in the synthesis45,53.  

 

Figure 13. Feature importance charts for the best model in each study case.  

As discussed in the above section, the webapp allows us to explore the chemical intuition of our 

algorithms beyond basic statistical metrics and discover synthetic trends without conducting actual 

experiments. For example, predicted outcomes from the web-app suggested that for a typical hot-injection 

synthesis where InCl3 reacts with tris(diethylamino)phosphine, the presence of TOP redshifts the emission 

and absorption maxima, while the presence of a zinc halide salt results in spectral blueshifts (Figure 14). 

These observations are consistent with the reported literature45,54. 

 

 



Figure 14. Predicted emission (circles) and absorption (squares) wavelengths from the Streamlit webapp 

using single-output algorithms and the condensed dataset with all methods. Reaction conditions include 0.1 

mmol of InCl3, 1 mL of oleylamine, 0.15 mmol of P(DEA)3, nucleation temperature at 180 oC, reaction 

time of 2 min, with 0.3 mmol ZnCl2 (blue outlines), or with 0.2 mL TOP (pink outlines), or without both 

ZnCl2 and TOP (black outlines). 

3.6 Limitations 

Despite their accuracy, there are several inevitable limitations of the ML models that arise from the 

available data and the nature of QD synthesis. The novelty of this study is based on the collection, 

imputation, and ML training of reported data in the literature, however the presence of unknown or 

unreported contaminants, and the related lack of standardization in reporting data in the literature heavily 

influences these ML results. As shown in Figure S1 and discussed in Section 2.1, many publications did 

not report details in the synthesis, which significantly decreases the size of the dataset despite the large 

number of published reports of InP QD synthesis in the past decades. Other synthetic parameters that also 

affect the synthetic outcomes but are often not mentioned include injection rate55, solvents and precursors 

purity56,57, and QD purification status and methods58–60. Moreover, heterogeneity of experimental condition 

in different labs also impacts the synthetic outcomes. For example, it has been shown that presence of trace 

water can affect the size of InP QDs61,62. Another inconsistency in reporting synthetic results comes from 

uncertainties associated with using TEM to determine particle size and size distribution. As discussed in 

detail by Pyrz and Buttrey63, many decisions during image acquisition and size determination can lead to 

over- and under-estimation of particle size, especially for smaller particles. Those decisions include 

optimization of measurement resolution, limiting electron beam damage, proper determination of particle 

boundaries, and reliable quantification of particle size distributions. Data diversification plays an important 

role in the performance of ML models. In this study, a diverse dataset that consists of many syntheses of a 

variety of particle size or emission peaks would help improve ML model performance. However, since 

synthesis of blue-emitting (<480 nm) or small InP QDs is still challenging, and current applications of InP 

often make use of QDs in the 2 – 4 nm size in range, the data inevitably concentrated around a small range 

of particle sizes, leading to less accurate predictions for synthesis of QDs outside of that range.  

 

4. APPLICATIONS 

 4.1 Predicting InP QD Hot Injection Synthesis Outcomes 

We applied the process of data preparation, data imputation, and ML training from this study to 

other datasets with similar size. First, we prepared new condensed and extended datasets that have only hot 

injection syntheses by filtering our initial datasets. These new datasets contained 157 syntheses. The results 

(Table 1) showed improvement in R2 values for all outputs and lower MAEs for emission predictions but 

demonstrated modest differences in MAEs for diameter and absorption wavelength. Similar to the previous 

observation, models using the condensed dataset and single-output algorithms have better performance than 

models using the extended dataset and multi-output algorithms, respectively. It should be noted that single-

output algorithms using the hot injection dataset could achieve MAEs as low as 0.13 nm for diameter and 

6.39 nm for emission wavelength predictions. The algorithms were also able to identify temperature and 

time as the most influential parameters that affect the synthetic outcomes (Figure S13).  

Table 1. Performance of the best algorithms using the hot injection dataset (Output: Model / MAE in nm 

/ R2) 



 

4.2 Predicting CdSe QD Hot Injection Synthesis Outcomes 

To further evaluate the reliability and show the utility of the imputing method for small datasets, 

we revised and extended the CdSe QD dataset from Baum et. al.25 to include absorption and emission 

wavelengths in the output set. The revised dataset contained 233 hot injection syntheses of CdSe QDs, in 

which absorption wavelength is absent in 38 syntheses (16%) and emission wavelength is absent in 77 

syntheses (33%). The dataset preprocessing, data imputation, model tuning, model training, and user 

interface creation were done in the same manner of the InP study. For feature selection, we reduced the 

number of input features from 27 to 15 since models with fewer input variables typically give better 

performance30 (details on feature selection can be found in Section S10). Compared to the InP models for 

the hot injection dataset, CdSe models showed better performance for all three output features, especially 

for diameter. This is likely a result of the original study’s focus on diameter, whose values were not limited 

to TEM measurements, but were also calculated from absorption spectra. Further, a much smaller portion 

of the dataset was missing absorption and emission entries, perhaps reflecting the inherent poor emissivity 

of InP QDs, thus reducing prediction bias. Results from the hot injection models also showed that single-

output models outperformed multi-output models with MAEs as low as 14.67, 8.37, and 0.18 nm for 

absorption wavelength, emission wavelength, and particle diameter, respectively. R2 values for diameter 

from the Extra Trees and Decision Tree algorithms are comparable to the value from the reported Gradient 

Boosting Machine algorithm25 (Figure 15). Examining feature importance in our study showed that reaction 

time and growth temperature are the most influential factors in the synthesis of CdSe. This is consistent 

with the Gradient Boosting Machine model from Baum et. al., however, in this study the two most important 

variables have a significantly higher influence on the synthesis than other variables (Figure 16).  



 

Figure 15. MAEs and R2 values comparison of the two models between this study and ref 25. 

 

Figure 16. Feature importance charts of A. Extra Trees model from this study and B. Gradient Boosting 

Machine model from ref 25. 

4.3 Inverse-Design Using the Streamlit User Interface 

Finally, we targeted 600 nm–absorbing QDs using synthetic conditions and precursors from an 

existing procedure64. Using the Streamlit webapp, we entered the synthetic conditions from the procedure, 

modified chemicals to what were available to us, and adjusted the reaction temperature and time to achieve 

the desired synthetic outcome. We conducted the experiment and were able to synthesize InP QDs with 

desired optical properties with high accuracy (Figure 17). For absorption and emission wavelengths, we 



also found that there was a noticeable difference between samples before and after purification. This 

observation justifies our previous hypotheses that the inconsistency from reported values from the literature 

can strongly affect the accuracy of prediction, that our syntheses were a mix of purified and in situ data 

entries, and that there are many unreported factors that can also play a role in achieving precise optical 

properties.   

 

Figure 17. A. UV-Vis spectra of timed aliquots and emission spectrum of the purified product from the 

reaction using 0.40 mmol indium acetate, 1.45 mmol myristic acid, and 0.20 mmol P(SiMe3)3 injected at 

315 °C. The nucleation temperature was 310 °C. B. A TEM image of the purified particles with an average 

diameter of 5.15 nm. 

 

5. CONCLUSION 

We have trained and used ML models to predict the properties of InP QDs based on synthetic 

conditions. The descriptor space was defined in two ways (condensed and extended) to study the best 

approach for predicting QD synthesis outcomes where the available data is limited. We tested single-output 

and multi-output ML algorithms and found that single-output models showed enhanced performance over 

the multi-output models despite the physical relationships among the output targets (diameter, absorption 

and emission wavelengths). The performance of the models was validated in different ways, including 

stratified k-fold validation, comparison with non-imputed datasets, and comparison with newly collected 

experimental data. From the model estimation errors, we found that reaction temperature, time, and the 

addition of zinc salts were the most influential synthetic parameters. The same dataset pre-processing, 

imputation, and ML training were applied to both InP and CdSe hot injection datasets, resulting in accurate 

predictions for these two cases. Furthermore, we deployed a web-app that employs our best algorithms so 

that external users can use them to predict InP and CdSe synthetic outcomes. Using this web app, we were 

able to test our models with newly adapted InP syntheses that targeted and achieved desired optical 

properties. The webapps also allowed us to investigate the limitations of the ML approach in this study. 

Because the algorithms cannot recognize new precursors, reaction conditions need to be closely based on 

existing procedures to obtain accurate predictions. Overall, this work provides a procedure to preprocess 



datasets, train ML models, and implement models for public users in the field of nanocrystal synthesis, 

especially where available datasets are small and incomplete.    
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