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Abstract

Molecular representation learning (MRL) has gained tremendous attention due
to its critical role in learning from limited supervised data for applications like
drug design. In most MRL methods, molecules are treated as 1D sequential tokens
or 2D topology graphs, limiting their ability to incorporate 3D information for
downstream tasks and, in particular, making it almost impossible for 3D geometry
prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework
that significantly enlarges the representation ability and application scope of MRL
schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant
transformer architecture: a molecular pretraining model trained by 209M molecular
conformations; a pocket pretraining model trained by 3M candidate protein pocket
data. The two models are used independently for separate tasks, and are combined
when used in protein-ligand binding tasks. By properly incorporating 3D infor-
mation, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks.
Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including
protein-ligand binding pose prediction, molecular conformation generation, etc.
Finally, we show that Uni-Mol can be successfully applied to the tasks with
few-shot data like pocket druggability prediction. The model and data will be
made publicly available at https://github.com/dptech-corp/Uni-Mol.

1 Introduction

Recently, representation learning (or pretraining, self-supervised learning) [1, 2, 3] has been prevailing
in many applications, such as BERT [4] and GPT [5, 6, 7] in Natural Language Processing (NLP),
ViT [8] in Computer Vision (CV), etc. These applications have a common characteristic: unlabeled
data is abundant, while labeled data is limited. As a solution, in a typical representation learning
method, one first adopts a pretraining procedure to learn a good representation from large-scale
unlabeled data, and then a finetuning scheme is followed to extract more information from limited
supervised data.

Applications in the field of drug design share the characteristic that calls for representation learning
schemes. The chemical space that a drug candidate lies in is vast, while drug-related labeled data is
limited. Not surprisingly, compared with traditional molecular fingerprint based models [9, 10], recent
molecular representation learning (MRL) models perform much better in most property prediction
tasks [11, 12, 13]. However, to further improve the performance and extend the application scope
of existing MRL models, one is faced with a critical issue. From the perspective of life science, the
properties of molecules and the effects of drugs are mostly determined by their 3D structures [14,
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Figure 1: Schematic illustration of the Uni-Mol framework. Uni-Mol is composed of two models:
a molecular pretraining model trained by 209M molecular 3D conformations; a pocket pretraining
model trained by 3M candidate protein pocket data. The two models are used independently for
separate tasks, and are combined when used in protein-ligand binding tasks.

15]. In most current MRL methods, one starts with representing molecules as 1D sequential strings,
such as SMILES [16, 17, 18] and InChI [19, 20, 21], or 2D graphs [22, 11, 23, 12]. This may
limit their ability to incorporate 3D information for downstream tasks. In particular, this makes it
almost impossible for 3D geometry prediction or generation, such as, e.g., the prediction of protein-
ligand binding pose [24]. Even though there have been some recent attempts trying to leverage 3D
information in MRL [25, 26], the performance is less than optimal, possibly due to the small size of
3D datasets, and 3D positions can not be used as inputs/outputs during finetuning, since they only
serve as auxiliary information.

In this work, we propose Uni-Mol, to our best knowledge, the first universal 3D molecular pretraining
framework, which is derived from large-scale unlabeled data and is able to directly take 3D positions
as both inputs and outputs. Uni-Mol consists of 3 parts. 1) Backbone. Based on Transformer, the
invariant spatial positional encoding and pair level representation are added to better capture the 3D
information. Moreover, an equivariant head is used to directly predict 3D positions. 2) Pretraining.
We create two large-scale datasets, a 209M molecular conformation dataset and a 3M candidate
protein pocket dataset, for pretraining 2 models on molecules and protein pockets, respectively.
For the pretraining tasks, besides masked atom prediction, a 3D position denoising task is used
for learning 3D spatial representation. 3) Finetuning. According to specific downstream tasks, the
used pretraining models are different. For example, in molecular property prediction tasks, only the
molecular pretraining model is used; in protein-ligand binding pose prediction, both two pretraining
models are used. We refer to Fig. 1 for an overall schematic illustration of the Uni-Mol framework.

To demonstrate the effectiveness of Uni-Mol, we conduct experiments on a series of downstream
tasks. In the molecular property prediction tasks, Uni-Mol outperforms SOTA on 14/15 datasets on
the MoleculeNet benchmark. In 3D geometric tasks, Uni-Mol also achieves superior performance.
For the pose prediction of protein-ligand complexes, Uni-Mol predicts 88.07% binding poses with
RMSD <= 2Å, 22.81% more than popular docking methods, and ranks 1st in the docking power test
on CASF-2016 [27] benchmark. Regarding molecular conformation generation, Uni-Mol achieves
SOTA for both Coverage and Matching metrics on GEOM-QM9 and GEOM-Drugs [28]. Moreover,
Uni-Mol can be successfully applied to tasks with very limited data like pocket druggability prediction.

2 Uni-Mol Framework

In this section, we introduce the Uni-Mol framework by showing the details of the backbone, the
pretraining scheme, and the finetuning scheme. We refer to Fig. 2 for a schematic illustration of the
model architecture.
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Figure 2: Left: the overall pretraining architecture. Middle: the model inputs, including atoms and
spatial positional encoding created by pair Euclidean distance. Right: pair representation and its
update process.

2.1 Backbone

Transformer [29] is the default backbone in representation learning. However, Transformer was
originally designed for NLP tasks and cannot handle 3D spatial data directly. To tackle this, based on
the standard Transformer with Pre-LayerNorm [30] backbone, we introduce several modifications.

Invariant spatial positional encoding Due to its permutationally invariant property, Transformer
cannot distinguish the positions of inputs without positional encoding. Different with the discrete
(ordinal) positions used in NLP/CV [31, 32], the positions in 3D space, i.e. coordinates, are continuous
values. Besides, the positional encoding procedure needs to be invariant under global rotation and
translation. To achieve that, similar to the relative positional encoding, we simply use Euclidean
distances of all atom pairs, as well as pair-type aware Gaussian kernels [33]. Formally, the D-channel
positional encoding of atom pair ij is denoted as

pij = {G(A(dij , tij ;a, b), µ
k, σk)|k ∈ [1, D]}, A(d, r;a, b) = ard+ br, (1)

where G(d, µ, σ) = 1
σ
√
2π

e−
(d−µ)2

2σ2 is a Gaussian density function with parameters µ and σ, dij is the
Euclidean distance of atom pair ij, and tij is the pair-type of atom pair ij. Please note the pair-type
here is not the chemical bond, and it is determined by the atom types of pair ij. A(dij , tij ;a, b) is
the affine transformation with parameters a and b, it affines dij corresponding to its pair-type tij .
Except dij and tij , all remaining parameters are trainable and randomly initialized.

Pair representation By default, Transformer maintains the token(atom) level representation, which
is later used in finetuning downstream tasks. Nevertheless, as the spatial positions are encoded at
pair-level, we also maintain the pair-level representation, to better learn the 3D spatial representation.
Specifically, the pair representation is initialized as the aforementioned spatial positional encoding.
Then, to update pair representation, we use the atom-to-pair communication via the multi-head Query-
Key product results in self-attention. Formally, the update of ij pair representation is denoted as

q0
ij = pijM , ql+1

ij = ql
ij + {

Ql,h
i (Kl,h

j )T
√
d

|h ∈ [1, H]}, (2)

where ql
ij is the pair representation of atom pair ij in l-th layer, H is the number of attention heads,

d is the dimension of hidden representations, Ql,h
i (Kl,h

j ) is the Query (Key) of the i-th (j-th) atom
in the l-th layer h-th head, and M ∈ RD×H is the projection matrix to make the representation the
same shape as multi-head Query-Key product results.

Besides, to leverage 3D information in the atom representation, we also introduce the pair-to-atom
communication, by using the pair representation as the bias term in self-attention. Formally, the
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self-attention with pair-to-atom communication is denoted as

Attention(Ql,h
i ,Kl,h

j ,V l,h
j ) = softmax(

Ql,h
i (Kl,h

j )T
√
d

+ ql−1,h
ij )V l,h

j , (3)

where V l,h
j is the Value of the j-th atom in the l-th layer h-th head. The pair representation and

atom-pair communication are firstly proposed in the Evoformer in AlphaFold [34], but the cost of
Evoformer is extremely large. In Uni-Mol, as we keep them as simple as possible, the extra cost of
maintaining pair representation is negligible.

SE(3)-Equivariance coordinate head With 3D spatial positional encoding and pair representation,
the model can learn a good 3D representation. However, it still lacks the ability to directly output co-
ordinates, which is essential in 3D spatial tasks. To this end, we add a simple SE(3)-equivariance head
to Uni-Mol. Following the idea of EGNN [35], the design of SE(3)-equivariance head is denoted as

x̂i = xi +

n∑
j=1

(xi − xj)cij
n

, cij = ReLU((qL
ij − q0

ij)U)W , (4)

where n is the number of total atoms, L is the number of layers in model, xi ∈ R3 is the input
coordinate of i-th atom, and x̂i ∈ R3 is the output coordinate of i-th atom, ReLU(y) = max(0, y)
is Rectified Linear Unit [36], U ∈ RH×H and W ∈ RH×1 are the projection matrices to convert
pair representation to scalar.

2.2 Pretraining

For the purpose of pretraining, we generate two large-scale datasets, one composed of 3D structures
of organic molecules, and another composed of 3D structures of candidate protein pockets. Then,
two models are pretrained using these two datasets, respectively. As pockets are directly involved
in many drug design tasks, intuitively, the pretraining on candidate protein pockets can boost the
performance of tasks related to protein-ligand structures and interactions.

The molecular pretraining dataset is based on multiple public datasets (See Appendix A for more infor-
mation). After normalizing and deduplicating, it contains about 19M molecules. To generate 3D con-
formations, we use ETKGD [37] with Merck Molecular Force Field [38] optimization in RDKit [39] to
randomly generate 10 conformations for each molecule. We also generate an additional 2D conforma-
tion (based on the molecular graph), to avoid some rare cases that fail to generate 3D conformations.

The protein pocket pretraining dataset is derived from the Protein Data Bank (RCSB PDB 3) [40], a
collection of 180K 3D structures of proteins. To extract candidate pockets, we first clean the data
by adding the missing side chains and hydrogen atoms; then we use Fpocket [41] to detect possible
binding pockets of the proteins; and finally, we filter pockets by the number of residues in contact
with and retains water molecules in the pocket. In this way, We collect a dataset composed of 3.2M
candidate pockets for pretraining.

Self-supervised task is vitally important for effective learning from large-scale unlabeled data.
For example, the masked token prediction task in BERT [4] encourages the model to learn the
contextual information. Similar to BERT, the masked atom prediction task is used in Uni-Mol.
For each molecule/pocket, we add a special atom [CLS], whose coordinate is the center of all
atoms, to represent the whole molecule/pocket. However, as 3D spatial positional encoding leaks
chemical bonds, atom types could be inferred easily, and therefore, the masked atom prediction
cannot encourage the model to learn useful information. To tackle this, as well as learning from 3D
information, we design a 3D position denoising task. Particularly, uniform noises of [-1 Å, 1 Å] are
added to the random 15% atom coordinates, then the spatial positional encoding is calculated based
on corrupted coordinates. In this way, the masked atom prediction task becomes non-trivial. Besides,
two additional heads are used to recover the correct spatial positions. 1) Pair-distance prediction.
Based on pair-representation, the model needs to predict the correct Euclidean distances of the atoms
pairs with corrupted coordinates. 2) Coordinate prediction. Based on SE(3)-Equivariance coordinate
head, the model needs to predict the correct coordinates for the atoms with corrupted coordinates.

3http://www.rcsb.org/
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Both 2 pretraining models use the same self-supervised tasks described above, and Figure 2 is the
illustration of the overall pretraining framework. For the detailed configurations of pretraining, please
refer to Appendix C.

2.3 Finetuning
To be consistent with pretraining, we use the same data prepossessing pipeline during finetuning.
For molecules, as multiple random conformations can be generated in a short time, we can use them
as data augmentation in finetuning to improve performance and robustness. Some molecules may fail
to generate 3D conformations, and we use their molecular graph as 2D conformation. For tasks that
provide atom coordinates, we use them directly and skip the 3D conformation generation process.
As there are 2 pretraining models and several types of downstream tasks, we should properly use
them in the finetuning stage. According to the task types, and the involvement of protein or ligand,
we can categorize them as follow.

Non-3D prediction tasks These tasks do not need to output 3D conformations. Examples include
molecular property prediction, molecule similarity, pocket druggability prediction, protein-ligand
binding affinity prediction, etc. Similar to NLP/CV, we can simply use the representation of [CLS]
which represents the whole molecule/pocket, or the mean representation of all atoms, with a linear
head to finetune on downstream tasks. In the tasks with pocket-molecule pair, we can concatenate
their [CLS] representations, and then finetune with linear head.

3D prediction tasks of molecules or pockets These tasks need to predict a 3D conformation
of the input, such as molecular conformation generation. Different with the fast conformation
generation method used in Uni-Mol, molecular conformation generation task usually requires running
advanced sampling and semi-empirical density functional theory (DFT) to account for the ensemble
of 3D conformers that are accessible to a molecule, and this is very time-consuming. Therefore,
there are many recent works that train the model to fast generate conformations from molecular
graph [42, 43, 44, 45]. While in Uni-Mol, this task straightforwardly becomes a conformation
optimization task: generate a new conformation based on a different input conformation. Specifically,
in finetuning, the model supervised learns the mapping from Uni-Mol generated conformations to
the labeled conformations. Moreover, the optimized conformations can be generated end-to-end by
SE(3)-Equivariance coordinate head.

3D prediction tasks of protein-ligand pairs This is one of the most important tasks in structure-
based drug design. The task is to predict the complex structure of a protein binding site and a
molecular ligand. Besides the conformation changes of the pocket and the molecule themselves, we
also need to consider how the molecule lays in the pocket, that is, the additional 6 degrees (3 rotations
and 3 translations) of freedom of a rigid movement. In principle, with Uni-Mol, we can predict the
complex conformation by the SE(3)-Equivariant coordinate head in an end-to-end fashion. However,
this is unstable as it is very sensitive to the initial docking positions of molecular ligand. Herein, to
get rid of the initial positions, we use a scoring function based optimization method in this paper. In
particular, the molecular representation and pocket representation are firstly obtained from their own
pretraining models by their own conformations; then, their representations are concatenated as the
input of an additional 4-layer Uni-Mol encoder, which is finetuned to learn the pair distances of all
atoms in molecule and pocket. With the predicted pair-distance matrix as the scoring function, we
use a simple differential evolution algorithm [46] to sample and optimize the complex conformations.
More details can be found in Appendix C.

3 Experiments
To verify the effectiveness of our proposed Uni-Mol model, we conduct extensive experiments
on multiple downstream tasks, including molecular property prediction, molecular conformation
generation, pocket property prediction, and protein-ligand binding pose prediction. Besides, we also
conduct several ablation studies. Due to space restrictions, we leave the detailed experimental settings
and ablation studies to Appendix C.

3.1 Molecular property prediction
Datasets and setup MoleculeNet [47] is a widely used benchmark for molecular property
prediction, including datasets focusing on different levels of properties of molecules, from quantum
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Table 1: Uni-Mol performance on molecular property prediction classification tasks
Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087
# Tasks 1 1 2 12 617 27 1 128 17

D-MPNN 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 77.1(0.5) 86.2(0.1) 78.6(1.4)
Attentive FP 64.3(1.8) 78.4(0.022) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 75.7(1.4) 80.1(1.4) 76.6(1.5)
N-GramRF 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) - 66.8(0.7) 77.2(0.1) - 76.9(0.7)
N-GramXGB 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) - 65.5(0.7) 78.7(0.4) - 74.8(0.2)
PretrainGNN 68.7(1.3) 84.5(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 79.9(0.7) 86.0(0.1) 81.3(2.1)
GROVERbase 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 62.5(0.9) 76.5(2.1) 67.3(1.8)
GROVERlarge 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 68.2(1.1) 83.0(0.4) 67.3(1.8)
GraphMVP 72.4(1.6) 81.2(0.9) 79.1(2.8) 75.9(0.5) 63.1(0.4) 63.9(1.2) 77.0(1.2) - 77.7(0.6)
MolCLR 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) - 58.9(1.4) 78.1(0.5) - 79.6(1.9)
GEM 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 80.6(0.9) 86.6(0.1) 81.7(0.5)

Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3) 88.5(0.1) 82.1(1.3)

Table 2: Uni-Mol performance on molecular property prediction regression tasks
Regression (lower is better ↓)

RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885
# Tasks 1 1 1 1 12 3

D-MPNN 1.050(0.008) 2.082(0.082) 0.683(0.016) 103.5(8.6) 0.0190(0.0001) 0.00814(0.00001)
Attentive FP 0.877(0.029) 2.073(0.183) 0.721(0.001) 72.0(2.7) 0.0179(0.001) 0.00812(0.00001)
N-GramRF 1.074(0.107) 2.688(0.085) 0.812(0.028) 92.8(4.0) 0.0236(0.0006) 0.01037(0.00016)
N-GramXGB 1.083(0.082) 5.061(0.744) 2.072(0.030) 81.9(1.9) 0.0215(0.0005) 0.00964(0.00031)
PretrainGNN 1.100(0.006) 2.764(0.002) 0.739(0.003) 113.2(0.6) 0.0200(0.0001) 0.00922(0.00004)
GROVERbase 0.983(0.090) 2.176(0.052) 0.817(0.008) 94.5(3.8) 0.0218(0.0004) 0.00984(0.00055)
GROVERlarge 0.895(0.017) 2.272(0.051) 0.823(0.010) 92.0(0.9) 0.0224(0.0003) 0.00986(0.00025)
GraphMVP 1.029(0.033) - 0.681(0.010) - - -
MolCLR 1.271(0.040) 2.594(0.249) 0.691(0.004) 66.8(2.3) 0.0178(0.0003) -
GEM 0.798(0.029) 1.877(0.094) 0.660(0.008) 58.9(0.8) 0.0171(0.0001) 0.00746(0.00001)

Uni-Mol 0.788(0.029) 1.620(0.035) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)

mechanics and physical chemistry to biophysics and physiology. Following previous work GEM [13],
we use scaffold splitting for the dataset and report the mean and standard deviation of the results
for three random seeds.

Baselines We compare Uni-Mol with multiple baselines, including supervised and pretraining
baselines. D-MPNN [48] and AttentiveFP [49] are supervised GNNs methods. N-gram [50],
PretrainGNN [22], GROVER [11], GraphMVP [25], MolCLR [12], and GEM [13] are pretraining
methods. N-gram embeds the nodes in the graph and assembles them in short walks as the graph
representation. Random Forest and XGBoost [51] are used as the predictor for downstream tasks.

Results Table 1 and Table 2 show the experiment results of Uni-Mol and competitive baselines,
where the best results are marked in bold. Most baseline results are from the paper of GEM, except for
the recent works GraphMVP and MolCLR. The results of GraphMVP are from its paper. As MolCLR
uses a different data split setting (without considering chirality), we rerun it with the same data split
setting as other baselines. From the results, we can summarize them as follows: 1) overall, Uni-Mol
outperforms baselines on almost all downstream datasets. 2) In solubility (ESOL, Lipo), free energy
(FreeSolv), and quantum mechanical (QM7, QM8, QM9) properties prediction tasks, Uni-Mol is
significantly better than baselines. As 3D information is critical in these properties, it indicates that
Uni-Mol can learn a better 3D representation than other baselines. 3) Uni-Mol fails to beat SOTA on
the SIDER dataset. After investigation, we find Uni-Mol fails to generate 3D conformations (and
rollbacks to 2D graphs) for many molecules (like natural products and peptides) in SIDER. Therefore,
due to the missing 3D information, it is reasonable that Uni-Mol cannot outperform others.

In summary, by better utilizing 3D information in pretraining, Uni-Mol outperforms all previous
MRL models in almost all property prediction tasks.
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Table 3: Uni-Mol performance on molecular conformation generation
Dataset QM9 Drugs

Methods COV(↑, %) MAT(↓, Å) COV(↑, %) MAT(↓, Å)
Mean Median Mean Median Mean Median Mean Median

RDKit 83.26 90.78 0.3447 0.2935 60.91 65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GraphDG 73.33 84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247
ConfVAE 80.42 85.31 0.4066 0.3891 53.14 53.98 1.2392 1.2447
ConfGF 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629 1.1596
GeoMol 71.26 72.00 0.3731 0.3731 67.16 71.71 1.0875 1.0586
DGSM 91.49 95.92 0.2139 0.2137 78.73 94.39 1.0154 0.9980
DMCG 96.34 99.53 0.2065 0.2003 96.69 100.00 0.7223 0.7236
GeoDiff 91.68 95.82 0.2099 0.2026 89.13 97.88 0.8629 0.8529

Uni-Mol 98.68 100.00 0.1806 0.1510 92.69 100.00 0.6596 0.6215

3.2 Molecular conformation generation
Datasets and setup Following the settings in previous works [43, 52], we use GEOM-QM9 and
GEOM-Drugs [53] dataset to perform conformation generation experiments. As described in Sec. 2.3,
in this task, Uni-Mol optimizes its generative conformations to the labeled ones. To construct the
finetuning data, we first randomly generate 10 conformations. Then, for each of them, we calculate
the RMSD between it and labeled conformations, and choose the one with minimal RMSD as its
optimizing target. For the inference in the test set, we generate the same number of conformations
(twice the number of labeled conformations) as previous works do. And we use the same metrics,
Coverage (COV) and Matching (MAT). Higher COV means better diversity, while lower MAT means
higher accuracy.
Baselines We compare Uni-Mol with 10 competitive baselines. RDKit [37] is a traditional confor-
mation generation method based on distance geometry. The rest baseline can be categorized into two
classes. GraphDG [42], CGCF[43], ConfVAE [54], ConfGF [52], and DGSM [55] combine gener-
ative models with distance geometry, which first generates interatomic distance matrices and then
iteratively generates atomic coordinates. CVGAE [44], GeoMol [45], DMCG [56], and GeoDiff [57]
directly generate atomic coordinates.

Results The results are shown in Table 3. We report the mean and median of COV and MAT on
GEOM-QM9 and GEOM-Drugs datasets. ConfVAE [54], GeoMol[45], DGSM [55], DMCG [56],
GeoDiff’s [57] results are from their papers, respectively. Other baseline results are from ConfGF’s
paper. As shown in Table 3, Uni-Mol exceeds existing baselines in both COV and MAT metrics on
both datasets. Although Uni-Mol outperforms SOTA, we suspect that the above benchmark cannot
satisfy the real-world demand of conformation generation tasks in the field of drug design. Since
the ensemble of molecular conformations in biological systems is different from that in a vacuum or
general solution environment, the ensemble of bioactive conformation must be considered in order to
apply the conformation generation model in the context of drug design, while the GEOM dataset just
ignores this. Establishing a reasonable benchmark will be crucial in this research direction.

3.3 Pocket property prediction
Datasets and setup Druggability, the ability of a candidate protein pocket to produce stable
binding to a specific molecular ligand, is one of the most critical properties of a candidate protein
pocket. However, this task is very challenging due to the very limited supervised data. For example,
NRDLD [58], a commonly used dataset, only contains 113 data samples. Therefore, besides
NRDLD, we construct a regression dataset for benchmarking pocket property prediction performance.
Specifically, based on Fpocket tool, we calculate Fpocket Score, Druggability Score, Total SASA,
and Hydrophobicity Score for the selected 164,586 candidate pockets. Model is trained to predict
these scores. To avoid leaking, the selected pockets are not overlapped with the candidate protein
pocket dataset used in Uni-Mol pretraining.
Baselines On the NRDLD dataset, we compare Uni-Mol with 6 previous methods evaluated in [59].
Accuracy, recall, precision, and F1-score are used as metrics for this classification task. On our
created benchmark dataset, as there are no appropriate baselines, we use an additional Uni-Mol model
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Table 4: Uni-Mol performance on pocket property prediction
Classification (higher is better ↑) Regression (lower is better ↓)

Dataset NRDLD Fpocket Scores

Methods Cavity-DrugScore Volsite DrugPred PockDrug TRAPP-CNN Uni-Mol Methods Uni-Molrandom Uni-Mol

Accuracy 0.82 0.89 0.89 0.865 0.946 0.946 MSEFpocket 0.621(0.004) 0.551(0.008)
Recall - - - 0.957 0.913 1.000 MSEDruggability 0.601(0.02) 0.499(0.007)
Precision - - - 0.846 1.000 0.920 MSETotal SASA 0.197(0.008) 0.129(0.005)
F1-score - - - 0.898 0.955 0.958 MSEHydrophobicity 0.0357(0.017) 0.0127(0.0005)

without pretraining, denoted as Uni-Molrandom, to check the performance brought by pretraining on
pocket property prediction. MSE (mean square error) is used as the metric.
Results As shown in Table 4, Uni-Mol shows the best accuracy, recall, and F1-score on NRDLD,
the few-show dataset. In our created benchmark dataset, the pretraining Uni-Mol model largely
outperforms the non-pretraining one on all four scores. This indicates that pretraining on candidate
protein pockets indeed brings improvement in pocket property prediction tasks.

Unlike Molecular property prediction, due to the very limited supervised data, pocket property
prediction gained much less attention. Therefore, we also plan to release our created benchmark
dataset, and hopefully, it can help future research.

3.4 Protein-ligand binding pose prediction
Datasets and setup As mentioned above, protein-ligand binding pose prediction is one of the most
important tasks in drug design. And Uni-Mol combines both the molecular and pocket pretraining
models to learn a distance matrix based scoring function, and then sample and optimize the complex
conformations. For the benchmark dataset, referring to the previous works [27, 60], we use CASF-
2016 as the test set. For the training data used in finetuning, we use PDBbind General set v.2020 [61]
(19,443 protein-ligand complexes), excluding complexes that already exist in the CASF-2016.

Two benchmarks are conducted: 1) Docking power, the default metric to benchmark the ability of a
scoring function in CASF-2016. Specifically, it tests whether a scoring function can distinguish the
ground truth binding pose from a set of decoys or not. For each ground truth, CASF-2016 provides
50 100 decoy conformations of the same ligand. Scoring functions are applied to rank them, and the
ground truth binding pose is expected to be the top 1. 2) Binding pose accuracy. Specifically, we use
the semi-flexible docking setting: keep the pocket conformation fixed, while the conformation of the
ligand is fully flexible. We evaluate the RMSD between the predicted binding pose and the ground
truth. Following previous works, we use the percentage of results that are below predefined RMSD
thresholds as metrics.
Baselines For docking power benchmark, the baselines are DeepDock [60] and the top 10 scoring
functions reported in [27], including both conventional scoring functions and machine learning-
based ones. For the binding pose accuracy, the baselines are Autodock Vina [62, 63], Vinardo [64],
Smina [65], and AutoDock4 [66].
Results From the docking power benchmark results shown in Figure 3, Uni-Mol ranks the 1st,
with the top 1 success rate of 91.6%. For comparison, the previous top scoring function AutoDock
Vina [62, 63] achieves 90.2% of the top 1 success rate in this benchmark. From the binding pose
accuracy results shown in Table 5, Uni-Mol also surpasses all other baselines. Notably, Uni-Mol
outperforms the second best method by 22.81% under the threshold of 2Å. This result indicates that
Uni-Mol can effectively learn the 3D information from both molecules and pockets, as well as the
interaction in 3D space of them. Even without pretraining, Uni-Mol (denoted as Uni-Molrandom) is
also better than other baselines. This demonstrates the effectiveness of Uni-Mol backbone, as it
effectively learns the 3D information by limited data.

In summary, by combining molecular and pocket pretraining models, Uni-Mol significantly outper-
forms the widely used docking tools in the protein-ligand binding tasks.

4 Related work
Molecular representation learning Representation learning on large-scale unlabeled molecules
attracts much attention recently. SMILES-BERT [18] is pretrained on SMILES strings of molecules
using BERT [4]. Subsequent works are mostly pretraining on 2D molecular topological graphs [23,
11]. MolCLR [12] applies data augmentation to molecular graphs at both node and graph levels, using
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Figure 3: Docking power evaluation on
CASF-2016 (Top 10 methods)

Ligand RMSD
% Below Threshold ↑

Methods 0.5 Å 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
Autodock Vina 23.86 44.21 57.54 64.56 73.68 84.56
Vinardo 23.51 41.75 57.54 62.81 69.82 76.84
Smina 23.51 47.37 59.65 65.26 74.39 82.11
Autodock4 7.02 21.75 31.58 35.44 47.02 64.56
Uni-Molrandom 14.04 49.47 65.26 75.44 87.02 98.60
Uni-Mol 24.91 70.53 84.21 88.07 94.74 98.95

Table 5: Uni-Mol performance on binding pose prediction

a self-supervised contrastive learning strategy to learn molecular representations. Further, several
recent works try to leverage the 3D spatial information of molecules, and focus on contrastive or
transfer learning between 2D topology and 3D geometry of molecules. For example, GraphMVP [25]
proposes a contrastive learning GNN-based framework between 2D topology and 3D geometry.
GEM [13] uses bond angles and bond length as additional edge attributes to enhance 3D information.
As aforementioned, due to the inability of handling 3D information, most previous representation
learning models cannot be used in the important 3D prediction tasks.

SE(3)-Equivariant models In many-body scenarios such as potential energy surface fitting, SE-(3)
equivariance is usually required. A series of SE(3) models are proposed, such as SchNet [67], tensor
field networks [68], SE(3) Transformer [69], DimmNet [70], equivariant graph neural networks
(EGNN) [35], and GemNet [71]. Most of these models are used in supervised learning with energy
and force. In Uni-Mol, based on the standard Transformer, we introduce several minor changes to
make the model SE(3)-Equivariant.

Pocket druggability prediction Druggability prediction of protein binding pockets is crucial for
drug discovery as druggable pockets need to be identified at the beginning. Since proteins undergo
conformation changes that might alter the druggability of pockets, it is necessary to utilize 3D
spatial data beyond sequential information. Early methods, such as Volsite [72], DrugPred [58], and
PockDrug [73], predict druggability based on the predefined descriptors of pockets’ static structures.
Later, TRAPP-CNN [59], based on 3D-CNN, proposes the analysis of proteins’ conformation changes
and the use of such information for druggability prediction.

Protein-ligand binding pose prediction In structure-based drug design, it is crucial to understand
the interactions between protein targets and ligands. The in vitro estimation of the binding pose
and affinity, such as docking, allows for lead identification and guides molecular optimization. In
particular, docking is one of the most important approaches in structure-based drug design and
has been developed for the past decades. Tools such as AutoDock4 [66], AutoDock Vina [62,
63], and Smina [65] are among the most used docking programs. Also, machine learning-based
docking methods, such as ∆V inaRF20 [74] and DeepDock [60], have also been developed to predict
protein-ligand binding poses and assess protein-ligand binding affinity.

5 Conclusion
In this paper, to enlarge the application scope and representation ability of molecular representation
learning (MRL), we propose Uni-Mol, the first universal large-scale 3D MRL framework. Uni-Mol
consists of 3 parts: a Transformer based backbone to handle 3D data; two large-scale pretraining
models to learn molecular and pocket representations respectively; finetuning strategies for all kinds
of downstream tasks. Experiments demonstrate that Uni-Mol can outperform existing SOTA in
various downstream tasks, especially in 3D spatial tasks.

There are 3 potential future directions. 1) Better interaction mechanisms for finetuning two pretraining
models together. As the interaction between the pretraining pocket model and the pretraining
molecular model is simple in the current version of Uni-Mol, we believe there is a large room for
further improvement. 2) Large Uni-Mol models. As larger pretraining models often perform better, it
is worthy of training a large Uni-Mol model on a bigger dataset. 3) More high-quality benchmarks.
Although there have been many applications in the field of drug design, high-quality public datasets
have been lacking. Many public datasets cannot satisfy real-world demand due to the low data quality.
We believe the high-quality benchmarks will be the lighthouse of the entire field, and will significantly
accelerate the development of drug design.
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A Pretraining data

Molecular dataset The pretraining datasets we use consist of two parts: one part is a database
collection of 12 million molecules that can be synthesized and purchased (See Table 6), and the
other part is taken from a previous work [23], whose molecules are collected from the ZINC [75]
and ChemBL [76] databases. After normalizing and duplicating, we obtain 19 million molecules as
our pretraining dataset. For each molecule, we add random conformer augmentations with ten 3D
conformers generated by RDKit and one 2D graph to avoid ETKDG patterns missing match.

Candidate protein pocket dataset The pretraining dataset for candidate protein pockets is derived
from the Protein Data Bank (RCSB PDB 4) [40], a collection of 180K structural data of proteins.
We first pre-process the raw data by adding missing side chains and hydrogen atoms, and then we
use Fpocket [41] to detect candidate binding pockets of the proteins. After filtering the raw pockets
by the number of residues they have contact with (10~25) and including water molecules inside the
pockets, we collect a pretraining dataset of 3,291,739 candidate pockets.

B Downstream data supplements

Molecular property prediction We conduct experiments on the MoleculeNet[47] benchmark
in the molecular property prediction task. MoleculeNet is a widely used benchmark for molecular
property prediction. The details of the 15 datasets we used are described below.

• BBBP Blood-brain barrier penetration (BBBP) contains the ability of small molecules to penetrate
the blood-brain barrier.

• BACE This dataset contains the results of small molecules as inhibitors of binding to human
β-secretase 1 (BACE-1).

• ClinTox This dataset contains the toxicity of the drug in clinical trials and the status of the drug for
FDA approval[77].

• Tox21 The dataset contains toxicity measurements of 8k molecules for 12 targets.

• ToxCast This dataset is derived from toxicology data from in vitro high-throughput screening and
contains toxicity measurements for 8k molecules against 617 targets.

• SIDER The Side Effect Resource (SIDER) contains side effects of drugs on 27 system organs.
These drugs are not only small molecules but also some peptides with molecular weights over
1000.

• HIV This dataset contains 40k compounds with the ability to inhibit HIV replication.

• PCBA PubChem BioAssay (PCBA) is a database of small molecule bioactivities generated by
high-throughput screening. This is a subset containing over 400k molecules on 128 bioassays.

• MUV Maximum Unbiased Validation (MUV) is another subset of PubChem BioAssay, containing
90k molecules and 17 bioassays.

• ESOL This dataset contains the water solubility of the compound and is a small dataset with 1128
molecules.

• FreeSolv The dataset contains hydration free energy data for small molecules, of which we use the
experimental values as labels.

• Lipo Lipophilicity contains the solubility of small molecules in lipids, of which we use the
octanol/water distribution coefficient as the label.

• QM7, QM8, QM9 The molecule in QM7 contains up to 7 heavy atoms, QM8 is 8 and QM9 is
9. These datasets provide the geometric, energetic, electronic and thermodynamic properties of
the molecule, which are calculated by density functional theory (DFT)[78]. QM9 contains several
quantum mechanical properties of different quantitative ranges, and we select homo, lumo and gap
of similar quantitative range, following the setup of the previous work[13].

4http://www.rcsb.org/
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Table 6: Database collection of 12M purchasable molecules
Database Molecules Link

Targetmol 10,000 https://www.targetmol.com/
Chemdiv 1,613,931 https://www.chemdiv.com/
Enamine 2,734,581 https://enamine.net/
Chembridge 1,557,942 https://www.chembridge.com/
Life Chemical 509,975 https://lifechemicals.com/
Specs 208,670 https://www.specs.net/
Vitas-M 1,409,339 https://vitasmlab.biz/
InterBioScreen 48,627 https://www.ibscreen.com/
Maybridge 53,352 https://www.thermofisher.in/
Bionet-Key Organics 259,244 https://www.keyorganics.net/
Asinex 530,881 https://www.asinex.com/
UkrOrgSynthesis 688,952 https://uorsy.com/
Eximed 61,009 https://eximedlab.com/
HTS Biochemie Innovationen 58,437 https://www.hts-biochemie.de/
Princeton BioMolecular 1,532,542 https://princetonbio.com/
Otava 270,835 https://otavachemicals.com/
Alinda Chemical 202,332 https://www.alinda.ru/
Analyticon 42,664 https://www.analyticon-diagnostics.com/

Molecular corformation generation Following the settings in previous works [43, 52], we use
GEOM-QM9 and GEOM-Drugs [53] dataset in this task.

• GEOM This dataset contains 37 million accurate conformations generated for 450,000 molecules
by advanced sampling and semi-empirical density flooding theory (DFT). Of these, 133,000
molecules are from QM9, and the remaining 317,000 molecules have biophysical, physiological,
or physical chemistry experimental data, i.e., Drugs.

Pocket property prediction NRDLD [58] is a benchmark dataset for pocket druggability prediction.
As NRDLD and other existing benchmark datasets are too small, we construct a regression dataset to
benchmark pocket property prediction performance.

• NRDLD NRDLD contains 113 proteins, and a predefined split is provided: 76 proteins constitute
the training set and 37 proteins constitute the test set. It labels 71 proteins as druggable in that they
noncovalently bind small drug-like ligands [59]. The rest 42 proteins are labeled as less-druggable
because none of the ligands they cocrystallized satisfy the following requirements simultaneously:
the rule of five, clogP ≥ -2, and ligand efficiency, as defined in [28], ≥ 0.3 kcal mol−1 / heavy
atom.

• Our created benchmark dataset The dataset contains 164,586 candidate pockets, and Fpocket
scores each one of them on Fpocket Score, Druggability Score, Total SASA, and Hydrophobicity
Score. These four scores are indicators of the druggability of candidate pockets. To avoid leaking,
the selected pockets are not overlapped with the candidate protein pocket dataset used in Uni-Mol
pretraining.

Protein-ligand binding pose prediction We use PDBbind General set v.2020 [61], excluding
the complexes in CASF-2016 [27], as the training set. And CASF-2016 is used as the test set. In
particular, we define the pocket for each protein-ligand pair as residues of the protein which have at
least one atom within the range of 6Å from a heavy atom in the ligand. All atoms of the selected
residues are included. In addition, we draw the smallest bounding box covering all of the atoms in
the pocket and regard the water molecules in the bounding box as a part of the pockets, too.

• PDBbind General set v.2020 This dataset contains 19,443 protein-ligand complexes with binding
data and processed structural files originally from the Protein Data Bank (PDB). Only complexes
with experimentally determined binding affinity data are included in the general set.

• CASF-2016 CASF-2016 is the widely used benchmark for docking and scoring. This dataset,
whose primary test set is known as the PDBbind Core set, contains 285 protein-ligand complexes
with high quality crystal structures and reliable binding constants from PDBbind General set. For

15

https://www.targetmol.com/
https://www.chemdiv.com/
https://enamine.net/
https://www.chembridge.com/
https://lifechemicals.com/
https://www.specs.net/
https://vitasmlab.biz/
https://www.ibscreen.com/
https://www.thermofisher.in/
https://www.keyorganics.net/
https://www.asinex.com/
https://uorsy.com/
https://eximedlab.com/
https://www.hts-biochemie.de/
https://princetonbio.com/
https://otavachemicals.com/
https://www.alinda.ru/
https://www.analyticon-diagnostics.com/


Table 7: Uni-Mol hyperparameters setup during pre-training
Hyperparameter Molecular pretraining Pocket pretraining

Layers 15 15
Peak learning rate 1e-4 1e-4
Batch size 128 128
Max training steps 1M 1M
Warmup steps 10K 10k
Attention heads 64 64
FFN dropout 0.1 0.1
Attention dropout 0.1 0.1
Embedding dropout 0.1 0.1
Weight decay 1e-4 1e-4
Embedding dim 512 512
FFN hidden dim 2048 2048
Gaussian kernel channels 128 128
Mask ratio 0.15 0.15
Coordinate noise Uniform [-1 Å, 1 Å] Uniform [-1 Å, 1 Å]
Activation function GELU GELU
Learning rate decay Linear Linear
Adams ϵ 1e-6 1e-6
Adams (β1, β2) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1.0 1.0
Atom loss function and its weight Cross entropy, 1.0 Cross entropy, 1.0
Coordinate loss function and its weight Smooth L1, 5.0 Smooth L1, 1.0
Distance loss function and its weight Smooth L1, 10.0 Smooth L1, 1.0
Max number of atoms 256 256
Vocabulary size (atom types) 30 9

each protein-ligand complex, CASF-2016 provides 50~100 decoy molecular conformations of the
same ligand for evaluation.

C Experiments details & reproduce

Molecular Pretraining setup We report the detailed hyperparameters setup of Uni-mol during
pretraining in Table 7. Uni-Mol training loss is summed up by three components, atom(token) loss,
coordinate loss, and pair-distance loss. Atoms are masked, and noise is added to coordinate as
described in sections 2.1 and 2.2. Since the values of the above three components differ significantly,
to make them have a similar influence, we enlarge the coordinate loss and distance loss.

Pocket Pretraining setup The pocket Uni-Mol model is slightly different from molecule ones
during pretraining: 1) We use a residue-level masking strategy instead of the original atom-level, as
residue granularity is non-redundancy and integrity in protein. 2) Only polar hydrogen is remained in
pocket Uni-Mol pretraining, to reduce the number of used atoms and thus improve efficiency. 3) All
weights of loss functions are set 1, as the residue-level masking strategy makes the 3D denoising task
much harder. Other settings are listed in Table 7.

Molecular property prediction

• Data split In our experiments, referring to previous work GEM[13], we use scaffold splitting[79]
to divide the dataset into training, validation, and test sets in the ratio of 8:1:1. Scaffold splitting
is more challenging than random splitting as the scaffold sets of molecules in different subsets
do not intersect. This splitting tests the model’s generalization ability and reflects the realistic
cases[47]. Since this splitting is according to the scaffold of the molecule, we find that whether or
not chirality is considered when generating the scaffold using RDKit has a significant impact on
the division results. From the results, the splitting considering chirality makes the task harder. The
original implementation of MolCLR does not consider chirality, and we reproduce the experiment
by considering it. In all experiments, we choose the checkpoint with the best validation loss, and
report the results on the test-set run by that checkpoint.
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Table 8: Search space for small datasets: BBBP, BACE, ClinTox, Tox21, Toxcast, SIDER, ESOL,
FreeSolv, Lipo, QM7, QM8, for large datasets: PCBA, MUV, QM9, and for HIV

Hyperparameter Small Large HIV

Learning rate [5e-5, 1e-4, 4e-4, 5e-4] [2e-5, 1e-4] [2e-5, 5e-5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40 ,60, 80, 100] [20, 40] [2, 5, 10]
Pooler dropout [0.0, 0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0, 0.1]

Table 9: Hyperparameters setup for molecular conformation generation
Learning rate 1e-4
Batch size 8
Epochs 5
Warmup ratio 0.06
Coordinate loss function and weight MSE, 1.0
Distance loss function and weight MSE, 1.0

• Hyperparameter search space Referring to previous works, we use a grid search to find the best
combination of hyperparameters for the molecular property prediction task. To reduce the time
cost, we set a smaller search space for the large datasets. The specific search space is shown in
Table 8.

Molecular conformation generation We report the detailed hyperparameters setup for molecular
conformation generation in Table 9. Since this is a 3D-related task, we only use coordinate loss and
distance loss.

Pocket property prediction The hyperparameters we search are listed in Table 10.

Protein-ligand binding pose prediction

• Data split The training set is PDBbind General set v.2020 excluding the complexes covered CASF-
2016. We perform data preprocessing, such as adding missing atoms to both proteins and ligands
and manually fixing file-loading errors, before constructing the training set. And we additionally
filter the complexes based on the number of residues contained in the pockets (>= 5 ), resulting in
a training set of 18k protein-ligand complexes. The test set is CASF-2016, which contains 285
protein-ligand complexes.

• Binding pose model architecture As shown in Figure 4, the binding pose model is an encoder-
decoder architecture consisting of two 15 layers Uni-Mol as encoder and a 4 layers Uni-Mol as
decoder. The decoder Uni-Mol block follows the same setting as the pretraining ones.

• Scoring function To evaluate the docking power of our proposed Uni-Mol model, we construct a
scoring function, composed of cross distance loss and self-distance loss, out of Uni-Mol. Cross
distance loss evaluates the atom-wise distance between atoms on the pocket and ligand, and self-
distance evaluates the atom-wise distance between atoms on the same ligand. The ultimate scoring
function is a weighted sum of the cross distance loss and the self-distance loss, and the weights are
1.0 and 5.75 respectively.

Table 10: Search space for pocket property prediction
Hyperparameter NRDLD Fpocket Scores

Learning rate [5e-5, 1e-4, 3e-4] 3e-4
Batch size [1, 2, 4, 8, 16] 32
Epochs 40 20
Pooler dropout [0, 0.1, 0.2, 0.3] 0
Warmup ratio [0.0, 0.1] 0.1
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Figure 4: protein-ligand binding pose model: 1) Encoder: molecular representation and pocket
representation are obtained from their own pretraining Uni-Mol models; 2) Decoder: representation is
concatenated with atom and pair-level, as inputs of a 4 layers Uni-Mol block learning from scratch. 3)
Output: The complex representation is used as a project layer to learn the pair distances of molecule
and pocket.

Table 11: Hyperparameters setup for binding pose prediction
Hyperparameters for finetuning Value

Learning rate 3e-4
Batch size 32
Epochs 50
Warmup ratio 0.06
Dropout 0.2
Dist_threshold 8.0
Cross distance loss function and weight MSE, 1.0
Holo distance loss function and weight MSE, 1.0

Hyperparameters for sampling Value

Population size 150
Max iterations 500
Dist_threshold 5.0
Mutation (0.5, 1.0)
Recombination 0.9
Conformation size 10
Cross distance weight 1.0
Holo distance weight 5.75

• Hyperparameter settings
As shown in Figure 4, Uni-Mol directly predicts protein-ligand cross distance and self-distance
with MSE loss during finetuning. Dist_threshold is used to mask distances, since atoms that are
more than a certain distance apart do not have interactions that would affect the binding pose. We
use 10 randomly generated molecular conformations as data augmentation when sampling. Also, a
lower dist_threshold is used to reduce variance in sampling with consideration of error in prediction.
The details of hyperparameters are shown in Table 11.

• Exhaustiveness search To ensure that the comparison between Uni-Mol and popular molecular
docking software is unbiased, we increase the exhaustiveness of the global search (roughly propor-
tional to time) of the molecular docking software to observe the effect of computational complexity
to docking power on CASF-2016 benchmark. And we find that when exhaustiveness is above 16,
the popular molecular docking software can no longer improve the performance by increasing the
computational complexity.
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Table 12: Exhaustiveness study of popular docking tools on CASF-2016
Ligand RMSD

% Below Threshold ↑
Methods Exhaustiveness 0.5 Å 1.0 Å 1.5 Å 2.0 Å
Autodock Vina 1 21.40 35.79 47.02 52.28
Autodock Vina 8 23.86 44.21 57.54 64.56
Autodock Vina 16 25.61 45.96 60.70 66.67
Autodock Vina 32 25.96 45.96 60.00 66.32
Vinardo 1 16.84 33.33 43.16 49.82
Vinardo 8 23.51 41.75 57.54 62.81
Vinardo 16 23.51 45.26 60.70 66.67
Vinardo 32 23.86 44.56 59.30 65.61
Smina 1 23.51 39.65 50.53 56.14
Smina 8 23.51 47.37 59.65 65.26
Smina 16 28.77 49.47 61.40 67.72
Smina 32 28.07 51.23 61.75 67.37
Autodock4 1 4.91 18.95 26.67 28.87
Autodock4 8 7.02 21.75 31.58 35.44
Autodock4 16 6.32 24.56 34.04 38.95
Autodock4 32 6.32 23.16 34.04 38.25
Uni-Molrandom - 14.04 49.47 65.26 75.44
Uni-Mol - 24.91 70.53 84.21 88.07

D Metrics

In the conformation generation task, following previous work [80, 81], we use the Root of Mean
Squared Deviations (RMSD) of heavy atoms to evaluate the difference between the generated
conformation and the reference one. Before computing RMSD, the generated conformation is first
aligned with the reference one, and the function Φ aligns conformations by applying rotations and
translations to them:

RMSD(R, R̂) = min
Φ

(
1

n

n∑
i=1

||Φ(Ri)− R̂i||2)
1
2 (5)

where R and R̂ are the generated and reference conformation, i is the i-th heavy atom, and n is the
number of heavy atoms.

We use Coverage (COV) and Matching (MAT) to evaluate the performance of the conformation
generation model. Higher COV means better diversity, while lower MAT means higher accuracy.
Formally, COV and MAT are denoted as:

COV(Sg, Sr) =

∣∣∣{R ∈ Sr|RMSD(R, R̂) < δ, R̂ ∈ Sg

}∣∣∣
|Sr|

(6)

MAT(Sg, Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂) (7)

where Sg and Sr are the set of generated and reference conformations, respectively, and δ is a given
RMSD threshold. Following previous work [43, 52], for GEOM-QM9, the threshold is 0.5Å, and for
GEOM-Drugs, the threshold value is 1.25Å.

E Ablation studies

We investigate the impact of the pair-type aware affine (PTAA) module on the molecular property
prediction tasks. As described in Sec 2.1, in invariant spatial positional encoding, the PTAA is
combined with the pair Euclidean distance matrix. Tables 13 and 14 show the results of the ablation
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Table 13: Ablation study on pair-type with molecular property prediction classification tasks
Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV

Uni-Mol w/o pair-type 66.3(1.7) 76.2(0.2) 87.1(2.3) 72.4(0.1) 62.3(0.4) 61.2(1.1) 75.8(0.5) 85.1(0.1) 80.9(0.6)
Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3) 88.5(0.1) 82.1(1.3)

Table 14: Ablation study on pair-type with molecular property prediction regression tasks
Regression (lower is better)

RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9

Uni-Mol w/o pair-type 0.977(0.007) 2.053(0.053) 0.951(0.056) 45.9(1.7) 0.0156(0.0001) 0.00473(0.00004)
Uni-Mol 0.788(0.029) 1.620(0.035) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)

studies, and we can find that PTAA largely improves the performance of molecular property prediction.
There are several possible reasons: 1) in chemicals (and physics), the interactions between two atoms
are determined by their distances and types together. Given pair distance and their types, the model
can distinguish different interactions, such as Van der Waals forces, covalent interactions, etc., and
thus perform better. 2) PTAA enlarges the capacity of pair representation by introducing more
trainable parameters, and therefore, the model learns better pair interactions in 3D space and thus
performs better.

F Training Stability

With Pre-LayerNorm [30] backbone and mixed-precision training, the pretraining sometimes diverges.
After investigation, we found there are large numerical values in the intermediate states when
divergence happens. We hypothesize that the Final-LayerNorm layer in the Pre-LayerNorm backbone
results in the problem. Specifically, Final-LayerNorm is applied to the sum of all encoder layers,
denoted as

oi = LayerNorm(si), si =

L∑
l=1

ol
i (8)

where L is the number of layers, ol
i is the output of the i-th position in the l-th layer, and oi is the

final output of the i-th position, after Final-LayerNorm. Therefore, due to normalization, si can be
arbitrarily large (or arbitrarily small), without affecting model results. However, a too large or too
small numerical value will cause the numerical unstable, especially in the mixed-precision training.
To tackle this, we introduce a simple loss, to restrict the value range of si. Formally, the loss is
denoted as

Lnorm = meani

(
max

(∣∣∣∥si∥ − √
d
∣∣∣− τ, 0

))
, (9)

where d is the dimension size of si, τ is the tolerance factor. In Uni-Mol, we set τ = 1, and both
atom-level and pair-level representations are constrained by this loss. Besides, to avoid affecting
other loss functions, we set a very small loss weight (0.01) to Lnorm.
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