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Abstract 25 

In silico modeling new approach methodologies (NAMs) are viewed as a promising starting 26 

point for filling the existing gaps in safety and ecosafety data. Read-across is one of the most 27 

widely used alternative tools for hazard assessment, aimed at filling data gaps. However, there 28 

are no systematic studies or recommendations on the measures to identify the quality of read-29 

across predictions for the data points without any experimental response data.  Recently, we 30 

have reported a new similarity-based read-across algorithm for the prediction of toxicity 31 

(biological activity in general) of untested compounds from structural analogues (the tool 32 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home). Three 33 

similarity estimation techniques such as, Euclidean distance-based similarity, Gaussian kernel 34 

function similarity, and Laplacian kernel function similarity are used in this algorithm. As the 35 

confidence of predictions for untested compounds is an important information, we have 36 

addressed this issue here by consideration of several similarity and error – based criteria. The 37 

role of these measures in discriminating high and low residual query compounds is studied in 38 

three different approaches: (a) comparison of means of a measure for high and low residual 39 

groups; (b) development of classification models for absolute residuals to identify the 40 

contributing measures; (c) application of the sum of ranking differences (SRD) approach to 41 

identify the measures closer to the reference rank defined by the absolute residuals. Finally, 42 

the frequency of occurrences of different measures in the three approaches is compared. The 43 

results from three data sets with 10 divisions of source and target compounds in each case 44 

indicate that weighted standard deviation of the predicted response values appear to be the 45 

most deterministic feature for the reliability of predictions followed by different similarity-46 

based features. The derived reliability measures will provide a greater confidence to the 47 

quality of quantitative predictions from the chemical read-across tool for new query 48 

compounds.  49 

 50 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Introduction 52 

Computational prediction tools are designed and developed as an alternative to experimental 53 

biological activity/toxicity tests in order to potentially minimize the need for animal testing, 54 

reduce the associated cost and time required for such experimental studies, and improve the 55 

quality and availability of data from activity/toxicity prediction and risk/safety assessment [1, 56 

2]. More importantly, in silico tools can estimate activity/toxicity of virtual compounds even 57 

before their synthesis thus minimizing the cost involved in the synthesis and testing of less 58 

potential or less prioritized chemicals. This can help design industrial chemicals/drug 59 

candidates with better toxicity/pharmacokinetic profile and prioritize them for experimental 60 

testing.  Computational methods of toxicity predictions are accepted as tools to bridge data 61 

gaps by regulatory agencies like Organization of Economic Cooperation and Development 62 

(OECD), European Chemicals Agency (ECHA), Food and Drug Administration (FDA), etc [3-63 

6].  64 

Among various in silico techniques for data gap filling, quantitative structure-activity 65 

relationship (QSAR) modeling is a popular method [7]. QSAR is a statistical model building 66 

process requiring sufficient number of data points for meaningful model development. In 67 

addition, in most of the cases, the data points available are required to be split into training and 68 

test sets for validation purpose in order to comply with the requirements as recommended by 69 

the OECD (https://www.oecd.org/chemicalsafety/risk-70 

assessment/validationofqsarmodels.htm).  Thus, a portion of the available experimental data 71 

cannot be used for model building and are kept aside for model validation. In case of small data 72 

sets, such waste may lead to statistically less reliable model development. Read-across, a 73 

chemical similarity-based grouping technique [8], can better address the situation as it does not 74 

rely on statistical model development. It is a non-animal alternative data gap filling method 75 

that provides information for biological activity/toxicological risks of target compounds 76 

https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
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derived from known activity/toxicity data of source compound(s) with a similar property or 77 

chemical profile. It is one of the most important contemporary in silico approaches which is 78 

majorly applied in the ecotoxicological data generation, data gap filling, and regulatory 79 

decision making. The qualitative read-across approach is most popular and widely used by the 80 

regulatory authorities, although the use of quantitative read-across methods has also been seen 81 

in the recent past. The query chemicals are mostly termed as the target chemicals whereas the 82 

chemical analogues with known toxicity data are called source chemicals. In common practice, 83 

read-across predictions are obtained by analogue and category approaches. The analogue 84 

approach essentially takes a single source chemical for the prediction, whereas more than one 85 

source chemicals are used in the category approach; thus it is more robust and reliable one. 86 

Easy algebraic calculations are used in the quantitative read-across algorithm which makes it a 87 

computationally less exhaustive process. Apart from that, this method is also an effective 88 

approach for the prediction of toxicity of small datasets due to the use of simple calculation 89 

(independent of statistical operations). The weighted average of toxicity data (equation 1) of 90 

chemical analogues is a way for the prediction of untested chemicals.  91 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑊𝑖×𝑋𝑖

∑ 𝑊𝑖
      (1) 92 

where, Wi is the weightage of ith source compounds which is calculated based on the similarity 93 

with the target compound; Xi is the toxicity of the corresponding source compound i.  94 

 For a successful read-across operation, the identification of chemical category and the 95 

associated uncertainty of this identified category is very important to claim the reliability of 96 

predictions. The major objective of the read-across technique is to provide prediction data that 97 

is thought to be (more or less) equivalent to the omitted standard experimental assay, and hence 98 

this has been applied mainly for toxicity/ecotoxicity data gap filling of chemicals in a 99 

regulatory context, However, these new approach methods (NAMs) are finding applications in 100 

several other regulatory frameworks, including in the assessment of impurities and degradation 101 
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products of pharmaceuticals, assessment of plant protection product metabolites, extractables 102 

from personal protective and medical devices, food-contact substances, and cosmetics [9]. 103 

Structural similarity and similar properties, fate and/or activities between the source and target 104 

chemicals provide a convenient means of identifying likely analogues and are thus used as a 105 

basis for justifying read-across [10]. Apart from only the structural similarity consideration, 106 

one should additionally consider physico-chemical properties, reactivity and metabolism, and 107 

mechanistic similarity for the precision of predictions [11]. In this direction, the researchers 108 

may perform the grouping based on changes in structural aspects and physico-chemical 109 

properties and possible fates, degradation and/or the mode of metabolism. Furthermore, 110 

identification of the experimental data gaps in physico-chemical characterization, exposure and 111 

hazard assessments within the defined groups/categories should also be done [10, 11]. For 112 

regulatory acceptance, a read-across prediction should be robust, reliable and easily explicable. 113 

Two important aspects of any read-across predictions are the degree of similarity between 114 

target(s) and source substance(s) and defining the uncertainties in the read-across predictions 115 

[12]. It is generally accepted that the reliability of a read-across prediction depends on the 116 

aspects of the defined similarity and the type and degree of uncertainty associated with the 117 

particular read-across. Therefore, addressing these two elements in an unambiguous manner is 118 

of utmost necessity. Although there are several reports on read-across predictions for different 119 

toxicity and ecotoxicity endpoints [13-16], there are no systematic studies and 120 

recommendations on the measures of reliability of quantitative read-across predictions for new 121 

query compounds. The current manuscript addresses this gap and explores the important 122 

measures that may be used to identify the quality of quantitative read-across predictions in 123 

absence of experimental data. 124 

 125 

Development of novel algorithms for read-across predictions is a topic of contemporary 126 

research in regulatory toxicology. Extensive research has not yet been done for developing 127 
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algorithms of quantitative read-across predictions. This is especially interesting when limited 128 

experimental data for the endpoint of interest is available. Recently, we have developed a read-129 

across tool that predicts the endpoint data of query chemicals based on chemical similarity to 130 

the available source compounds using the Euclidean, Gaussian kernel or Laplacian kernel-131 

based similarity functions (Figure 1) [17]. We have also applied this tool for prediction of 132 

nanotoxicity data of three different data sets showing better quality of predictions than the 133 

previously reported read-across and QSAR predictions [17]. However, it is indeed important to 134 

know the reliability of read-across predictions for new query compounds without having 135 

experimental response values thus not allowing a comparison of predictions with the observed 136 

responses. There must be some measures and features that would provide us with confidence or 137 

uncertainty of predictions in such cases. The present communication tries to explore the factors 138 

governing the reliability of predictions for new query chemicals using the read-across 139 

prediction tool.  140 

 141 

Figure 1. General workflow of Read-across predictions  142 

 143 

 144 
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Materials and Methods 145 

The read-across predictions have been done using the Read-Across-v4.0 tool available from 146 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. In this tool, for each 147 

query compound, up to 10 close source compounds are selected based on the similarity 148 

measure (Euclidean, Gaussian kernel and Laplacian kernel–based similarity), and read-across 149 

predictions are made using a weighted average approach [17]. In the output, weighted average 150 

prediction (𝑥𝑤𝑡𝑑̅̅ ̅̅ ̅̅ ) values along with weighted standard deviation (𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) and weighted 151 

standard error ((𝑠𝑥̅)𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) are reported [18]. The details are available in Supplementary 152 

Materials SI-1. The user can choose the number of close source compounds to be used by the 153 

tool, optimize the hyper-parameters for Gaussian and Laplacian kernel functions and provide 154 

with the distance and similarity threshold values. 155 

We have used in the current study three different data sets recently used by us for QSAR 156 

modeling: (1) acute contact toxicity of plant protection products against honey bees [19], (2) 157 

Bobwhite Quail ecotoxicity data [20], and androgen receptor binding affinity [21]. We have 158 

used the same physicochemical features as reported in the original QSAR reports for the 159 

present study. For each data set, we have used the original division pattern (training and test 160 

sets) in addition to nine additional new divisions made using a variety of approaches like sorted 161 

response, Kennard-Stone, k-medoids, and random division [22] maintaining the similar 162 

training-test size ratio and ensuring diversity in composition. We have used here the term 163 

“training set” for the whole set of source compounds and the term “test set” for the whole set of 164 

query compounds. For the original division of each data set, optimization of hyper-parameters 165 

and distance and similarity threshold settings were done based on a sub-training set and a 166 

validation set. The optimized settings were used for the original division and nine additional 167 

divisions for read-across predictions. As our objective of this study is not to obtain the best 168 

predictions from a given data set, and it is rather to explore the features indicating the quality 169 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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of quantitative predictions, we have not done optimization of the settings separately for each 170 

division.  171 

The read-across tool generates, in addition to read-across predictions, various similarity and 172 

error measures such as standard deviation and coefficient of variation of the activity of similar 173 

source compounds for each query compound, average and standard deviation of similarity 174 

levels and their coefficient of variation of similar close compounds to each query compound, 175 

maximum similarity level to positive and negative compounds (based on the whole “training 176 

set” response mean), a concordance measure indicating similarity to positive, negative  or both 177 

classes of close source compounds [23], etc. as detailed in Table 1. 178 

 179 

Table 1. List of similarity and various error measures generated for each query compound 180 

during read-across predictions 181 

Measure Description Comment Formula 

SD_activity 

(sweighted) 

Standard deviation of 

the (observed) 

response values of the 

selected close source 

compounds for each 

query compound  

Dispersion 

measure 
𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = √

∑ 𝑤𝑖(𝑥𝑖 − 𝑥𝑤𝑡𝑑)̅̅ ̅̅ ̅̅ ̅𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

2

×
𝑛

𝑛 − 1
 

  where,                𝑥𝑤𝑡𝑑̅̅ ̅̅ ̅̅ =  
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

   , 

wi is the respective weight for the response xi, 

n is the number of data points used in 

computation of the average.  

 

CV_activity Coefficient of 

variation of the 

response  

Relative 

Error 

measure 

𝐶𝑉𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

𝑥𝑤𝑡𝑑̅̅ ̅̅ ̅̅
 

Average 

similarity 

Mean similarity to the 

close source 

Similarity 

measure 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖

𝑛
𝑖=1

𝑛
  



Preprint version dated 28.05.2022 (Not peer reviewed) 

9 
 

compounds for each 

query compound 

SD_similarity Standard deviation of 

the similarity values of 

the selected close 

source compounds for 

each query compound 

Dispersion 

measure 
𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦= 

√
∑ (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2𝑛

𝑖=1

𝑛 − 1
 

where 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

MaxPos Maximum Similarity 

level to Positive close 

source set compounds 

(based on the “training 

set” observed mean) 

Similarity 

measure 

 

MaxNeg Maximum Similarity 

level to Negative close 

source set compounds 

(based on the “training 

set” observed mean) 

Similarity 

measure 

 

AbsDiff or 

Abs(MaxPos-

MaxNeg) 

Absolute difference 

between MaxPos and 

MaxNeg 

Similarity 

measure 

𝐴𝑏𝑠𝐷𝑖𝑓𝑓 = |𝑀𝑎𝑥𝑃𝑜𝑠 − 𝑀𝑎𝑥𝑁𝑒𝑔| 

g This is a concordance 

measure  

 

Similarity 

measure 

𝑔 = 1 − 2 × |𝑃𝑜𝑠𝐹𝑟𝑎𝑐 − 1/2| 

where PosFrac is the fraction of the close 

source compounds belonging to the Positive 

Class based on the “training set” response mean 

as the threshold [23]. 

 182 
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We have attempted to understand the role of the above measures in determining the quality of 183 

quantitative read-across predictions for new query compounds. We have done this analysis 184 

using three different strategies by studying:  185 

 186 
1. The frequency of measures showing statistically significant differences between the 187 

corresponding means of high residual and low residual target set compounds 188 

 189 

2. The frequency of measures appearing important in the developed classification models for 190 

high and low residual target compounds  191 

 192 

3. The frequency of measures found important to rank target compounds based on their 193 

absolute residuals in the Sum of Ranking Difference approach. 194 

 195 

 196 

The above three strategies were applied to ten different divisions (source and target 197 

compounds) of three different data sets (Figure 2). 198 
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 199 

Figure 2. General workflow of the current study. 200 

1. Study 1. Comparison of means of high residual and low residual groups: For each 201 

set of division of each data set, we have compiled the read-across predictions of the 202 

query set compounds along with various similarity and error measures (as in Table 1) in 203 

addition to the observed and predicted response values, then ranked the query 204 

compounds in the descending order based on predicted residuals, and finally, identified 205 

two sets of 10 compounds with the highest and lowest predicted residual values. We 206 

have then compared the means of residuals and different similarity and error measures 207 

of the two sets of compounds (high residual and low residual compounds) to identify 208 

the important similarity and error measures showing significant difference between the 209 

two groups of compounds. The t test for comparison of means of two groups [24] was 210 

used for this purpose (Supplementary Materials SI-1) with the Gaussian distribution 211 

assumption of both the classes. 212 
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 213 

2. Study 2. Linear discriminant analysis of graded residuals using error and 214 

similarity measures: We used the compiled data of residual values along with different 215 

similarity and error measures as described under Study 1 above and graded the data 216 

points as positive (1) or negative (0) based on the mean residual value of the 217 

corresponding “training set”. Then we used the graded response as the dependent 218 

variable (Y) and different similarity and error measures and the predicted activity as the 219 

independent variables (X) for developing linear discriminant analysis (LDA) models 220 

using stepwise variable selection with the F-to-enter 4 and F-to-remove 3.9 setting (in 221 

most of the cases) using SPSS statistics software [25]. The LDA tries to maximize the 222 

variance between the classes while minimizing the within-class variance, using a linear 223 

discriminant function [26]. This also assumes that data in every class are described by a 224 

Gaussian probability density function with the same covariance. A linear discriminant 225 

function, which is a linear combination of the independent (X) variables, divides the 226 

feature space by a hyperplane decision surface. Although we understand that it is 227 

overoptimistic to model predicted residuals or errors in this approach and hence, we do 228 

not aim at obtaining a perfect classifier, this exercise will definitely help identifying 229 

important measures and throwing a light on the reliability of predictions. 230 

3. Study 3. Application of the sum of ranking differences (SRD) to identify the 231 

important measures for ranking the query compounds based on their quality of 232 

predictions 233 

The sum of ranking differences [27] is a useful way to compare metrics, methods, 234 

models, methods, analytical techniques, etc. in a general manner. We have used this 235 

method to compare the performance of various similarity metrics to understand the 236 

quality of read-across predictions. Here, the cases (query compounds) to be ranked are 237 

placed in the rows and the metrics in the columns of an input matrix. Then, the results 238 
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of each metric for each case are ranked in the order of increasing magnitude. The 239 

difference between the rank of the metric results and the rank of the known or standard 240 

results (here absolute residuals) is then computed. This is followed by the calculation of 241 

the sum of absolute values of the differences for all metrics. A lower value of SRD 242 

(close to 0) indicates a better metric. The closeness of SRD values indicates the 243 

similarity of the metrics, whereas large variation indicates dissimilarity. A permutation 244 

test is used for the validation of the SRD method which uses a recursive algorithm for 245 

the computation of the discrete distribution for a small number of objects (n<14) or the 246 

normal distribution if the number of objects is large. The theoretical distribution is 247 

visualized for random numbers and it can be used to identify SRD values for metrics 248 

that are far from being random.  A random resampling with sevenfold cross‐validations 249 

is also applied to validate the obtained results, and the results are presented with a Box-250 

Whiskers plot of the cross-validated SRD values [28].  The SRD runs were made using 251 

the program available from http://aki.ttk.hu/srd/. 252 

 253 

The results obtained from Studies 1 to 3 above are compared and discussed to conclude 254 

on the features responsible for the reliability of quantitative read-across predictions. 255 

Please note that the objective of the present analysis is not making new predictions for 256 

the data sets being considered or comparing them to the previously reported analysis. 257 

We try to explore here various features that may be useful in determining the 258 

uncertainty of quantitative predictions from the read-across tool for new query 259 

compounds. 260 

 261 

Results and Discussion 262 

We present here the results obtained from the two strategies of our analysis. The frequency of 263 

occurrences of different measures for discriminating high and low residual compounds at p <= 264 

http://aki.ttk.hu/srd/
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0.05 is shown in Figure 3 while that for developed LDA models for predicting the class of 265 

high or low residuals is shown in Figure 4 (in addition to Supplementary Materials SI-1). 266 

The frequency of occurrences of different measures for correctly ranking high and low residual 267 

compounds as per the SRD analysis is shown in Figure 5 (also see Supplementary Materials 268 

SI-1). The details of the results and raw data are available in Supplementary Materials SI-2 269 

and on request from the authors. 270 

 271 

Figure 3. Frequency of occurrences of different dispersion and similarity measures in 272 

differentiating high and low residual compounds (out of 10 trials for each division of each data 273 

set) (DS1 = data set 1, DS2 = Data set 2, DS3 = Data set 3, ED = Euclidean distance, GK = 274 

Gaussian kernel, LK = Laplacian kernel). 275 
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 276 

Figure 4. Frequency of occurrences of different dispersion and similarity measures in the 277 

developed LDA models for predicting the class of high or low residuals (out of 10 trials for 278 

each division of each data set) (DS1 = data set 1, DS2 = Data set 2, DS3 = Data set 3, ED = 279 

Euclidean distance, GK = Gaussian kernel, LK = Laplacian kernel). 280 
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 281 

Figure 5. Frequency of occurrences of different dispersion and similarity measures for 282 

correctly ranking high and low residual compounds as per the SRD analysis ((DS1 = data set 1, 283 

DS2 = Data set 2, DS3 = Data set 3, ED = Euclidean distance, GK = Gaussian kernel, LK = 284 

Laplacian kernel). 285 

 286 

 287 

Study 1.  288 

Figure 1 shows the difference in arithmetic means of different similarity and error measures 289 

along with the predicted residuals between the two groups of compounds (high residual and 290 

low residual compounds) in the query sets of different divisions of the three data sets as has 291 

been found significant at p<0.05 based on the t test for comparison of means. It is obvious from 292 

the results (Supplementary Materials SI-2) that the residual means show statistically 293 

significant difference between the two groups in all cases. Among the other measures, we have 294 
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presented here only those which show statistically significantly difference at p <=0.05 (Figure 295 

3). For Data set 1, in case of the Euclidean distance - based read-across predictions, 296 

SD_activity, MaxNeg and g occur 4 times or more (out of 10 trials); in case of the Gaussian 297 

kernel-based predictions, SD_activity, CV_similarity, MaxPos and g occur 4 times or more 298 

(out of 10 trials); in case of Laplacian kernel - based predictions, SD_activity, CV_similarity 299 

and MaxPos occur 4 time or more (out of 10 trials). It is to be noted that SD_activity occurs as 300 

the most influential feature considering all similarity-based read-across prediction methods 301 

while CV_similarity and MaxPos occur in case of two similarity-based prediction methods. For 302 

Data set 2, SD_activity and g emerge as the most significant discriminating features: in case of 303 

Euclidean distance - based predictions, both of them occur 7 times out of 10 trials; in case of 304 

Gaussian kernel- based predictions, SD_activity occurs 4 times, in case of Laplacian kernel-305 

based predictions, SD_activity occurs 9 times while g occurs 5 times out of 10 trials. For Data 306 

set 3, in case of Euclidean distance- based predictions, SD_activity appears nine times 307 

followed by predicted response (8 times), observed response, CV_similarity, SD_similarity and 308 

MaxNeg (6 times each), absolute difference between MaxPos and MaxNeg (5 times), 309 

CV_activity and average similarity (4 times each); in case of Gaussian kernel - based 310 

predictions, the most frequently appearing measure is SD_activity (7 times) followed by 311 

observed and predicted responses, MaxNeg, average similarity and absolute value of difference 312 

between MaxPos and MaxNeg (5 times each) and CV_similarity (4 times); in case of Laplacian 313 

kernel- based predictions, the most frequently appearing measures are SD_activity and 314 

predicted response (8 times each), observed response (6 times), MaxNeg (4 times). 315 

Interestingly, observed and predicted response also show statistically significantly different 316 

means in considerable number of trials for Data set 3.  317 

A close analysis of the results from three data sets (Figure 6a) shows that SD_activity is the 318 

most frequently appearing feature for all three data sets. SD_activity corresponds to the 319 

dispersion of the observed responses of close source compounds from which a target 320 
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compound is predicted. If this dispersion is higher, the reliability of predictions for the query 321 

compound will also be lower as obvious from the high residual values in such cases. The next 322 

important measures are g and CV_similarity, each of which occurs for 28 times for the three 323 

data sets. While g appears to be important for Datasets 1 and 2, it is not so for Data set 3 where 324 

CV_similarity is more important. It appears that either g (concordance measure) or 325 

CV_similarity level (along with the average similarity level) is very important in 326 

discriminating the high and low residual chemicals. The absolute difference between MaxPos 327 

and MaxNeg (especially for Data set 3) is also found somewhat important. 328 
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 329 
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Figure 6. Frequency of occurrences of different important error and similarity measures found 330 

from (a) comparison of means between high and low residual compounds; (b) LDA models; (c) 331 

SRD analysis 332 

 333 

Study 2.  334 

The trends obtained from the LDA analysis cannot be expected to be identical with the 335 

previous analysis (Study 1) which was based on the quantitative residual values of two sets of 336 

samples (high and low residual compounds) drawn from the individual query set while Study 2 337 

was performed for the graded residuals of the whole query set. In spite of this, one clear trend 338 

we find from the frequency of occurrences of different measures (Figure 6b) that SD_activity 339 

and g occur most in the obtained LDA equations followed by average similarity, CV_activity, 340 

CV_similarity and Abs(MaxPos-MaxNeg). 341 

Study 3. 342 

Study 3 applies the sum of ranking differences approach in identifying the most suitable 343 

measures that rank the query compounds most similar to the ranking based on the absolute 344 

residuals (reference). 345 

 346 
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Figure 7. Sevenfold cross-validated SRD results (Box-Whiskers plot) and normalized SRD 347 

values (between 0 and 100) compared to random ranking (CRRN or comparison of ranks with 348 

ranking numbers) for division 1 of Data set 1. 349 

 350 

Figure 7 shows that ranking of the cases as per g(ED) is the closest to that of the reference 351 

ranking using absolute residuals for Division 1 of Data set 1. The remaining images of other 352 

divisions and other data sets are available in Supplementary Materials SI-1. Figure 5 shows 353 

the frequency of occurring different measures as determinant of rank order similar to the 354 

reference ranking. In line with the observations from Studies 1 and 2, SD_activity and g occur 355 

most frequently as the most influential indicator of the quality of predictions followed by 356 

CV_activity, YPred and CV_similarity (Figure 6c). 357 

 358 

Considering the results from all three studies as discussed above (Figure 6), for read-across 359 

predictions of new query compounds, the quality of predictions is thought to be dependent on 360 

the following factors: 361 

1. First line diagnostic measures: Dispersion of activity of close source compounds 362 

(SD_activity and CV_activity) 363 

2. Second line diagnostic measures: Similarity measures (g, CV_similarity and average 364 

similarity and Abs(MaxPos-MaxNeg) 365 

3. Level of the predicted activity 366 

Other measures as discussed above would be related to one or more of the above-mentioned 367 

measures. 368 

Dispersion of response values of close source compounds: If the dispersion (in the form of 369 

standard deviation and coefficient of variation, but mainly standard deviation) of the response 370 

values of the source compounds is high, the precision level of the prediction for a query 371 

compound will be low. For example, in Data set 1, Division 3 (Laplacian kernel method), the 372 



Preprint version dated 28.05.2022 (Not peer reviewed) 

22 
 

10 compounds showing highest predicted residuals have mean SD_activity value of 0.847 vs. 373 

the 10 compounds having lowest predicted residuals showing SD_activity of 0.600. This 374 

difference is significant at p <0.05.  This is an inversely proportional relationship suggesting 375 

the requirement of selection of optimum number of close source compounds to avoid a high 376 

dispersion or error value. 377 

Similarity measures: “g” is a concordance measure to indicate whether the close source 378 

compounds selected belong to the same class or the other (based on the mean response of the 379 

original list of source compounds as the threshold) [23]. If all of them belong to either positive 380 

or negative class, the concordance is higher, and the residual is expected to be low. For 381 

example, Division 1 (Euclidean distance method) of Dataset 2 shows that the 10 compounds 382 

having high residual values have the mean g value of 0.44 compared to 0.18 for the 10 383 

compounds having low residual values. This difference is significant at p < 0.05. When all (or 384 

most of the) close source compounds belong to the same class (either positive or negative), it is 385 

expected that the predicted value will be precise and it will not at least misclassify the 386 

prediction for the query chemical. 387 

The average similarity level to the close source compounds is also an important indicator of 388 

reliability. From Division 9 of Data set 2, it is seen that the group of 10 query compounds 389 

having high residuals have the average similarity level (Euclidean) of 0.882 compared to 0.946 390 

of the group of 10 query compounds having low residual values. If the similarity level 391 

increases, reliability of predictions also increases. This is to be noted here that the similarity 392 

level of the close source compounds for any query compound is usually higher in case of the 393 

Euclidean distance-based approach than the Gaussian kernel based similarity followed by 394 

Laplacian kernel based similarity. For this reason, the difference in similarity between the two 395 

classes is significant at lower confidence level for the latter two cases. In addition, the 396 

interpretation of average similarity is also dependent on data structure (distribution of positive 397 
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and negative compounds in the data set while the classification is based on the training set 398 

response mean as the threshold). 399 

The coefficient of variation of the similarity also plays an important role. For example, in 400 

Division 2 (Euclidean distance method) of Data set 3, the average CV_similarity level of the 401 

set of 10 compounds having high residual values is 0.066 compared to 0.041 for the set of 402 

compounds with low residuals. As the CV of similarity values increases, the reliability of 403 

predictions decreases. Similar results are also seen for SD_similarity, but its significance is 404 

observed in lower number of cases.  405 

We may note that the trend mentioned here with regard to the average similarity with respect to 406 

high and low residual compounds may also be opposite if the level of dispersion of similarity 407 

of close source compounds is high. This happens when the number of close source compounds 408 

belonging to either positive or negative class is similar (i.e., PosFrac is close to 0.5). For 409 

example, in case of the Euclidean distance-based similarity of Division 7 of Data set 1, the 410 

dispersion of the similarity values of close similar source compounds is relatively higher and 411 

the SD_similarity value of lower residual compounds is actually higher than the high residual 412 

compounds, while the average similarity value of lower residual compounds is thus lower than 413 

the high residual compounds. This depends on the data structure showing the relative number 414 

of close similar source compounds belonging to either positive or negative class and in such 415 

cases, SD_activity is the main determining factor for the quality of predictions. 416 

The absolute difference between maximum similarity to positive compounds and maximum 417 

similarity to negative compounds is also found important in several cases. This difference may 418 

be thought to be a perplexity measure. It may be expected that for low residual compounds, 419 

this difference may be higher for a more deterministic prediction as observed in case of 420 

Laplacian kernel-based similarity of Division 4 of Data set 1. Here, the absolute difference 421 

value for the low residual compounds is 0.138 compared to 0.021 in case of high residual 422 

compounds. However, the opposite trend is found in Data set 3 where in case of Division 2 423 



Preprint version dated 28.05.2022 (Not peer reviewed) 

24 
 

(Euclidean distance-based similarity), the absolute difference value for low residual 424 

compounds is 0.055 compared to 0.123 in case of high residual compounds. In this case, the 425 

SD_similarity value is lower for low residual compounds, while in case of Data set 1, Division 426 

4 (Laplacian similarity), the SD_similarity value is higher for low residual compounds. This 427 

explains the observed difference in the impact of absolute difference value which is in turn 428 

dependent on the data structure. 429 

Other similarity-based measures like maximum similarity to positive compounds and 430 

maximum similarity to negative compounds are also found important in some cases. But their 431 

significance depends on the data structure and they are related to other similarity measures 432 

already discussed. 433 

 434 

Level of predicted values: In some cases, especially in case of Data set 3, either or both of 435 

observed or/and predicted response values show statistically significant differences between 436 

high and low residual compounds. For example, in case of Division 1 (Euclidean distance 437 

method) of Data set 3, the average predicted value of the high residual compounds is -1.266 438 

while that for the low residual compounds is -2.174. This difference is significant at p <0.05. 439 

This indicates that a compound predicted to be lower active has more confidence of predictions 440 

than a compound predicted as higher active. The uncertainty level of higher level of 441 

quantitative predictions is also higher. 442 

Based on the results obtained from the three data sets with their 10 division pattern, we propose 443 

here at a preliminary level a set of diagnostic thresholds of different similarity measures (based 444 

on Euclidean based similarity) to identify the quality of quantitative predictions (Table 2).  The 445 

first and some of the rest criteria as mentioned in Table 2 are expected to be met for reliable 446 

predictions. Apart from the above, a compound predicted to be more active will have in general 447 

less confidence level. However, the indicated thresholds may be more refined in the future with 448 

the availability with additional results with other data sets. 449 
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 450 

Table 2. Desired level of different dispersion/similarity measures for good reliability of 451 

quantitative read-across predictions (based on Euclidean distance-based similarity) 452 

Sl. Dispersion/Similarity measure Desired range Reliability 

1.  SD_activity (Euclidean) <=0.75 Very good (All criteria met); 

Good (Criterion 1 and at least one 

of the rest but not all); 

Moderate (Any one met); 

Bad (None of the criteria met) 

2.  g (Euclidean) <=0.4* 

3(a) Average similarity (Euclidean) >=0.85 

3(b) CV_similarity (Euclidean) <=0.05 

*Corresponds to PosFrac >= 0.8 or PosFrac <= 0.2    453 

 454 

Overview and Conclusion 455 

In absence of experimental data for toxicity or property of any query chemical, a chemical 456 

similarity-based approach is an ideal alternative to bridge the data gaps. Chemical read-across 457 

has emerged as a proven method for efficient prediction in this regard which is also recognized 458 

and accepted by different regulatory bodies like OECD, US EPA, etc. and regulations like 459 

REACH [29]. Although chemical read-across may quickly predict the target property or 460 

toxicity of the query chemicals, in absence of the experimental values, it may be challenging to 461 

attach a level of uncertainty to the compound-specific predictions. We have discussed this 462 

aspect in the context of the Read-Across-v4.0 tool developed by us, but in general the 463 

principles should be applicable to other chemical read-across predictions also. From the present 464 

analysis, dispersion of the response values of selected close source compounds (specifically 465 

standard deviation) emerges to be the most deterministic feature for the reliability of 466 

predictions. In the discussed tool, read-across predictions are made using a weighted average 467 

approach. Naturally, weighted standard deviation and weighted standard error values are also 468 
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reported. Based on this, a confidence interval of each predicted value may be presented as 469 

below: 470 

95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑟𝑒𝑎𝑑 − 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 +471 

𝑡95% ×
𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

√𝑛
                                                                                                               (2) 472 

Apart from the dispersion measures, chemical similarity metrics like concordance measure g, 473 

which indicates whether the close source compounds belong to either a definite class (positive 474 

or negative, leading to more reliability) or a mixed class (less reliability), average similarity 475 

level (higher reliability for higher similarity level) and coefficient of variation of similarity (a 476 

greater value leads to lower reliability) have been found to important contributing factors. The 477 

difference between the maximum similarity levels of query compounds to positive and 478 

negative source compounds is also found important in some cases depending on the data 479 

structure. The interpretation of the similarity-based measures depends on the data structures. In 480 

case of a high dispersion of similarity of close source compounds to a query compound   and/or 481 

equal proportion of close positive and negative source compounds for a query compound, the 482 

dispersion of observed responses is the main deterministic measure for the reliability of 483 

predictions. We have also made a preliminary recommendation about the desired values of 484 

different dispersion/similarity measures for good reliability of read-across predictions; 485 

however, this may be refined further with the availability of additional results.  486 

Finally, a higher range of predicted response values has been found to be associated with 487 

higher uncertainty of predictions in some cases. It appears that a compound is predicted to be 488 

less active with more certainty than a compound predicted to be higher active.  489 

The dispersion and similarity features as listed above may be considered to ascertain the level 490 

of confidence during quantitative read-across predictions of query compounds without having 491 

experimental response values. These measures will definitely enhance usability of chemical 492 

read-across quantitative predictions in absence of observed data. The similarity and error-based 493 
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measures discussed here are also suitable for a novel kind of modeling (quantitative read-494 

across structure-activity relationship or q-RASAR) which is discussed elsewhere [30]. 495 
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