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Abstract

Crossings between states involve complex electronic structures, making the accurate

characterization of the crossing point difficult. In this study, the analytic derivatives

of three complete active space second-order perturbation theory (CASPT2) variants

as well as an extension of the restricted active space (RASPT2) are developed. These

variants are applied to locating minimum energy conical intersections. Our results

demonstrate that the three CASPT2 variants predict qualitatively similar results, but

a recently developed variant, the rotated multistate CASPT2 (RMS-CASPT2), is least

sensitive to the number of states considered in the calculation. We demonstrate that

CASPT2 and the reference self-consistent field calculations predict qualitatively differ-

ent energetics and bond lengths.
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1 Introduction

Crossings between potential energy surfaces (PESs) of different states play an important

role in photochemistry.1–3 Typically, those between the same-spin states and spatial sym-

metries are referred to as conical intersections (CIs) and are responsible for non-radiative

transitions between states. In particular, minimum energy CIs (MECIs) act as an efficient

“funnel” around the CI region, with higher states efficiently and non-radiatively decaying

to lower states. Because the electronic structure at crossing points is considerably more

complex than the one at a minimum energy region of a PES, it is necessary to select a

method that appropriately describes the electron correlation. One useful and well-known

approach is the multiconfiguration self-consistent field (MCSCF) method, in particular the

complte active space (CASSCF) version. Electron correlation described using MCSCF and

CASSCF is typically referred to as “static” or “non-dynamic” electron correlation, which is

attributed to near-degenerate configuration state functions (CSFs) or determinants, whereas

“dynamic” electron correlation, which results from instantaneous repulsion of electrons, is

missing. A large portion of the dynamic electron correlation can be recovered using post-

MCSCF treatments, which are typically referred to as multireference (MR) methods, such

as MR coupled-cluster4–6 and configuration interaction7 approaches. However, in terms of

computational cost vs accuracy, MR perturbation theory (MRPT) may be the most bal-

anced approach. In particular, when one wants to determine minimum energy structures

or perform molecular dynamics (MD) simulations, MRPT is a practical choice for medium-

sized systems among the abovementioned MR methods, because these calculations are more

time-consuming than a single-point energy evaluation.

The most well-known MRPT is probably the CAS second-order PT (CASPT2) method,8–10

but many other versions exist, such as (extended)11 multiconfiguration quasi-degenerate PT2

[(X)MCQDPT2],12 n-electron valence state PT2 (NEVPT2),13–15 generalized Van Vleck PT2

(GVVPT2),16 retaining the excitation degree PT,17 unitary group adapted state-specific

MRPT,18 and driven similarity renormalization group state-averaged MRPT (SA-DSRG-
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MRPT2).19 There is no doubt that analytic derivatives are most convenient to locate mini-

mum energy structures, such that analytic gradient theories and programs have been devel-

oped for a variety of MRPTs, namely CASPT2,20–23 GVVPT2,24 NEVPT2,25,26 (X)MCQDPT2,27

and (SA-)DSRG-MRPT2.28,29 Another type of multiconfigurational approach, such as multi-

configuration pair-density functional theory (MC-PDFT),30 has analytic derivative theories31

as well.

It is important to consider interactions between states during MECI searches. State inter-

actions are important to describe the avoided crossing of, for example, LiF with MRPTs;12,32,33

the lack of them leads to a notorious double-crossing PES. Regarding CASPT2, the multi-

state CASPT2 (MS-CASPT2)32 can treat state interactions and has been used in geometry

optimization (primarily via numerical differentiation).34,35 However, MS-CASPT2 has a se-

vere non-invariance problem and is unsuitable for MECI searches. Certain studies reported

that PESs around MECIs at the MS-CASPT2 level have unphysical behaviors.36–38 One of

the sources of non-invariance can be solved using the modification technique by Shiozaki39

based on the idea of the XMCQDPT2 by Granovsky,11 and the resulting extended MS-

CASPT2 (XMS-CASPT2) has been used in locating MECIs and non-adiabatic MD simula-

tions in several occasions.26,37,40,41

Although XMS-CASPT2 smoothens the rough PES of MS-CASPT2 at CIs, the use of

the state-averaged Fock operator may in general degrade the accuracy of MS-CASPT2 with

a state-specific operator elsewhere. Recently, an alternative approach named extended dy-

namically weighted CASPT2 (XDW-CASPT2)42 has been suggested as a bridge between

MS-CASPT2 and XMS-CASPT2. XDW-CASPT2 employs a dynamically weighted density

matrix in the Fock operator, in association with reference states that are rotated to remove

the interaction between them, following the same approach used in XMS-CASPT2. As a

result, one can select a completely state-specific operator that interpolates between state-

specific and state-average regimes. The idea of XDW-CASPT2 is similar to the preceding

dynamically weighted DSRG-MRPT243 and SCF44 methods. A special case of this variant,
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which shares a similar idea to that in Ref. 45, is referred to as rotated multistate CASPT2

(RMS-CASPT2)38 and only performs an initial rotation of the states, thereby avoiding the

dynamical weighting scheme. The applicability of XDW-CASPT2 and RMS-CASPT2 has

been discussed in two recent studies,38,42 demonstrating that PESs near MECIs are smooth.

Similar to the standard geometry optimization, MECIs can be located with analytic deriva-

tives. Recent studies46 on CASPT2 have enabled the exploration of CI regions using analytic

derivative coupling vectors37 at the XMS-CASPT2 level of theory. Non-adiabatic MD sim-

ulations can be performed as well.40,47 GVVPT216 may also be used to explore CIs, and

a formulation for derivative coupling vectors exists;48 however, an actual implementation

has not been achieved so far. NEVPT2,49,50 MCQDPT2,27,51 and SA-DSRG-MRPT229 can

also be used for MECI search, while MC-PDFT has been used for studying intersystem

crossings.52

Although OpenMolcas53,54 is the program package with the original implementation of

CASPT2, its analytic gradient has not been developed for 30 years. Recently, one of the au-

thors has succeeded in this task for the single-state version of CASPT2.23 However, the code

for the multistate extension is not yet available. Furthermore, it would be interesting to see

how the new XDW-CASPT2 and RMS-CASPT2 approaches perform in MECI searches. In

this study, we outline the analytic derivative theory for (X)MS-, XDW-, and RMS-CASPT2,

as well as their RASPT2 extension.55,56 The developed method is used to locate minimum

energy structures and MECIs of typical systems, and the smoothness of PESs around MECIs,

as well as their dependence on the different flavors of CASPT2/RASPT2, are discussed to

evaluate the applicability of these methods.

2 Methodology

In this section, the following indices are used, unless otherwise stated:

• General molecular orbitals (MOs): p, q, r, s
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• Atomic orbitals (AOs): µ, ν

• CSFs: I

• States: α, β, γ, δ

• Internally contracted configurations: ϕ, χ

For the remainder of this manuscript, shorthand acronyms will be used as defined below,

unless otherwise stated:

• MS-CASPT2: MS

• XMS-CASPT2: XMS

• XDW-CASPT2: XDW

• RMS-CASPT2: RMS

2.1 MS-CASPT2 and XMS-CASPT2

In perturbation theory, the electronic Hamiltonian Ĥ is partitioned into the zeroth-order

Ĥ(0) and perturbation potential V̂ :

Ĥ = Ĥ(0) + V̂ . (1)

Depending on the definition of the zeroth-order part, one can define a series of (MR)PT

methods. In quasi-degenerate perturbation theory, the zeroth-order Hamiltonian is typically

defined by

Ĥ(0) = P̂ F̂ P̂ + Q̂F̂ Q̂ , (2)

where P̂ =
∑

γ∈P |Ψ(0)
γ ⟩⟨Ψ(0)

γ | is the projector onto the reference space, and Q̂ = 1− P̂ is the

projector onto the complementary space. The space of the reference states, which are typ-

ically obtained by solving state-averaged CASSCF (SA-CASSCF) equations, is represented
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by the symbol P . The Fock operator F̂ can be either state-specific or state-averaged, and

one can define several CASPT2 variants depending on the operator choice, as outlined below.

In MS,32 the Fock operator is state-specific, and the zeroth-order Hamiltonian for state

α is defined by

Ĥ(0)
α =

∑
γ∈P

|Ψ(0)
γ ⟩⟨Ψ(0)

γ |F̂α|Ψ(0)
γ ⟩⟨Ψ(0)

γ |

+
∑
k∈P⊥

|Ψ(0)
k ⟩⟨Ψ(0)

k |F̂α|Ψ(0)
k ⟩⟨Ψ(0)

k |

+ Q̂α
SDF̂

αQ̂α
SD + Q̂α

TQ···F̂
αQ̂α

SD··· , (3)

where P⊥ includes all CAS states orthogonal to P , |Ψ(0)
γ ⟩ is the zeroth-order (reference)

wavefunction, and Q̂α
SD and Q̂α

TQ··· project onto the first-order and higher-order interacting

spaces, respectively. The Fock operator F̂α =
∑

pq f
α
pqÊpq, along with its element fα

pq, is

state-specific and defined by

fα
pq = hpq +

∑
rs

(
(pq|rs)− 1

2
(pr|qs)

)
Dα

rs

= hpq + gpq(D
α) . (4)

hpq and (pq|rs) are the one-electron and electron repulsion integrals, respectively, and gpq(D)

is the multiplication of Coulomb and exchange integrals with D. The elements of the one-

electron (reduced) density matrix Dα
rs are calculated by Dα

rs =
⟨
Ψ

(0)
α

∣∣∣Êrs

∣∣∣Ψ(0)
α

⟩
. Êpq is the

one-electron spin-averaged excitation operator.

As aforementioned, MS has a severe problem when interactions between reference states

are not negligible. This is due to the non-invariance of the theory with respect to unitary

rotations among the reference states, whose major cause is attributed to neglecting the off-

diagonal elements of the Fock operator ⟨Ψ(0)
α |F̂ γ|Ψ(0)

β ⟩ for α ̸= β ∈ P in Eq. (3).11 These

elements are no longer trivial when interactions between different states are significant. This
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is known as the diagonal approximation (which is different from the “diagonal approximation”

in CASPT2-D9), and is obvious from the structure of the first term in Eq. (2) and P̂ . In

XMS,39 the diagonal approximation in Ĥ0 is removed:

Ĥ(0) =
∑
γ,δ∈P

|Ψ(0)
γ ⟩⟨Ψ(0)

γ |F̂ SA|Ψ(0)
δ ⟩⟨Ψ(0)

δ |

+
∑
k∈P⊥

|Ψ(0)
k ⟩⟨Ψ(0)

k |F̂ SA|Ψ(0)
k ⟩⟨Ψ(0)

k |

+ Q̂SDF̂
SAQ̂SD + Q̂TQ···F̂

SAQ̂SD··· (5)

The operator is no longer state-specific (but the Q̂ operators are state-specific in the actual

implementation of OpenMolcas). This form of the zeroth-order Hamiltonian is inconvenient

for its direct use in MRPTs, and so the reference states are rotated to satisfy

⟨
Ψ̃(0)

α

∣∣∣F̂ SA
∣∣∣ Ψ̃(0)

β

⟩
= 0 (6)

for α ̸= β ∈ P . The rotated reference states |Ψ̃(0)
α ⟩ (tilde denotes rotated quantities as per the

XMS procedure) is simply obtained by diagonalizing
⟨
Ψ

(0)
α

∣∣∣F̂ SA
∣∣∣Ψ(0)

β

⟩
and by transforming

the reference state with a unitary rotation:

|Ψ̃(0)
α ⟩ =

∑
β∈P

|Ψ(0)
β ⟩Uβα . (7)

This procedure corresponds to applying the orthonormal transformation to the reference

configuration interaction coefficients, cI,β:

c̃I,α =
∑
β∈P

cI,βUβα . (8)

In MS, the unitary matrix Uβα is the identity matrix. Using the rotated reference states

|Ψ̃(0)
α ⟩, the zeroth-order Hamiltonian for XMS (Eq. (5)) is written as an expression similar
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to that for MS (Eq. (3)):

Ĥ(0) =
∑
γ∈P

|Ψ̃(0)
γ ⟩⟨Ψ̃(0)

γ |F̂ SA|Ψ̃(0)
γ ⟩⟨Ψ̃(0)

γ |

+
∑
k∈P⊥

|Ψ(0)
k ⟩⟨Ψ(0)

k |F̂ SA|Ψ(0)
k ⟩⟨Ψ(0)

k |

+ Q̂SDF̂
SAQ̂SD + Q̂TQ···F̂

SAQ̂SD··· (9)

Unlike MS, the elements of the Fock operator fSA
pq (and thus the zeroth-order Hamilto-

nian) are no longer state-specific and are instead defined using the (equally weighted) state-

averaged density matrix:

fSA
pq = hpq + gpq

(
DSA

)
, (10)

with

DSA =
1

Nstate

∑
α∈P

D̃α , (11)

where Nstate is the number of states averaged in the reference self-consistent field (SCF)

calculation, assuming that the interaction between all states is considered in the multistate

perturbation calculation, and D̃α is the density matrix analog calculated using the rotated

state: D̃α
rs =

⟨
Ψ̃

(0)
α

∣∣∣Êrs

∣∣∣ Ψ̃(0)
α

⟩
.

The first-order wavefunction is written as follows:

|Ψ(1)
α ⟩ =

∑
pqrs

ÊpqÊrsT
αα
pqrs|Ψ̃(0)

α ⟩ (12)

where ÊpqÊrs is the two-electron excitation operator, and Tαα
pqrs is the corresponding excitation

amplitude. Due to the different orbital subspaces, the definition of ÊpqÊrs comprises eight

distinct excitation classes, see Refs. 9 and 10. The excitation amplitudes are determined by

iteratively solving the following linear equation:

⟨
Φpqrs

∣∣∣Ĥ∣∣∣ Ψ̃(0)
α

⟩
+
⟨
Φpqrs

∣∣∣Ĥ(0) − E(0)
α + Eshift

∣∣∣Ψ(1)
α

⟩
= 0 , (13)
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where |Φpqrs⟩ is a doubly excited configuration, and Eshift is the real57 or imaginary58 level

shift parameter to avoid the intruder state problem:

Eshift = Ereal
shift +

(
Eimaginary

shift

)2
Ĥ

(0)
D − E(0)

, (14)

where Ereal
shift and Eimaginary

shift are provided as parameters and cannot be non-zero simultaneously,

and Ĥ
(0)
D is the diagonal part of Ĥ(0). The real and imaginary level shift techniques modify the

denominator in the second-order energy expression 1/∆pqrs by 1/(∆pqrs+ε) and 1/(∆pqrs+iε),

respectively, where ∆pqrs =
⟨
Φpqrs

∣∣∣Ĥ(0) − E(0)
∣∣∣Φpqrs

⟩
and ε is a small parameter. Although

the complex number appears in the denominator of the latter expression, we extract the real

part of the amplitude so that the energy remains real:

Re

(
1

∆pqrs + iε

)
=

1

∆pqrs +
ε2

∆pqrs

(15)

We thus do not need complex arithmetic. Note that the imaginary level shift is equivalent

to the intruder state avoidance technique in (X)MCQDPT2.59

After solving the linear equation, we construct the (symmetrized) effective Hamiltonian

H
eff

αβ =
⟨
Ψ̃(0)

α

∣∣∣Ĥ∣∣∣ Ψ̃(0)
β

⟩
+

1

2

(
H

(2)
αβ +H

(2)
βα

)
, (16)

where

H
(2)
αβ =

⟨
Ψ̃(0)

α

∣∣∣Ĥ∣∣∣Ψ(1)
β

⟩
. (17)

The (symmetrized) effective Hamiltonian is then diagonalized to obtain the (X)MS energy:

ECASPT2
α =

∑
γδ∈P

RγαH
eff

γδRδα (18)

Note that the implementation of XMS in OpenMolcas is not completely invariant even
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though the original theory is. This is because the internal contraction scheme used is the

so-called single-state single-reference (SS-SR) one, in which the zeroth-order Hamiltonian

(specifically, Q̂SD and Q̂TQ··· in Eq. (5)) and the first-order wavefunction are state-specific

and parameterized according to Eq. (12). In contrast, the multistate MR (MS-MR) scheme,

used in the original XMS method,39 defines the first-order wavefunction as

|Ψ(1)
α ⟩ =

∑
pqrs

∑
β∈P

ÊpqÊrsT
αβ
pqrs|Ψ̃

(0)
β ⟩ . (19)

The effect of non-invariance due to the different internal contraction schemes has been re-

ported in Ref. 49 in the context of QD-NEVPT2. Although our developed algorithm is not

completely invariant, XMS using the SS-SR internal contraction is very robust,26,37,49 and

characterizing MECIs with it is generally stable.

2.2 XDW-CASPT2 and RMS-CASPT2

Although XMS can produce smooth PESs, using the state-averaged density matrix in Ĥ(0)

may in general decrease the accuracy compared to MS. The idea of interpolating between

them has motivated the development of XDW42 and RMS.38

First, similarly to XMS, the Fock operator is diagonalized to produce a set of rotated

reference states (Eq. (6)). In this transformation, the (equally) state-averaged Fock operator

is used; therefore, it is totally equivalent to XMS. In XDW, the density matrix used in the

construction of the Fock operator for the perturbed state α is averaged using dynamical

weights ωβ
α as follows:

D
α
=
∑
β∈P

ωβ
αD̃

β , (20)

where each weight ωβ
α is defined using the following Boltzmann-like function

ωβ
α =

e−ζ(∆αβ)
2∑

γ∈P

e−ζ(∆αγ)
2 . (21)
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The parameter ζ regulates the sharpness of the transition between mixed-density and state-

specific regimes.42 Many expressions for ∆αβ have been proposed.38,42 However, in this study,

the original definition has been used:

∆αβ =
⟨
Ψ̃(0)

α

∣∣∣Ĥ∣∣∣ Ψ̃(0)
α

⟩
−
⟨
Ψ̃

(0)
β

∣∣∣Ĥ∣∣∣ Ψ̃(0)
β

⟩
(22)

If the energies of the two reference states α and β are similar, the ∆αβ value is small and the

exponent term becomes large, and therefore the density matrix of the state β significantly

contributes to that of the perturbed state α. The element of the Fock operator, fα

pq, can be

obtained by substituting Dα with D
α in Eq. (4):

f
α

pq = hpq + gpq
(
D

α)
. (23)

In the limit ζ → 0, the exponent term does not contribute to the energy weighting, and

each state contributes equally; therefore the limit corresponds to the XMS method. On the

other hand, in the limit of ζ → ∞, the exponent term contributes only when α = β, and the

density matrix is state-specific; this corresponds to the RMS method.

Although explicitly writing the zeroth-order Hamiltonian for XDW and RMS is not

straightforward, if the following approximation is valid:

⟨
Ψ̃(0)

α

∣∣∣F̂ γ∣∣∣ Ψ̃(0)
β

⟩
≈ 0 , (24)

the zeroth-order Hamiltonian for XDW and RMS can be written as a state-dependent form:

Ĥ(0)
α ≈

∑
γ∈P

|Ψ̃(0)
γ ⟩⟨Ψ̃(0)

γ |F̂
α

|Ψ̃(0)
γ ⟩⟨Ψ̃(0)

γ |

+
∑
k∈P⊥

|Ψ(0)
k ⟩⟨Ψ(0)

k |F̂
α

|Ψ(0)
k ⟩⟨Ψ(0)

k |

+ Q̂α
SDF̂

α

Q̂α
SD + Q̂α

TQ···F̂
α

Q̂α
SD··· . (25)
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For RMS, the structure of the zeroth-order Hamiltonian is similar to that of MS (Eq. 3).

However, because the reference states are rotated, it is expected that the state-specific Fock

operator couplings between the corresponding zeroth-order wavefunctions are approximately

zero:

⟨Ψ̃(0)
α |F̂ γ|Ψ̃(0)

β ⟩ ≈ 0 (26)

for α ̸= β ∈ P . It is the use of these rotated states that distinguishes RMS from MS.

Note that RMS is similar to Park’s SS-SR-MS-CASPT2.45 The difference between the two

methods is in how the reference states are rotated. Rotated states are generated to satisfy

Eq. (6) in RMS, whereas the following condition is used in Park’s SS-SR-MS-CASPT2:

⟨
Ψ̃(0)

α

∣∣∣∣12 (F̂α + F̂ β
)∣∣∣∣ Ψ̃(0)

β

⟩
= 0 (27)

for α ̸= β ∈ P . The Fock matrix is thus diagonalized using the state-specific Fock operator

inside the bracket. Both RMS and Park’s SS-SR-MS-CASPT2 are approximately invariant.

Ref. 45 demonstrated that SS-SR-MS-CASPT2 does not suffer from the shortcomings of the

original MS approach and can locate MECIs. The performance of RMS has been investigated

in Refs. 38 and 42, and PESs of RMS around MECIs of CASSCF are smooth.

2.3 Analytic Derivatives of (X)MS-, XDW-, and RMS-CASPT2

We assume the zeroth-order Hamiltonian of XDW because other variants are derived con-

sidering the abovementioned limits.

2.3.1 Nuclear energy gradient

Similar to previous analytic derivative theories for MRPT methods, we use the Lagrangian

technique.60 The total Lagrangian LCASPT2 is defined as the sum of the SA-CASSCF and

PT2 Lagrangians, LCASSCF and LPT2: LCASPT2 = LCASSCF+LPT2. The SA-CASSCF part of

the Lagrangian is similar to that of the previous study23 and comprises constraint conditions
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imposed when solving the SA-CASSCF equation:

LCASSCF
αβ =

1

2
Tr
[
Zαβ

(
A−A†)]− 1

2
Tr
[
Xαβ (S− I)

]
+

1

Nstate

∑
γ∈P

[∑
I

zαβI,γ

⟨
I
∣∣∣Ĥ − Eref

γ

∣∣∣Ψ(0)
γ

⟩
− 1

2
xαβ
γ

(⟨
Ψ(0)

γ |Ψ(0)
γ

⟩
− 1
)]

, (28)

where the first term is the generalized Brillouin condition with the orbital gradient A −

A†,20,39 the second term is the requirement for MO orthonormalization with the overlap

matrix S in the MO basis, and the third term is the CI condition. In the third term, Nstate

is the number of (equally) averaged states and Eref
γ is the CASSCF energy for state γ ∈ P .

Zαβ, Xαβ, zαβ, and xαβ are Lagrangian multipliers which are determined by solving the

Z-vector equation described later (Eq. (35)).

The PT2 part of the Lagrangian can be written as follows:

LPT2
αβ =

∑
γδ∈P

RγαH
eff

γδRδβ +
∑
γ∈P

∑
c

(∑
ϕ ̸=χ

ζc,γ,αβϕχ ΛB,c,γ
ϕχ −

∑
ϕχ

ξc,γ,αβϕχ

(
ΛS,c,γ

ϕχ − I
))

+
∑
γ∈P

∑
pqrs

λαβ
pqrs,γ

(⟨
Φpqrs

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
⟨
Φpqrs

∣∣∣Ĥ(0)
γ − E(0)

γ + Eshift

∣∣∣Ψ(1)
γ

⟩)
+
∑
γ∈P

core∑
p

inactive∑
q

Zcore,γ,αβ
pq f

γ

pq +
∑

γ ̸=δ∈P

wαβ
γδ ⟨Ψ̃

(0)
γ |F̂ SA|Ψ̃(0)

δ ⟩ (29)

The first term is the CASPT2 energy (α = β; Eq. (18)) or the coupling between states

(α ̸= β). The second term results from the diagonalization of the zeroth-order Hamiltonian

and orthonormalization of the overlap matrix in the active space. In the summation, c

corresponds to the eight excitation classes (Eqs. (1a), (1b), . . ., and (1h) in Ref. 9). ΛB,c,γ
ϕχ

and ΛS,c,γ
ϕχ correspond to Eqs. (19) and (26) in Ref. 9. The additional Lagrangian multipliers

ζc,γ,αβϕχ (different from the parameter for XDW) and ξc,γ,αβϕχ are introduced. They can be

straightforwardly determined by considering the partial derivative of the above Lagrangian

with respect to the internal contraction coefficients after solving the λ-equation introduced

below as Eq. (30). The third term in Eq. (29) corresponds to the variational condition
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of the CASPT2 energy (Eq. (13)), the fourth term for the frozen core approximation is

the semi-canonical condition of MOs, and the fifth term is the rotation of reference states

(Eq. (6)).

The excitation amplitude Tαα
pqrs is optimized for each diagonal element of Heff , whereas

off-diagonal elements of H
eff contribute to the PT2 Lagrangian, and therefore the PT2

Lagrangian is not variational with respect to amplitude changes. Consequently, we need to

solve the λ-equation for each γ:
∂LPT2

αβ

∂T γγ
pqrs

= 0 (30)

The λ-equation is similar in structure to the amplitude equation (Eq. (13)), and therefore

it can be solved in a similar fashion. Note that the λ-equation is solved with the level shift

term Eshift, being consistent with Eq. (13). However, unlike the single-state case, it has to

be solved even without the level shift Eshift for energy calculations, because the MS energy

(Eq. (18)) is no longer variationally minimized with respect to the excitation amplitude. Only

when the coupling between different excitation classes are neglected, known as CASPT2-D,

it can be done in a non-iterative manner. Once λαβ
pqrs,γ is determined, first- and second-order

correlated density matrices20 can be constructed and used in computing Y αβ
pq and ỹαβI,γ defined

later.

In XDW, the weight of the density matrix ωβ
α (Eq. (21)) has to be differentiated as well.

Using the second-order one-particle correlated density matrix D(2),20 the contribution of the

derivative through
⟨
Ψ̃

(0)
α

∣∣∣Ĥ∣∣∣ Ψ̃(0)
α

⟩
can be written as follows:

Ďα = −2ζ
∑
β∈P

(
ωβ
α

(
ω̌β
α −

∑
γ∈P

ωγ
αω̌

γ
α

)
+ ωα

β

(
ω̌α
β −

∑
γ∈P

ωα
γ ω̌

α
γ

))
∆αβ (31)

where ω̌β
α =

∑
pq∈act gpq(D

(2),α)D̃β
pq. Ďα is always zero for (X)MS and RMS because ωβ

α for

these theories is either 1/Nstate or δαβ (Kronecker delta). ζ is a parameter, and therefore its

derivative is always zero.

The so-called right-hand side vectors are obtained by computing the partial derivatives
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of the total Lagrangian with respect to the wavefunction parameters:

Y αβ
pq :=

∂LPT2
αβ

∂κpq

(32)

ỹαβI,γ :=
∂LPT2

αβ

∂c̃I,γ
, (33)

where κpq is the orbital rotation parameter. These partial derivatives can be computed

similarly to the previously developed scheme in Ref. 23. The multiplier wαβ
γδ is specific to

CASPT2 variants with rotated reference states and is always zero for MS. It can be simply

determined by:61

wαβ
γδ =

1

2

1

E
(0)
δ − E

(0)
γ

∑
I

(
c̃I,γ ỹ

αβ
I,δ − ỹαβI,γ c̃I,δ

)
. (34)

The numerical stability of wαβ
δγ is discussed in Ref. 61.

The Lagrange multipliers specific to CASSCF are determined by solving the Z-vector

equation:
∂LCASPT2

αβ

∂κpq

=
∂LCASPT2

αβ

∂cI,γ
= 0 (35)

for all independent rotations and γ ∈ P , yielding Zαβ, Xαβ, zαβ, and xαβ. Once the Z-

vector equation is solved, the derivative of the CASPT2 energy with respect to the nuclear

displacement x is evaluated as a partial derivative of the Lagrangian:

(gα)
x :=

dECASPT2
α

dx
=

∂LCASPT2
αα

∂x
. (36)

It would be informative to compare the computational cost for the four MS-CASPT2

variants in the nuclear gradient calculation. There are three sources of difference. First,

we need the derivative of the weight (Eq. (31)) for XDW, but this step is negligible, so

the computational cost for XDW and RMS is almost identical. Second, XMS, XDW, and

RMS require additional evaluations that arise from the rotation of the reference states. This

evaluation is not negligible, but it is needed only once, so the cost is relatively small. Third,
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the Fock matrix at the MS, XDW, and RMS levels is defined with a state-dependent density

matrix, while the one at the SCF level with the state-averaged density matrix. Due to

this difference, the derivative of the Fock matrix at the PT2 level cannot be computed in a

similar fashion to the one at the SCF level. To be specific, the derivative of the gpq(D) for

the state-dependent Fock matrix is split following the equality:

∑
pq

D
α

pq

∂gpq
(
D(2),α

)
∂x

=
∑
pq

(
D

α

pq −DSA
pq

) ∂gpq (D(2),α
)

∂x
+
∑
pq

DSA
pq

∂gpq
(
D(2),α

)
∂x

, (37)

where the first term in the right hand side is additionally evaluated for MS, XDW, and RMS

for each state α. Fortunately, we just need to back transform the density matrices, and the

additional computational cost is less than the cost for the major part of Eq. (32). We do not

need this evaluation for XMS, because the Fock matrix is defined with the state-averaged

density. We estimate the following order of the computational cost: XMS < MS < RMS ≈

XDW.

2.3.2 Derivative Coupling

The derivative coupling dαβ for states α and β can be written as a sum of the so-called CI

CIdαβ and CSF contributions CSFdαβ:

dαβ = CIdαβ +
CSFdαβ =

hαβ

∆Eαβ

+ CSFdαβ . (38)

where hαβ is the interstate coupling vector, and ∆Eαβ = ECASPT2
β −ECASPT2

α . The interstate

coupling vector hαβ is computed as the first-order derivative of the off-diagonal elements of

the diagonalized effective Hamiltonian:62,63

hx
αβ =

∑
γδ

Rγα

dH
eff

γδ

dx
Rδβ =

∂LCASPT2
αβ

∂x
. (39)
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Because the difference between hαβ and the gradient (gα = hαα) vectors is the element of

the differentiated symmetrized effective Hamiltonian, the algorithm for computing hαβ is

almost equal to that for the gradient vector, and the algorithm in the previous section is

used without additional complications.

The CSF contribution CSFdαβ can be computed as follows:

CSFdxαβ =
1

2

∑
γδ∈P

(RγαRδβ −RδαRγβ)

⟨
Ψ̃(0)

γ +Ψ(1)
γ

∣∣∣∣∣dΨ̃(0)
δ

dx

⟩
. (40)

Here, we mostly followed the procedure outlined in Ref. 37, apart that the algorithm for

computing the CSF term at the SA-CASSCF level is somewhat different. In OpenMolcas,

the pseudo-density is contracted via the antisymmetric overlap derivative, i.e.,64

Sx,−
µν =

1

2

(⟨
µ

∣∣∣∣∂ν∂x
⟩
−
⟨
∂µ

∂x

∣∣∣∣ ν⟩) , (41)

whereas in Ref. 37 it is contracted with the single overlap derivative:

σx
µν =

⟨
µ

∣∣∣∣∂ν∂x
⟩

(42)

Consequently, we had to modify one of the source terms in the Z-vector equation:

Y αβ
pq =

∂LPT2
αβ

∂κpq

−∆EαβD
αβ
pq , (43)

where

Dαβ
pq =

1

2

∑
γδ

(RγαRδβ −RδαRγβ)
(
D̃γδ

pq + ⟨Ψ(1)
γ |Êpq|Ψ̃(0)

δ ⟩
)

, (44)

D̃γδ
pq is the one-particle transition reduced density matrix. The final contraction is

dxαβ =
1

∆Eαβ

∂LCASPT2
αβ

∂x
+

1

2

∑
pq

(
Dαβ

pq −Dαβ
qp

)
Sx,−
pq . (45)
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Because this difference is only caused by the way the contraction with the pseudo-density

matrix is performed, the numerical value of dαβ obtained with a development version of

OpenMolcas seems to be equivalent to that of BAGEL.65,66

Although the complete derivative coupling has been implemented, the interstate coupling

vector hαβ is used for MECI searches because dαβ is singular and undefined at CI points

(∆Eαβ = 0). Moreover, the CSF contribution CSFdαβ is translationally and rotationally

non-invariant, so using the derivative coupling is unsuitable, or at least not helpful, to locate

MECIs.

3 Computational Details

The theory discussed in the previous section, including the extension to RASPT2, has been

implemented in a development version of OpenMolcas.53,54 In the following, we present

and discuss the numerical results obtained with it. All calculations employed the frozen

core approximation in association with the atomic compact Cholesky decomposition67,68

to generate an on-the-fly auxiliary basis set for the resolution-of-identity treatment of the

electron repulsion integrals. The ionization potential–electron affinity (IPEA) shift69 and

symmetry constraints were not used, but an imaginary level shift parameter of 0.2i was

selected for all calculations. For XDW, the parameter ζ is set to 50 for all calculations. The

selection of the parameter affects the computed results, but the impact of the parameter

has been examined in the past literature,38,42 and therefore our primary interest is not to

examine this influence. In the reference SA-CASSCF calculation, the weight for each state

is equal regardless of the number of averaged states.

With RASs, the active space is partitioned into three subspaces: RAS1, RAS2, and

RAS3. The RAS2 space is treated as the CAS space, and full configuration interaction is

performed. The numbers of holes and electrons, respectively, in RAS1 and RAS3 are limited

by setting maximum values. The nomenclature for RAS is the same as in the previous
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study:23 (ie,jo)/(ke,lo)/m, where i and j are the numbers of electrons and orbitals in the

entire active space (RAS1+RAS2+RAS3), respectively; k and l are those in the RAS2 space,

respectively; and m is the maximum number of electrons excited from RAS1 or into RAS3.

It is possible to independently select the maximum numbers for RAS1 and RAS3, but we

have selected the same number. The design of the active spaces are described in detail in

association with each case discussed below. The cc-pVDZ basis set70 was used in all studies,

except for the benzene and the dioxetanone systems, respectively, in which the cc-pVTZ70

and the ANO-RCC-VTZP71,72 basis sets were used.

4 Results and Discussion

In this section, the quality of the implementation will be assessed in terms of the accuracy

of the gradients for butadiene. This will be followed by three comparative studies of the

different flavors of the CASPT2 and the standard RASPT2 methods. First, an investigation

of the smoothness of the PESs at a CI in ethylene and butadiene is presented. Second, the

quantitative and qualitative differences in the energetics of benzene are studied. Here the

comparison is extended to include the partially contracted NEVPT2 (PC-NEVPT2) and

XMCQDPT2 approaches. Third, the effect of the state averaging in ethylene is put forward.

Finally, in the remaining two subsections, the methods will be applied to the dioxetanone

molecule, where the last of the two is especially devoted to an analysis of the qualitative and

quantitative differences between the CASPT2 and RASPT2 methods.

4.1 Accuracy of Implemented Gradient

The accuracy of the implemented gradient is confirmed by a comparison between the analytic

and numerical gradients at the XMS-, XDW-, and RMS-CASPT2 and RASPT2 methods for

planar butadiene, see Table 1. The numerical gradient was evaluated using the two-point

stencil method.
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Table 1: Root-Mean-Square (R-M-S)a Differences between Analytic and Numerical Gradi-
ents (unit in a.u./bohr) for the Ground State at the XMS-, XDW-, and RMS-CASPT2 or
RASPT2 Levels of Theory.

Active space XMS XDW RMS
CAS(4e,4o) 3.07× 10−7 5.15× 10−7 6.13× 10−7

RAS(4e,4o)/(0e,0o)/2 8.95× 10−7 9.16× 10−7 9.68× 10−7

RAS(4e,4o)/(2e,2o)/1 1.95× 10−6 2.01× 10−6 2.04× 10−6

a Forces perpendicular to the planar axis are excluded in the R-M-S difference

The difference with RAS is somewhat larger than that with CAS, reflecting the more com-

plex description of the electronic structure provided by the former. This is consistent with

previous single-state CASPT2 and RASPT2 results.23 The deviation is similar to the single-

state case and significantly smaller than the convergence criteria for geometry optimizations,

and therefore the implementation can be confidently applied to geometry optimizations and

MECI searches using any CASPT2 and RASPT2 variant.

4.2 Smoothness of the Potential Energy Surface

The smoothness of the PES described by MRPTs is important, in particular, for locating

MECIs, but also in general for molecular structure optimizations. Here, MS-, XMS-, XDW-,

and RMS-CASPT2 calculations were performed using a three-state averaged CASSCF(6e,4o)

reference for the MECI of pyramidalized ethylene (structure (b) in Ref. 64). First, Figure 1

shows the PES of S0 and S1 around the MECI located using the individual CASPT2 methods.

The x̂ and ŷ vectors (in atomic units) are obtained as a linear combination of the gradient

difference and interstate coupling vectors following the definition given in Ref. 64, forming

the branching plane. Although the PES of MS (Figure 1 A) is considerably affected by

artifacts and the surfaces are significantly distorted, those of the other CASPT2 variants

(Figure 1 B, C, and D) are similar and exhibit no apparent irregularities. The local topology

of MECIs can be identified using two parameters P and B,64 which represent the asymmetry

of the CI — the relative tilt and its direction at the MECI structure. As per these parameters,

the MECI at XMS, XDW, and RMS is a peaked single-path CI. This topological character
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agrees well with the plots shown in Figure 1. The MECI at MS is predicted to be peaked

bifurcating; however, the PES is strongly distorted at this point, and so it is difficult to

characterize it from Figure 1.

R
e

la
ti
v
e

 e
n

e
rg

y
 /

 e
V

x̂
y
^

R
e

la
ti
v
e

 e
n

e
rg

y
 /

 e
V

x̂
y
^

R
e

la
ti
v
e

 e
n

e
rg

y
 /

 e
V

x̂
y
^

R
e

la
ti
v
e

 e
n

e
rg

y
 /

 e
V

x̂
y
^

A) MS-CASPT2 B) XMS-CASPT2

C) XDW-CASPT2 D) RMS-CASPT2

Figure 1: PESs at the MECI of pyramidalized ethylene with A) MS-, B) XMS-, C) XDW-,
and D) RMS-CASPT2 methods.

Because the non-invariance character of MS, XDW, and RMS can be significant around

the MECI structure obtained at the SA-CASSCF level of theory, it is important to verify

the PES around that point. In Figure 2, the energy difference between the first two states

(S0 and S1) is plotted as a function of displacement in the branching space around the

MECI. Again, the PES of MS is unreliable. In particular, in the vicinity of this CI from

SA-CASSCF (x̂ = ŷ = 0.00), it exhibits a strong discontinuity. On the contrary, the other

CASPT2 variants do not show any severe problems, even though a few discontinuities appear

for RMS.

XMS, XDW, and RMS are regulated using the ζ parameter in Eq. (21). At the limit

ζ → 0, XDW corresponds to XMS, whereas at the limit ζ → ∞ to RMS. As ζ → 0, the

density matrix used in the Fock operator (Eq. (10)) is averaged with equal weights for all
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Figure 2: Energy difference between S0 and S1 for ethylene around the SA-CASSCF MECI
with A) MS-, B) XMS-, C) XDW-, and D) RMS-CASPT2 methods.

states in the perturbation calculation. Consequently, the zeroth-order Hamiltonian (Eq. (5))

has zero off-diagonal elements in the reference space, which results in an extremely smooth

PES as shown in Figure 2 (despite the slight non-invariance introduced by the SS-SR internal

contraction scheme). As ζ increases, the density matrix and the Fock operator progressively

gain a state-dependent character. Consequently, the H(0) off-diagonal coupling between the

rotated states may become different from zero (see Eq. (24)), potentially making XDW

and RMS less smooth than XMS. In this particular case, the PES described using XDW

(Figure 2 C) is extremely smooth. On the other hand, at the ζ → ∞ limit, RMS has a few

light irregularities in Figure 2 D. The distortion in this case is up to 4 kcal/mol, but RMS

remains considerably smoother than MS despite the similar state-specific Fock operator.

Because of its artificial discontinuity, we will not use MS in the following calculations.

In certain cases, it is possible to locate stationary points using MS, but its stability is

generally significantly lower than that of other variants, in particular, for locating MECIs.
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Nevertheless, the similar location of the minima in Figures 2 A and D suggests that RMS is

a good alternative to MS, albeit providing considerably smoother PESs.

The smoothness of RASPT2 is investigated using three active spaces for a transoid

MECI of butadiene (structure (k) in Ref. 64): CAS(4e,4o), RAS(4e,4o)/(0e,0o)/2, and

RAS(4e,4o)/(2e,2o)/1. Plots of the branching space around XMS-CASPT2/RASPT2 MECIs

and contour plots of the energy difference around the SA-CASSCF/RASSCF CIs are plotted

in Figure 3. In all entries, the MECIs were located for each individual active space. Although

there are small irregularities in a few instances (right panel in CAS(4e,4o) and left panel in

RAS(4e,4o)/(2e,2o)/1), the PESs obtained using XMS-CASPT2 and XMS-RASPT2 are gen-

erally well behaved. These CIs are identified as a peaked single-path as per the P and B

parameters. These results show that it is possible to use RASPT2 to locate minimum energy

structures and intersections. However, in practice, it is often difficult to reach a satisfactory

SCF convergence.

4.3 Difference between Three CASPT2 Variants

The energetics of the three CASPT2 variants are investigated using benzene. Following Ref.

50, we identify seven MECIs and perform reference calculations using a two-state averaged

CASSCF(6e,6o) wavefunction. The entry 5 in Ref. 50 is excluded because it was predicted to

be a saddle point in the intersection space. Table 2 summarizes relative energies of S0 at the

D6h (global minimum) structure, S1 for the same geometry, and the seven MECIs obtained

with SA-CASSCF (SCF in Table 2), three CASPT2 variants (XMS, XDW, and RMS), and

PC-NEVPT250 and XMCQDPT249 previously reported in the literature. In general, our

XMS results are comparable to previous50 ones obtained with a different program package

(and a different approximation for the electron repulsion integrals). Geometry optimizations

converged at the first step for most entries because the initial structures are obtained from

Ref. 50. This fact is a sensible evidence that the implemented derivatives, including the

interstate coupling vector, are accurate.
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Figure 3: PESs of butadiene around the CASPT2/RASPT2 MECIs (left) and en-
ergy difference between S0 and S1 around the SA-CASSCF/RASSCF MECIs (right)
with XMS-CASPT2 or XMS-RASPT2 using different active spaces: A) CAS(4e,4o), B)
RAS(4e,4o)/(0e,0o)/2, and C) RAS(4e,4o)/(2e,2o)/1.
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Table 2: Relative Energies of Benzene with Respect to the S0 Energy at the D6h Geometry
and the Seven MECIs (unit in eV).

SCF XMS XDW RMS PC-NEVPT2a XMCQDPT2b

S0 at D6h 0.00 0.00 0.00 0.00 0.00 0.00
S1 at D6h 4.98 4.87 4.73 4.68 5.35 4.83
1 5.55 4.96 4.87 4.93 5.30 4.99
2 6.34 5.02 4.93 5.17 5.15 5.10
3 5.90 5.12 5.03 5.10 5.46 5.12
4 5.83 5.46 5.36 5.42 5.84 5.47
6 6.07 5.15 5.06 5.22 5.39 5.30
7 6.32 6.34 6.25 6.19 6.69 6.44
8 6.44 6.49 6.39 6.35 6.81 6.56

a Ref. 50 b Ref. 49

The experimental vertical excitation energy at the D6h geometry is 4.9 eV,73 and so

XMS is the closest. RMS deviates by 0.2 eV, but a systematic investigation is required to

determine which CASPT2 variant yields the best general agreement with experiment.

Among the seven MECIs, PC-NEVPT2 predicts that 2 is more stable than 1 by 0.15

eV, while all three CASPT2 variants predict the opposite. Among all MRPT approaches,

RMS is the only one stabilizing 3 over 2. In any case, the difference between the three

CASPT2 variants is at most 0.25 eV, which is in the range of accuracy expected for MRPT

methodologies, such that any variant is potentially a valid option in practice.

The difference between XMS and XDW is consistently 0.1 eV for all MECI entries. In

the vicinity of the CI at the PT2 level, the reference CASSCF energy is quasi-degenerate.

This means that ∆αβ (Eq. (22)) becomes nearly zero, and the density matrix of the α and

β states contribute almost equally in the energy weighting scheme. In particular, when two

states are averaged, the energy-weighted density matrix for XDW is roughly equivalent to

that of XMS, and therefore it is rather natural that the relative energy for both methods is

similar. Consequently, the difference between MECI entries of XMS and XDW in Table 2 is

primarily due to the difference in the S0 energy at the D6h structure. As discussed below,

that will not be the case if more states are averaged.
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4.4 Dependence on State-Averaging

As mentioned in the previous section, the computed results depend on the number of states

(Nstate) included in the model space, and this effect is herein discussed for XMS-, XDW-,

and RMS-CASPT2(6e,4o) using ethylene. For this system and active space, the number

of CSFs is ten, and calculations up to the complete model space can be performed. In

Table 3, we show the excitation energies from the ground state at the D2h structure to the

Franck–Condon (FC) point, S1(FC), and to the pyramidalized MECI as a function of Nstate.

Table 3: Relative Energies of the S1 State at the S1(FC) Structure and Pyramidalized MECI
for Ethylene with Respect to S0 at the D2h Ground State Geometry (unit in eV)

XMS XDW RMS
Nstate S1(FC) MECI S1(FC) MECI S1(FC) MECI
2 8.140 4.557 8.089 4.433 8.089 4.646
3 8.010 4.555 7.883 4.437 8.003 4.665
4 7.902 4.586 7.799 4.519 7.944 4.716
5 8.003 4.445 7.762 4.432 7.932 4.691
6 8.128 4.410 7.753 4.424 7.928 4.651
7 8.132 4.344 7.732 4.404 7.901 4.644
8 8.107 4.314 7.733 4.411 7.899 4.660
9 8.076 4.270 7.714 4.391 7.881 4.675
10 8.047 4.243 7.659 4.399 7.860 4.698
Average 8.060 4.413 7.792 4.428 7.937 4.672
Max Difference 0.239 0.344 0.430 0.128 0.229 0.072
R-M-S Deviation 0.074 0.122 0.120 0.036 0.066 0.024

Using XMS, the excitation energy to S1(FC) almost randomly varies as a function of

Nstate, while XDW and RMS exhibit a decreasing trend. A comparison between the latter

two reveals that XDW is considerably more sensitive to Nstate, and that the magnitude of

the deviation is significantly larger than that of XMS and RMS. The different ways in which

the excitation energy depends on the number of states for the three methodologies can be

rationalized as follows. Because the reference energy (i.e., the one used for ∆αβ in Eq. (22))

of S0 is very different from that of the excited states, the zeroth-order Hamiltonian in XDW

has a very pronounced state-specific character, which makes it similar to that of RMS. In
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fact, the absolute S0 energy for both of these methods differ by at most 0.045 eV, and their

ground state properties are therefore expected to be comparable. In contrast, S0 from XMS

is considerably different, because the Fock operator is averaged over all states with equal

weights regardless of the gap between the ground and the excited states. The situation is

different for S1 and higher excited states. For instance, for Nstate > 4, S1, S2 and S3 are

energetically very similar, and thus the Fock operators for S1 of XDW and XMS are roughly

equivalent, providing comparable absolute S1 energies (different by at most 0.073 eV). Their

relative energy with respect to the ground state differ instead significantly due to the different

descriptions of the S0 state. On the other hand, the excited states obtained with RMS are

not equivalent to the other two variants, due to the purely state-specific nature of its Fock

operators. In short, XDW describes the ground state like RMS, but the excited states like

XMS, at least with the choice of exponent made in Eq. (22) (for other choices, see Ref. 38).

Hence, even though XDW is formally interpolating between XMS and RMS in terms of the

ζ parameter, the predicted relative energies will generally not interpolate between these two

extremes.

The situation with the MECI energy is instead slightly different. XMS has a stronger

dependence on Nstate than XDW and RMS, and its decreasing trend is more pronounced than

in the case of the excitation energies. The R-M-S deviation of RMS is instead only 0.024

eV, while that for XDW is also relatively small; this is because the zeroth-order description

of S0 and S1 is a mixture of the two states for both, regardless of the value of Nstate.

From the above analysis, we can summarize that the dependence of the vertical excitation

energy on Nstate is smaller with XMS and RMS than with XDW, while the dependence of

the MECI energy is small when using XDW and RMS since the zeroth-order Hamiltonian

is mostly described using the crossing states. Thus, these results suggest that the energetics

predicted by RMS are the least sensitive to Nstate and that this variant is a sensible choice

when averaging over many states. At last, we shall note that the dependence of the XDW

energy with respect to Nstate is likely to change for different values of ζ.
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Representative geometrical parameters are summarized in Tables S1–S3 (Supporting In-

formation). These do not vary significantly for the global minimum structure between the

CASPT2 variants, and they are quite insensitive with respect to Nstate. The C–C distance

varied only 0.005 Å with XMS, whereas it was 0.002 Å with RMS, and the C–H distance re-

mained almost unaffected. The ground state is energetically separated from the other states,

and so the global minimum structure determined using XDW and RMS are almost the same.

The C–C distance for the MECI structure is slightly more sensitive to Nstate. The maximum

difference observed for this bond with XMS and RMS is 0.037 Å and 0.006 Å, respectively.

The C–C distance predicted using XMS is slightly longer than that predicted using XDW

and RMS. For a large value of Nstate, the state-averaged Fock operator (XMS) will have

more contributions from highly excited states, which typically involve additional electron

occupation numbers in anti-bonding orbitals, and so the C–C bond distance becomes longer

with a large Nstate.

4.5 Application to Dioxetanone

In this subsection, we present the results obtained by applying the developed methodologies

to dioxetanone. This compound has been examined35,74–76 using multiconfigurational meth-

ods as a model system of firefly bioluminescence. In this study, two minimum energy and

two MECI structures were located using SA-CASSCF and the three CASPT2 variants. We

selected an active space of CAS(16e,13o) with Nstate = 2. We label the two minimum energy

structures on the S0 surface as (σ,σ∗)-Min and (n,σ∗)-Min, following the nomenclature of

Ref. 35. The MECIs are labeled as MECI-1 and MECI-2, and correspond to CIOO and CICC

of Ref. 76, respectively, with the subscript specifying the reaction coordinate for which the

PES crossings occur. The relative energies for these stationary points are summarized in

Table 4.

The considerable difference between SA-CASSCF and CASPT2 in the prediction of the

MECI energies has been known for more than ten years.35,74 In previous studies, single-point
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Table 4: Relative Energies of Dioxetanone (unit in kcal/mol)

(σ,σ∗)-Min MECI-1 (n,σ∗)-Min MECI-2
S0 S1 S0/S1 S0 S1 S0/S1

SA-CASSCF 0.00 98.1 14.5 12.6 16.6 19.5
XMS 0.00 104.0 26.9 25.3 30.0 28.2
XDW 0.00 92.2 23.5 21.9 26.7 24.8
RMS 0.00 98.3 24.4 22.8 27.4 25.8

CASPT2 calculations using SA-CASSCF structures predicted significantly higher energies

(more than 10 kcal/mol) than SA-CASSCF. As per the results obtained in this study, ge-

ometry optimizations at the PT2 level support the single-point CASPT2 energies. However,

our CASPT2 results predicted that the energy for MECI-2 is lower than for S1 at (n,σ∗)-

Min, while the opposite is true for SA-CASSCF. The difference is about five kcal/mol, and

this may have a non-negligible effect on the ratio of the non-radiative decay. Previous MS-

CASPT2//SA-CASSCF calculations35 predicted the same trend as in this SA-CASSCF cal-

culation, such that dynamic electron correlation may play an important role in the geometry

optimization for this particular system.

The reaction coordinate of MECI-2 is reported to be along a C–C bond elongation. The

predicted C–C distance is 1.64 and 1.60 Å (Table S7 in the Supporting Information) using

SA-CASSCF and all CASPT2 variants, respectively, such that there is only a small difference

between the methods. However, MECI-1 is reported along the reaction coordinate of O–O

elongation, and the predicted bond lengths are 2.47 and 2.60 Å (Table S5 in the Supporting

Information). Hence, in this case, the perturbative correction is more significant, resulting

in bond distances differing by more than 0.1 Å.

All four methods predicted that the local topology of MECI-1 is peaked bifurcating as

per the P and B parameters (Table S5). However, this was not the case for MECI-2 (Table

S7), where the SA-CASSCF approach characterizes it as a peaked bifurcating CI (P = 0.05

and B = 0.39), while the CASPT2 variants as sloped single-path (5.00 < P < 5.50 and
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1.83 < B < 1.90). Our CASPT2 result agrees with the findings in Ref. 74. As observed in

many situations, CASSCF and CASPT2 predict qualitatively different electronic structures,

and although the analysis using P and B is a local approximation,64 the predicted topology

agrees with the computed PESs in the branching plane, e.g., in Figures 1 and 3.

4.6 Dioxetanone with XMS-RASPT2

Large active spaces lead to very long expansions in terms of CSFs or determinants, which

are computationally very expensive. Hence, it is often convenient to work in reduced active

spaces, or to restrict the number of allowed excitations within them as done in RAS-based

methods. The RASPT2 implementation in OpenMolcas56 does not fully account all excita-

tions within the active space (such as excitations from RAS1 to RAS2) in the perturbation

calculation, and so it is generally better to prefer large RAS2 spaces or CAS whenever pos-

sible. Moreover, the quasi-canonicalization of MOs in RASPT2 is different from that used

in CASPT2. In CASPT2, all MOs in the active space are simultaneously orthonormalized,

whereas, in RASPT2, the MOs are separately orthonormalized in RAS1, RAS2, and RAS3.

Therefore, RASPT2 using the same number of CSFs (NCSF) as in CAS does not reproduce

the corresponding CASPT2 result. It is, therefore, important to examine the reliability of

RASPT2. The energetics of various active spaces is summarized in Table 5. All calculations

were performed using XMS-CASPT2 or XMS-RASPT2 (Nstate = 2), and each energy is ob-

tained after relaxing the geometry for each individual active space. In a few cases, it was

impossible to locate the MECIs, possibly due to either the non-invariance of XMS-CASPT2

when used with the SS-SR contraction scheme, or because of rotations between different

orbital blocks.

The most compact wavefunction expansions, CAS(4e,3o) and RAS(16e,13o)/(0e,0o)/2,

are expressed with less than 1000 CSFs, and these calculations predicted different en-

ergetics from the reference CAS(16e,13o) energy. The best agreement is achieved using

RAS(16e,13o)/(12e,9o)/1 whose deviation is less than 1.5 kcal/mol, and the improvement
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Table 5: Relative Energies of Dioxetanone with XMS-CASPT2 Using Different Active Spaces
(unit in kcal/mol)

Partitioning NCSF (σ,σ∗)-Min MECI-1 (n,σ∗)-Min MECI-2
S0 S1 S0/S1 S0 S1 S0/S1

CAS(16e,13o) 429,429 0.0 104.0 26.9 25.3 30.0 28.2
CAS(14e,11o) 32,670 0.0 104.5 25.4 23.7 28.4 31.7
CAS(12e, 9o) 2,520 0.0 104.4 21.4 19.6 24.5 —a

CAS( 4e, 3o) 6 0.0 116.2 34.0 31.1 37.5 33.5
RAS(16e,13o)/(12e,9o)/1 42,084 0.0 103.7 28.0 24.9 30.0 26.9
RAS(16e,13o)/( 4e,3o)/2 4,505 0.0 107.2 —a 29.7 35.3 29.2
RAS(16e,13o)/( 0e,0o)/4 42,301 0.0 104.1 20.9 19.1 24.4 20.8
RAS(16e,13o)/( 0e,0o)/2 861 0.0 135.7 55.5 53.4 59.2 56.0

a Could not locate the stationary point.

over CAS(12e,9o) is more than five kcal/mol for other than the S1 energy at the (σ,σ∗)-

Min conformation, but with more than ten times NCSF. Although NCSF is similar to

RAS(16e,13o)/(12e,9o)/1, RAS(16e,13o)/(0e,0o)/4 is disappointingly different from the ref-

erence: it deviates by more than five kcal/mol for other than the S1 energy at the (σ,σ∗)-Min

conformation, and very similar to the CAS(12e,9o) result. However, RAS(16e,13o)/(12e,9o)/1

predicted the opposite energetic order for MECI-1 and MECI-2. The second best agreement

was achieved using CAS(14e,11o): the largest difference from CAS(16e,13o) is about 2.5

kcal/mol despite the overestimation for MECI-2. Although it is difficult to finely control

RASPT2, it can be used as a cost-effective alternative, especially considering the general ex-

pected accuracy of MRPTs. However, if NCSF for a CAS and RAS is similar, the CAS-based

approach should be preferred.

5 Conclusions

The analytic gradient and derivative coupling vectors for (X)MS-, XDW-, and RMS-CASPT2,

as well as their RASPT2 counterparts, were derived and implemented in the open-source

package OpenMolcas. As for other quasi-degenerate MRPT approaches, the derivation is
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based on the Lagrangian formalism and the implementation was validated against numerical

gradients.

First, we carried out a series of calculations to assess the qualitative and quantitative

differences between various flavors of multistate CASPT2 in terms of the smoothness of

the PES, the accuracy of excitation energies and the robustness against the number of

states included in the model space. Second, we applied the developed methodologies to

dioxetanone and appraised the paradigm of correcting lower-level results with single point

energy calculations, e.g. CASPT2 energies on CASSCF structures. Moreover, the same

molecular system was used to assess the ability of RASPT2 to be a substitute for prohibitively

large complete active spaces.

Our findings can be summarized as follows. For ethylene, we have found that the PES

around a minimum energy conical intersection obtained with XMS and XDW is smooth,

while uncompromising artifacts were observed for RMS. As already documented in previous

works, MS failed in this respect. Smoothness is observed in the case of XMS-RASPT2,

while the qualitative characterization of the conical intersection strongly depends on the

parametrization of the RAS. Vertical transition energies for the benzene molecule computed

with several flavors of MRPT vary within the expected accuracy for this family of approxi-

mations, such that no definitive conclusion can be made in favor of any variant. Returning

to ethylene, now looking at S0 → S1 excitation energies at the Franck–Condon structure,

we observed that XMS and RMS are less sensitive to the number of states included as com-

pared to XDW. On the other hand, for the relative energies to the MECI, XMS and XDW

are more sensitive to Nstate than RMS. In the case of dioxetanone it was found that CASPT2

molecular structures may be qualitatively different from those obtained with CASSCF, and

could induce different relative energies between stationary points. Additionally, the (16e,13o)

active space applied to this molecular system was utilized as a reference in assessing the ap-

propriateness of smaller complete and restricted active spaces. For the case considered here,

it is relatively straightforward to construct compacter CASs which provide consistent results
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with the reference, whereas this is a much more delicate task in the case of RASs.

To conclude, this work opens the door for non-adiabatic molecular dynamics simulations

with a variety of multistate CASPT2 flavors, while the availability of relaxed densities now

offers simple development roads towards the calculation of accurate molecular properties, as

for example, oscillator and rotatory strengths.
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