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Abstract

Artificial neural networks (ANNs) for material modeling
have received significant interest. We recently reported an
adaptation of ANNs based on Boltzmann machine (BM) ar-
chitectures to an ansatz of the multiconfigurational many-
electron wavefunction, designated neural-network quantum
state (NQS), for quantum chemistry calculations. Here,
this study presents its extended formalism to a quantum
algorithm that enables the preparation of the NQS through
quantum gates. The descriptors of the ANN model, which
are chosen as occupancies of electronic configurations, are
quantum-mechanically represented by qubits. Our algo-
rithm may thus bring potential advantages over classi-
cal sampling-based computation employed in the previous
studies. The NQS can be accurately formed through the
quantum-native procedures, but the training of the model
in terms of energy minimization is performed on a classi-
cal computer; thus, our approach is a class of variational
quantum eigensolver. The BM models are related to the
Gibbs distribution, and our preparation procedures exploit
techniques of quantum phase estimation but with no Hamil-
tonian evolution. The proposed algorithm is assessed by im-
plementing it on a quantum computer simulator. Illustrative
molecular calculations at the complete-active-space configu-
ration interaction level of theory are displayed, confirming
consistency with the accuracy of our previous classical ap-
proaches.

1 Introduction

Machine learning (ML) with artificial neural networks
(ANNs) has been recognized as a versatile and highly prac-
ticable approach to data analysis over recent periods.1 Its
marked abilities to compress and extract features from large-
scale, high-dimensional data have considerable impacts on
various fields. In computational chemistry, its highlighted
applications encompass protein structure prediction,2 im-
provement of density functionals,3 molecular fingerprints,4

accurate potential functions,5 and many others.6

The use of ANN architectures as models of quantum
many-particle physics is a subject of research that has been
drawing great interest. Carleo et al. proposed an intriguing
ML-based approach to use a class of ANN-based genera-
tive model, the restricted Boltzmann machine (RBM), for a
representation of the quantum many-body state.7–13 In this
approach, the coefficients of the linear combination of many-
body basis in the quantum superposition are parameterized
with the RBM autoencoder in which a configuration vector
of spins (↑ or ↓) or electron occupancies (0 or 1) serves as
descriptors. This wavefunction ansatz is referred to as the
neural-network quantum state (NQS). The scheme related
to reinforcement learning is used to train the network pa-
rameters without prior knowledge or datasets, finding the
best possible representation of the ground state as a solu-
tion of Schrödinger equation for the given Hamiltonian. Ref.
7 demonstrated high applicability towards physical systems
with quantum Ising and Heisenberg models.

This inspiring but transparent formalism by Carleo and
Troyer to use ML technology for a wavefunction solver has
led various groups to its application to first-principles elec-
tronic structure calculations for chemical and material sys-
tems.11,14–23 Xia and Kais reported the earliest study that
used the RBM-based NQS for ab initio electronic structure
calculations for molecules with an additional focus on its ex-
tension to a hybrid quantum-classical algorithm14 along a
similar line to this work. Our group previously presented an
adaptation of the NQS as an encoder of the quantum chem-
ical multireference wavefunction with complete-active-space
configuration interaction (CAS-CI) model.15 Our interest
attaches to NQS’s applicability as a solver to describe the so-
called static electron (or multireference) correlation, whose
quantum complexity often becomes challenging, particularly
when studying multiple bond breaking, state-degeneracies,
and varying radical nature in reactions, etc. The CAS-CI
method is a basic framework of the approach to the static
correlation problem based on the CI (or linear) expansion
into electronic configuration basis spanning the chemically
important part of the Hilbert space.24,25

In Ref. 15, we further proposed using the high-order
Boltzmann machine (HBM), which is hidden-node free, in
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place of the RBM from an alternative perspective – specifi-
cally, the second- and third-order BM models, termed BM2
and BM3, respectively. The earlier informatics studies of
the HBM model26,27 indicate that the BM3 can extract
higher-order features to a comparable degree to RBM and,
more importantly, yields the concave log-likelihood function
where the RBM renders it nonconcave. The pilot implemen-
tation of the quantum-chemical NQS was achieved based on
the BM2, BM3, and RBM architectures, demonstrating that
the trained wavefunctions for illustrative molecules delivered
desirable convergence to the CAS-CI results. We confirmed
that the native combinatorial complexity arising from the
evaluations of the energy, gradients, and partition function
could be mitigated by stochastic sampling approaches in ML
using the Markov chain Monte Carlo (MCMC) technique.
However, this MCMC-based integration remains the most
computationally demanding, practically hindering calcula-
tions with larger active space. A promising direction to
address this issue may be, as typical to the prevalent ML
computation, to carry out the MCMC process on general-
purpose computing on graphics processing units (GPGPU),
which is considered to be advantageous over traditional cen-
tral processing units (CPUs).16–19

In this study, we attempt to explore an alternative game-
changing strategy by reformulating the ML of the wavefunc-
tion with NQS as a quantum algorithm that can run on a
quantum computer (QC). The QC has been considered a fu-
ture device that should enable the exponential speedup for
combinatorial computation. The use of quantum computing
for ML has been attracting great attention in recent years,
and quantum algorithms oriented to the general-purpose ML
have been extensively studied, emerging as a subfield re-
ferred to as quantum machine learning (QML).28–35 There
are numerous earlier developments of QML that underlie
this work. Wiebe et al. presented a quantum process named
GEQS (Gradient Estimation via Quantum Sampling) allow-
ing for the preparation of the state in which the weights of
the superposition obey the Gibbs distribution, correspond-
ing to the probability modeled by RBM, as a function of a
configuration of visible and hidden units.28 Its procedure
is based on the quantum algorithm developed by Poulin
and Wocjan30 for preparing the Gibbs state of interact-
ing quantum objects through quantum circuits with the use
of Kitaev’s quantum phase estimation (QPE).36,37 The al-
gorithm of Ref. 28 incorporates a technique of quantum
amplitude amplification/estimation (QAA/QAE)38 into the
state preparation for reducing the number of samples at a
quadratic rate.

The development of QC algorithms for electronic structure
calculations of quantum chemical research has been a topic
of intensive research in the recent past. As reviewed by
Refs. 39–44, there are two major canonical frameworks of
the algorithm for estimating the ground state energy on a
QC. One is the pioneering approach using the iterative QPE
scheme proposed by Aspuru-Guzik et al.45 It is considered
to be susceptible to quantum noise and ill-suited for the use
of the near-term QCs or noisy intermediate-scale quantum
(NISQ) devices. The second framework is the variational
quantum eigensolver (VQE),46 which is a hybrid quantum-
classical approach amenable to the NISQ devices. Its state
preparation is carried out on a QC and can be potentially
built from low-depth circuits but at the cost of an increasing
number of measurements. Various wave function ansatze
for the state preparation have been developed and cannot
be all cited, but the most extensively studied is the unitary

coupled-cluster (UCC) framework46 and many others.47,48

In this work, we present the development of an algorithm
to build the trained ANN object on a QC as a materialized
representation of the theoretical molecular many-electron
wavefunction. It is classified as a VQE type. Unlike UCC46

or others,47 the NQS ansatz does not require the prereq-
uisite of the reference wavefunction nor involves any wave
operators represented with excitation operators. The quan-
tum algorithm of NQS preparation based on the BM2, BM3,
and RBM energy functions is explored here as a primal ob-
jective. As mentioned earlier, the RBM-based NQS method
as the VQE algorithm was similarly investigated by Xia and
Kais.14 However, their algorithm does not form NQS on a
QC in full form, but only prepares an intermediate quan-
tum state, which is in turn sampled randomly by measures
to evaluate the energy and gradients as expectation values
using the sampled data in a classical manner. Similarly,
the preparation (or reconstruction) of the RBM-based NQS
for quantum computing was explored on hardware by Torlai
et al.49 from a somewhat different perspective while again
restricting the measurements to a finite number of samples
against their formal exponential requirement. Formulating a
full-fledged quantum process (or oracle) to prepare NQS via
quantum circuits should be valued for meaningfully bridg-
ing a gap between VQE and QML and is carried out in this
study. Through the training of the NQS, as was done fully
classically in Ref. 15, we aim to solve the equation to de-
termine the ground-state molecular electronic structure and
associated energy at the CAS-CI level of theory, a suited ab
initio quantum chemistry model to handle chemical systems
involving multireference electron correlation.

2 Results and Discussion

We here describe a hybrid quantum-classical approach to the
machine learning (ML) based on the NQS machinery to de-
termine the CAS-CI wavefunction. The procedure is divided
into two major tasks: the quantum computing process of the
state preparation and the classical computing process to up-
date the learning parameters (Figure 1). In what follows,
we begin by outlining the network architecture of NQS and
its training scheme. Subsequently, the quantum algorithm
to form the NQS on a QC is described. The application of
our algorithm to molecular calculations using a simulator is
shown for verifying the viability of the algorithm.

Training of Boltzmann Machine Based Neural Networks as
Many-Electron Wavefunction

The basic formulation of the NQS ansatz and its ML is based
on the method of the NQS solver developed in our previous
work15 oriented to the ML executed on classical computa-
tion. Carleo and Troyer first introduced the NQS method
using the restricted Boltzmann machine (RBM) for the ANN
that serves as a generative model to represent the ground
state of many-body quantum systems.7 In Ref. 15, the use
of a higher-order Boltzmann machine (HBM)26,27 in place
of RBM was additionally proposed to offer another route to
an NQS model that can be well trained despite the absence
of hidden nodes in its perception architecture. We investi-
gated the HBM based on the fully visible BM with bipartite
graphs, referred to as the second-order BM or BM2, and
its extended variant with the inclusion of tripartite graphs,
designated the third-order BM or BM3.
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Figure 1: a. The neural networks architecture of NQS based on the RBM and HBM (BM2 and BM3) models. The binary signals
of visible and hidden units are represented with qubits. b. Overall workflow of the hybrid quantum-classical algorithm to train the
NQS model for the determination of the ground-state wavefunction and energy.

The probability distribution is modeled using the energy
function, which is at the heart of the BM-based ANNs. It is
given for BM2, BM3, and RBM as:

𝐸BM2(v;𝜽) =
𝑛v∑
𝑖

𝑣𝑖 𝑎𝑖 +
𝑛v∑
𝑖 𝑗

𝑣𝑖𝑣 𝑗𝑤𝑖 𝑗 , (1)

𝐸BM3(v;𝜽) =
𝑛v∑
𝑖

𝑣𝑖 𝑎𝑖 +
𝑛v∑
𝑖 𝑗

𝑣𝑖𝑣 𝑗𝑤𝑖 𝑗 +
𝑛v∑
𝑖 𝑗𝑘

𝑣𝑖𝑣 𝑗𝑣𝑘𝑤𝑖 𝑗𝑘 ,

(2)

𝐸RBM(v, h;𝜽) =
𝑛v∑
𝑖

𝑣𝑖 𝑎𝑖 +
𝑛h∑
𝑗

ℎ 𝑗𝑏 𝑗 +
𝑛v ,𝑛h∑
𝑖 𝑗

𝑣𝑖 ℎ 𝑗𝑤𝑖 𝑗 , (3)

respectively, where 𝑎𝑖 and 𝑏 𝑗 are the biases associated with
the visible nodes 𝑣𝑖 and the hidden nodes ℎ 𝑗 , respectively;
and 𝑤𝑖 𝑗 and 𝑤𝑖 𝑗𝑘 are the edge weights of the bipartite and
tripartite interactions between the nodes, respectively. The
joint parameters {𝑎𝑖} ⊕ {𝑏 𝑗} ⊕ {𝑤𝑖 𝑗} ⊕ {𝑤𝑖 𝑗𝑘} are denoted
𝜽. The structures of the neural networks are sketched in
Figure 1a.

Equations (1) to (3) are functions of bitstrings v ∈ {0, 1}𝑛v

and h ∈ {0, 1}𝑛h . In the present approach, the binary sig-
nal of the unit 𝑣𝑖 = 0, 1 is seamlessly homologized to the
two levels of a qubit; the same applies to the binary unit
ℎ 𝑗 = 0, 1. With this mapping between nodes and qubits, a
superposition of {|v⟩} in the NQS, written as

|Ψ⟩ =
∑

v
𝐶v |v⟩ , (4)

can be formed on a QC, where the coefficients 𝐶v are nu-
merically determined by the training under the condition∑

v |𝐶v |2 = 1. We use this |Ψ⟩ prepared on a QC as a cen-
tral computational object that serves as a representation of
the CAS-CI wavefunction of quantum chemistry calculation.

As a viable form of NQS for quantum computing, we use

the following ansatz for structuring 𝐶v,15

𝐶v = 𝑒
i
2𝐸

BM2(v;𝝉)︸        ︷︷        ︸
phase

√
1

𝑍(𝜽) 𝑓 (v;𝜽)︸            ︷︷            ︸
amplitude

, (5)

where 𝑍(𝜽) acts as the partition function 𝑍(𝜽) = ∑
v 𝑓 (v;𝜽),

and 𝑓 (v;𝜽) has three variants defined by

𝑓 (v;𝜽) =

𝑒𝐸

BM2/BM3(v;𝜽) (BM2/BM3)(∑
h
√
𝑒𝐸RBM(v,h;𝜽)

)2
(RBM)

, (6)

for BM2, BM3, and RBM, respectively. Equation (5) is
formulated using the two BMs associated with two differ-
ent network parameter sets 𝜽 and 𝝉 (which are real-valued)
to encode the amplitude and phase segments of 𝐶v, re-
spectively. Note that for BM3 and RBM, the form of 𝐶v
(eq. (5)) somewhat differs from the definitions employed in
Ref. 15. This ansatz indicates that by measuring |Ψ⟩, it col-
lapses onto a certain bit configuration v with the probablity
|𝐶v |2 = 1

𝑍(𝜽) 𝑓 (v;𝜽) ≡ 𝒫(v;𝜽), which has no dependence on 𝝉

(phase). Note that in eq. (5), the phase segment formulated
and implemented in this work is limited to the BM2; how-
ever, we can readily formulate the preparation of the state
that uses the BM3 and RBM models in its place.

Now let a joint set of the parameters be defined as 𝝈 ≡
(𝜽, 𝝉). The update of the whole parameters 𝝈 for the training
of the BM models is a task that can be processed efficiently
on classical computation. It is achieved in terms of finding a
variationally optimal 𝝈 based on energy minimization. This
optimization is related to reinforcement learning in the sense
that neither reference data nor prior knowledge of the wave-
function is used. For the updating, we use the gradients of
the energy 𝐸 (= ⟨Ψ|𝐻 |Ψ⟩) with respect to the parameters,
which are calculated to be 𝜕𝐸

𝜕𝜎
= 2 Re [⟨𝐻𝑂𝜎⟩ − ⟨𝐻⟩ ⟨𝑂𝜎⟩]

where the Hamiltonian 𝐻 is given from a user-specified
chemical structure in the first-principles manner, and 𝑂𝜎

is written in the locally-discretized form with the basis |v⟩
as 𝑂𝜎

v = 𝜕
𝜕𝜎

log 𝐶v (see Ref. 15 for more details). Iteratively
updating 𝝈 leads us to determine the optimal parameters
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that meet the variational condition 𝜕𝐸
𝜕𝜎

= 0 (Figure 1b).
As discussed in Section S1.6, the quantity ⟨𝐻⟩ (=

⟨Ψ|𝐻 |Ψ⟩) is an object that can be evaluated as a sum of
Pauli operator terms measured with Ψ prepared with the
given neural network parameters 𝝈. Importantly, in the case
of BM2, BM3, or other HBM, this simplicity can be further
applied to ⟨𝐻𝑂𝜎⟩ and ⟨𝑂𝜎⟩ for gradients (eqs. (S19)–(S20));
thus, the QC efficiency can fully benefit the computation of
these quantities via quantum-native processes. However, for
RBM, the gradient-related objects ⟨𝐻𝑂𝜎⟩ and ⟨𝑂𝜎⟩ can-
not be simply evaluated in a similar manner because of the
presence of the sigmoid function (Sig) in its gradient for-
mulas (eq. (S21)). With the QC simulator, we evaluate
Sig in RBM’s gradients in a classical manner. The state
preparation will be discussed in detail later. In the previ-
ous implementations tailored to classical computing, these
expectation values are evaluated using the stochastic ap-
proach. This is a widely-used ML technique, which takes a
statistic average from Markov chain Monte Carlo (MCMC)
sampling over the distribution generated by the ML model.
This classical sampling process is fully replaced by the quan-
tum computing procedure in this study.

Quantum Algorithm for Preparing Neural Network State

Here let us detail our proposed algorithm to construct the
NQS representation of Ψ on a QC through quantum circuits.
It is highly related to the quantum algorithms to sample
the Gibbs distribution, such as GEQS28 and others.30 The
overall procedures, consisting of several steps, are outlined
in Figure 2, and its pseudo-program is displayed in Algo-
rithm 1.

Qubits architecture: Qubits used in the present algo-
rithm are classified into four groups: visible, hidden, ancilla,
and energy register (Figure 2a). Let 𝑛v and 𝑛h refer to
the numbers of the visible and hidden qubits, respectively,
which are equal to those of the visible and hidden nodes of
the BM models (eqs. (1) to (3)), respectively. We use an
equal number of qubits for the ancilla and energy register;
thus, it is commonly denoted 𝑛reg. The numeric precision
of a single value stored in the energy register is determined
by 𝑛reg, which is user-specified and bears a relation with the
permitted error 𝜖 as 𝑛reg = log2(1/𝜖).

QPE based procedure: The state preparation begins by
initializing the state |Ψ⟩ in |0⟩, as denoted in the following
expression: |Ψ⟩ → |0⟩. In the rest of this section, unless oth-
erwise noted, we focus solely on the BM2 model for simplic-
ity, which has no hidden nodes. The theory and formalisms
for BM2 can be readily applied to the BM3 model as well as
the RBM model that has hidden nodes, although tangible
procedures will not be shown.

Then, we apply the Hadamard gate on all the visible
qubits, forming the following uniform superposition in the
visible qubit space:

|Ψ⟩ → 1√
2𝑛v

∑
v

|v⟩ |0⟩𝑛reg |0⟩𝑛reg . (7)

As an alternative to this state, we may employ a uniform
superposition of the subgroup of {|v⟩} built under the con-
straint of the particle-number (PN) symmetry51 (see also
Section 4 for details); indeed, this is extensively used in our
test calculations. The PN-conserving preparation circuit for
the case of the singlet state with four electrons in four or-
bitals is shown in Supporting Information.

Algorithm 1 Algorithm to prepare quantum state repre-
senting NQS with BM2 model 𝑎

Input: Model parameters 𝜽 and 𝝉.
Output: Quantum state |Ψ⟩ representing NQS

procedure
Initialize |Ψ⟩ in |0⟩𝑛v |0⟩𝑛reg |0⟩𝑛reg .
Apply the Hadamard gate on all visible qubits:

|Ψ⟩ → 1√
2𝑛v

∑
v |v⟩ |0⟩𝑛reg |0⟩𝑛reg ⊲ eq. (7)

Determine max and min 𝐸BM2(v;𝜽).
⊲ E.g., quantum annealing learning search 50

Find 𝐷 and Δ such that �̃�v(𝜽) ∀v ∈ {0, 1}𝑛v ranges from 0 to 1
where �̃�v(𝜽) ≡ 𝐸BM2(v;𝜽)/𝐷 + Δ.

Perform the QPE procedure (Algorithm S1):
|Ψ⟩ → 1√

2𝑛v

∑
v |v⟩

��Ẽv
〉
𝑛reg

|0⟩𝑛reg ⊲ eq. (8)

using the energy curation gate 𝑈 = 𝑒2𝜋i �̃�v(𝜽) (Algorithm S2).
for 𝑘 = 1 . . . 𝑛reg do

Apply the 𝑅𝑦(Θ) gate on 𝑘-th ancilla qubit
with the angle Θ = 2 arccos

(
𝑒−𝐷 2−(𝑘+1) )

conditioned on 𝑘-th energy register qubit |0⟩.
end for

|Ψ⟩ → 𝐶′
{∑

v

√
𝑒𝐸BM2 (v;𝜽)

𝑍 |v⟩ ��Ẽv
〉
𝑛reg

|0⟩𝑛reg + · · ·
}

⊲ eq. (12)
𝐶′ serves as normalization, automatically accounting
for a factor asscoiated with

√
𝑒𝐷Δ

𝑍 .
Perform the reverse QPE procedure (Algorithm S1):

|Ψ⟩ → 𝐶′′
{∑

v

√
𝑒𝐸BM2 (v;𝜽)

𝑍 |v⟩ |0⟩𝑛reg |0⟩𝑛reg + · · ·
}

⊲ eq. (13)
with 𝑈 = 𝑒2𝜋i �̃�v(𝜽) (Algorithm S2).

Apply QAA procedure (Algorithm S4) on |Ψ⟩
to ancilla qubits |0⟩𝑛reg .

Observe ancilla qubits.
if the anicilla qubits ≠ |0⟩𝑛reg then

Start over from the begining.
end if
Now, |Ψ⟩ → ∑

v

√
𝑒𝐸BM2 (v;𝜽)

𝑍 |v⟩ |0⟩𝑛reg |0⟩𝑛reg ⊲ eq. (14)
Perform the phase preparation procedure (Algorithm S3).

|Ψ⟩ → ∑
v 𝑒

i
2 𝐸BM2(v;𝝉)

√
𝑒𝐸BM2 (v;𝜽)

𝑍 |v⟩ |0⟩𝑛reg |0⟩𝑛reg

⊲ eq. (15)
return |Ψ⟩

end procedure

𝑎 The procedure can readily be applied to BM3 and RBM models
with a minor change.

The next step is to obtain the following state by trans-
forming eq. (7) via Kitaev’s QPE procedure:36

|Ψ⟩ → 1√
2𝑛v

∑
v

|v⟩ ��Ẽv
〉
𝑛reg

|0⟩𝑛reg , (8)

where Ẽv is a binary representation of the converted energy
of 𝐸 (eqs. (1) to (3)) as a function the configuration v is
stored in the energy register qubits. The binary number
Ẽv =: �̃�1

v �̃�
2
v . . . �̃�

𝑛reg
v (�̃�𝑖

v = 0, 1) encodes the decimal number
�̃�1

v 2−1 + �̃�2
v 2−2 + . . . + �̃�

𝑛reg
v 2−𝑛reg , expressing �̃�v in a finite

precision. The converted energy �̃�v is a mapping of the
energy function 𝐸(v;𝜽) (eqs. (1) to (3)) into a value ranging
from 0 to 1. In this study, it is parameterized as

�̃�v(𝜽) ≡ 𝐸(v;𝜽)/𝐷 + Δ (9)

with the scaling constant 𝐷 and shifting constant Δ. By
preparing 𝐸max = maxv 𝐸(v;𝜽) and 𝐸min = minv 𝐸(v;𝜽),
the constants 𝐷 and Δ can be given as 𝐷 = (𝐸max − 𝐸min)
and Δ = −𝐸min/𝐷, ensuring that

��Ẽv(𝜽)
〉

varies between
|00. . .0⟩𝑛reg and |11. . .1⟩𝑛reg . Finding 𝐸max and 𝐸min are
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Figure 2: a. Qubit architecture employed in this study. b. The whole procedural steps of the state preparation of the NQS on a QC.
c. Graphical representation of quantum circuit to prepare the Gibbs state (eq. (14)). d. Illustrative process of the bitwise operations
to evaluate the Gibbs factor using the controlled 𝑅𝑦 gate.

subject to the QUBO problem and possibly obtained via
quantum annealing.50 We will not investigate the quantum
computing of 𝐸max and 𝐸min in detail, which is assumed to
be carried out using the third-party quantum algorithms as
a subprocess of our algorithm.

The QPE algorithm is a technique to find 𝜃𝑛 of the eigen-
value 𝑒2𝜋i𝜃𝑛 on a QC, given the unitary operator 𝑈 and
eigenvector |𝜓𝑛⟩ such that 𝑈 |𝜓𝑛⟩ = 𝑒2𝜋i𝜃𝑛 |𝜓𝑛⟩.36 The
QPE based procedure is shown in Algorithm S1 with its
subroutine for 𝑈 Algorithm S2. The structure of 𝑈 is a
key ingredient to realize the formation of eq. (8) via the
QPE, and its quantum circuit, here named energy curation
gate, should be built, in this case, based on the postulation
𝑈 |v⟩ = 𝑒2𝜋i �̃�v |v⟩. This 𝑈 appears to behave as an evolution
operator that attaches the converted BM energy function �̃�v
via the phase kickback to the basis |v⟩ in |Ψ⟩ non-iteratively.
We underscore that it does not involve Hamiltonian evolu-
tion or Trotter steps. The quantum algorithm of applying
𝑈 based on the phase shift rotation 𝑅′

𝑧(𝜃) defined as,

𝑅′
𝑧(𝜃) =

(
1 0
0 𝑒 𝑖𝜃

)
(10)

with its controled gate is detailed in Algorithm S2. This
quantum gate serves as a subroutine built into the QPE
process (eq. (8)), as shown in Algorithm 1.

Quantum Gibbs state formation with rescaling: Let
us proceed to the building of the Gibbs state from eq. (8)
(Algorithm 1). A major part of this task aims to read
out the stored �̃�v and transform it to the rescaled coef-
ficient

√
exp

{(
�̃�v(𝜽) − Δ

) /𝐷}
(=

√
𝑒𝐸(v;𝜽)), by which the

basis of the superposition is scalarly scaled via the qubit
rotations. In this operation, which is bitwise, the 𝑅𝑦(Θ)
gate is applied on the 𝑘-th anicilla qubit with the angle
Θ = 2 arccos

(
𝑒−𝐷 2−(𝑘+1) ) conditioned on the 𝑘-th energy reg-

ister qubit. This allows the state with the 𝑘-th ancilla qubit

in the state |0⟩ to be transformed as follows:

1√
2𝑛v

∑
v

|v⟩ ��Ẽv
〉
𝑛reg

��0 · · · 0𝑘 · · · 0〉𝑛reg

→ 1√
2𝑛v

∑
v

√
𝑒(�̃�𝑘

v 2−𝑘 )𝐷 |v⟩ ��Ẽv
〉
𝑛reg

|0 · · · 0𝑘 · · · 0⟩𝑛reg

+ 1√
2𝑛v

∑
v

√
1 − 𝑒(�̃�𝑘

v 2−𝑘 )𝐷 |v⟩ ��Ẽv
〉
𝑛reg

|0 · · · 1𝑘 · · · 0⟩𝑛reg

(11)

By subsequently applying this transformation for 𝑘 = 1 to
𝑛reg, we achieve the key process to build the BM distribtuion
of the amplitude segment of our NQS model 𝐶v (eq. (5)) as
follows:

|Ψ⟩ → 𝐶

{∑
v

√
exp

{(�̃�1
v 2−1 + �̃�2

v 2−2 + · · · + �̃�𝑛reg
v 2−𝑛reg − Δ)𝐷}

× |v⟩ ��Ẽv
〉
𝑛reg

|0⟩𝑛reg + · · ·
}

= 𝐶′
{∑

v

√
𝑒𝐸(v;𝜽)
𝑍

|v⟩ ��Ẽv
〉
𝑛reg

|0⟩𝑛reg + · · ·
}
.

(12)

The constants 𝐶 and 𝐶′ are adjustably settled due to the
normalization nature of the state, and the partition function
𝑍 is fictitiously given at this moment but naturally estab-
lishes at the end. Note that the constant

√
𝑒−𝐷Δ comes with

the normalization 𝐶. It is important to note that the recon-
structed 𝐸(v;𝜽) appearing in eq. (12) has a finite numeric
precision in value, whose precision hinges on 𝑛reg.

As written in Algorithm 1, we then apply the aforemen-
tioned QPE procedure (Algorithm S1) on Equation (12) in
reverse, allowing the energy register qubits to revert to |0⟩
as follows:28

|Ψ⟩ → 𝐶′′
{∑

v

√
𝑒𝐸(v;𝜽)
𝑍

|v⟩ |0⟩𝑛reg |0⟩𝑛reg + · · ·
}

(13)

Next, a measurement is performed on the ancilla qubits. If
|0⟩𝑛reg is observed, the state is indicated to result in the
formation of the Gibbs state:

|Ψ⟩ →
∑

v

√
𝑒𝐸(v;𝜽)
𝑍

|v⟩ , (14)
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where 1/√𝑍 serves as the normalization constant. This ob-
servation occurs at a certain probability. Otherwise, the
state preparation needs to be done from the beginning over
again.

Finally, we turn to the preparation of the phase segment
of eq. (5) as the rest of the task. We apply the phase shift
roatation 𝑅′

𝑧 (section 2) on eq. (14) over all the visible qubits
and furthermore apply its controlled gate over all the pairs
(see also Algorithm S3 for details), finally obtaining the tar-
get NQS state:

|Ψ⟩ →
∑

v
𝑒

i
2𝐸

BM2(v;𝝉)
√

𝑒𝐸(v;𝜽)
𝑍

|v⟩ (15)

It is used to compute energy as well as gradients required for
training the model, and other observables such as reduced
density matrices (RDMs), etc.

Use of Quantum Amplitude Amplification (QAA):
As discussed earlier, we may fail to observe |0⟩𝑛reg at a cer-
tain probability in the measurement on the ancilla qubits.
This means that the whole identical steps to prepare the
state eq. (14) from the initial state need to be reiterated
until |0⟩𝑛reg is successfully observed. In practice, an ad-
ditional algorithm, referred to as the quantum amplitude
amplification (QAA),38 to increase the success rate is in-
corporated into the state preparation procedure, as shown
in Algorithm 1. The QAA is related to Grover’s algorithm
and enables quadratically increasing the probability of find-
ing the desired state. In Algorithm S4, the workflow of the
QAA is shown in detail.

The QAA process carries out amplification iteratively.
Given that the whole process of the state preparation to
form eq. (14) is written as |Ψ⟩ = 𝑆 |0⟩, the whole process of
the same 𝑆 is repeatedly performs during the single QAA
process. The important consequence is thus that the num-
ber of amplification iterations is thus a factor arising in the
scaling of the circuit depth.

H2 Potential Energy Curve Calculation

Let us now turn to numerical assessments of our approach
using its prototype implementation on a QC simulator, for
which we used the library qulacs.52 As the first test case,
the results here are presented on the bond dissociation en-
ergy curve of the H2 molecule. Figure 3a shows the curves
of the total energies determined by BM2(FS) and BM3(FS)
with CMO and LMO basis and 𝑛reg = 8. For comparison,
the RHF and full CI energies are also shown in the graph.
The plots of the energies obtained with our approaches at
all the points appear to match the full CI energies in good
agreement. The correlation energy, corresponding to the
difference in total energy between full CI and RHF, is in-
creasingly larger with increasing bond length, exhibiting the
degree of static or multireference correlation. Even at the
structures with a large amount of electron correlation, the
BM2 and BM3 models with 8-qubit energy registers were
shown to yield accuracy consistent with the predictions at
the near-equilibrium structures involving a small amount of
electron correlation.

Figure 3b to 3e show the errors of the potential energy
curves (PECs) relative to the full CI predictions as a func-
tion of tested 𝑛reg for BM2/CMO, BM2/LMO, BM3/CMO,
and BM3/LMO, respectively, prepared with the FS treat-
ment. Regardless of the model and orbital type, the to-
tal energies with 𝑛reg ≥ 10 are accurate to 10−6 Eh, far

exceeding the chemical accuracy (≈ 1 𝑚Eh). Roundoff er-
rors associated with the truncation of energy register qubits
were not wholly vanishing in the obtained energies even with
𝑛reg = 10 and 12, compared to the results with 𝑛reg = 50;
however, they are negligible. The roundoff errors are sys-
tematically eliminated with increasing 𝑛reg, exhibiting an
approximately quadratic convergence with respect to 𝑛reg.
Interestingly, the coarsest representation of the energy regis-
ters with 𝑛reg = 6 corresponding to a precision of 2−6 ≈ 0.016
can produce errors in energy falling below 1 𝑚Eh. Overall,
the energies were predicted better with LMOs than with
CMOs for the given number of the energy register qubits.
The BM3 does not consistently outperform the BM2 across
the curves in this system. This conflicts the theoretical as-
sumption but seems to be ascribed to the exceeding com-
plexity of the BM3 parameterization against a rather simple
structure of the H2 wavefunction.

In Figure 3f to 3i, the errors of the PECs obtained with
the models prepared as a PN state51 with BM2/CMO,
BM2/LMO, BM3/CMO, and BM3/LMO, respectively, are
monitored. As detailed in Methods section, this preparation
can efficiently train the BM models with a focus on the de-
scriptors (i.e., configurations) conserving the target electron
number. In this test system, the PN-conserving configura-
tions amount to 6 = (4𝐶2), which is much smaller than the
dimension of FS, 16 = (24). This reduction should have a
favored impact on the representability of the BM models. It
was indeed confirmed in the drastic rectification of the errors
observed in all the predicted PECs compared to those of the
FS variants (Figure 3b to 3e).

The training as an FS state requires that the models
predict the coefficients 𝐶v to be exactly zero for the PN-
unconserving v. This particular requirement is imposed dur-
ing the training process, i.e., optimizing 𝜽 and 𝝉; nonethe-
less, the optimization does not discriminate between the PN-
conserving and -unconserving v. In our experience with the
FS-based calculations, the cost of the learning for the PN-
unconserving v was similar to or even larger than that for
the PN-conserving v. The modeling of the BM that outputs
zero precisely against several different inputs is seemingly a
numerically diffcult task. In the PN approach, this require-
ment and related cost completely go away because the values
of these PN-unconserving coefficients automatically vanish
regardless of BM’s parameters. This compactness in the PN
approach indeed plays an advantageous role, as compared to
the FS approach, in showing better performance even with
𝑛reg = 6. It should be strongly emphasized that the difficul-
ties pointed out above in the FS treatment stem from the
nature of our underlying ML model, as were also observed
in the previous study based on the MCMC sampling, and
are not fundamentally caused by our quantum algorithm of
the state preparation.

Figure 3j to 3m show the errors of the PECs computed
using the RBM model as a function of varying 𝑛h with CMO
and LMO basis in addition to testing 𝑛reg = 8 and 50. The
results with 𝑛reg = 50 indicated that the RBM-based ANN
state with 𝑛h = 2, the smallest RBM, is capable of repro-
ducing the full CI energies across the curve with a near ma-
chine accuracy. The validity of our quantum algorithm for
the preparation of the RBM state was confirmed even for
enlarging 𝑛h. Moreover, reducing 𝑛reg to 8 for the state
preparation for RBM still yields a reasonable accuracy in
the energy prediction.

We attempted to closely analyze the effect of the roundoff
errors in the energy register qubits on the coefficients 𝐶v.

6



Figure 3: a. The bond dissociation energy curves of the H2 molecule computed using BM2(FS) and BM3(FS) with CMO and
LMO basis and 𝑛reg = 8 along with RHF and full CI energies. The errors of the PECs relative to the full CI predictions for
(b) BM2(FS)/CMO, (c) BM2(FS)/LMO, (d) BM3(FS)/CMO, (e) BM3(FS)/LMO, (f) BM2(PN)/CMO, (g) BM2(PN)/LMO, (h)
BM3(PN)/CMO, and (i) BM3(PN)/LMO as a function of 𝑛reg = 6, 8, 10, 12, and 50. The errors of the PECs obtained with RBM
model with (j) CMO/𝑛reg = 8, (k) LMO/𝑛reg = 8, (l) CMO/𝑛reg = 50, and (m) LMO/𝑛reg = 50 as a function of 𝑛v = 2, 3, 4, and 5.
The distributions of the weights |𝐶v |2 determined by BM2/LMO with 𝑛reg = 6 and 8 as well as full CI for bond lengths of (n) 0.25
and (o) 0.9 Å.

In Figure 3n to 3o, the distributions of the weights |𝐶v |2
determined by BM2/LMO with 𝑛reg = 6 are shown for bond
lengths of 0.25 and 0.9 Å. For comparison, the exact dis-
tributions taken from the corresponding full CI results are
included in the graph. The errors in the BM distribution ap-
pear to be appreciable for the bond length of 0.25 Å, whereas
they were negligible for 0.9 Å.

To scrutinize these errors, we here focus on the ratio of
the weights between two configurations v and v′. We found
that the precision to represent the ratio |𝐶v |2/|𝐶v′ |2 is in
fact limited depending on 𝑛reg and 𝐷, and formally writ-
ten as exp(−2𝑛reg · 𝐷). This limited precision stems from
the finite binary representation of the energy register Ẽv
(eq. (9)). With the bond length of 0.25 Å, the exact ratio of
the weights for v = (1100) and v′ = (1001) is observed to be
1.20 (= 0.272/0.227) from the FCI result; however, the BM2
calculation with the resulting scaling constant 𝐷 = 78 can
express the ratio with a precision of 3.38 (=exp

(−26 · 78
)
),

which exceeds the exact one. This poor precision seems to
underlie the errors in Figure 3n. On the other hand, the
BM calculation with the bond length of 0.9 Å resulted in a
scaling constant 𝐷 = 38, and thus can express the ratio of
the weights between v = (1100) and v′ = (1001) with a preci-
sion of 1.81 (= exp

(−26 · 38
)
). This precision is comparable

to the ratio of the corresponding weight for full CI results,
1.83 (= 0.324/0.177); thus, the satisfactory accuracy in Fig-
ure 3o was delivered. The above discussion indicates that
the scaling constant 𝐷 plays a key role in determining the
reliability but is an uncontrollable parameter. An increase

in the number of the energy register qubits is a simple way
to rectify the roundoff errors arising in 𝐶v and consequently
enhance the accuracy of the energy prediction.

Relative Energies of s-trans and s-cis Butadiene

We next present the calculations of the relative energy of bu-
tadiene between the s-trans and s-cis isomers. Table 1 shows
the total energies of s-trans and s-cis butadienes and the rel-
ative energies computed with BM2, BM3, and RBM models
on a QC simulator along with the results at the RHF and
CASCI levels of theory. The BM2 and BM3 models using
LMO basis with 𝑛reg = 8 yield the total and relative ener-
gies in good agreement with the CASCI results. The relative
energies were predicted with an error of 0.01 𝑚Eh, which is
smaller than the error in the total energies, estimated to be
0.05 𝑚Eh. The error cancellation in the relative energies is
considered favorable in chemical applications. For the BM
models using CMO basis, the errors in the total and rela-
tive energies were relatively large even with increasing 𝑛reg.
Figure S2 displays that the vanishing weights in the CASCI
wavefunction are fewer with LMOs than with CMOs. As
discussed earlier, this feature in the use of LMOs plays an
advantageous role in the performance of the BM calcula-
tions.

As shown in Figure 4a, we monitored a training progress
of the BM2/LMO energy for the s-trans isomer with various
𝑛reg. The results with 𝑛reg = 6 shows a largely oscillat-
ing behavior. This instability was relatively mitigated with
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Figure 4: a. The progress of BM2/LMO energy as a function of training iteration for s-trans butadiene with 𝑛reg = 6, 8, 10, and
12. b. The counts of QAA cycles as a progress of training of BM2 for CMO and LMO basis with FS and PN treatments. The heat
maps of network parameters 𝑊𝑖 𝑗 (eq. (17)) for (c) BM2/CMO and (e) BM2/LMO, and and of particle correlation 𝐼𝑖 𝑗 (eq. (16)) for
(d) BM2/CMO and (f) BM2/LMO, calculated for the s-trans isomer.

𝑛reg = 8. The ten or more energy register qubits were re-
quired to achieve stable training.

Figure 4b shows the number of QAA38 cycles (Algorithm
S4) to achieve a desired, amplified state in every state prepa-
ration process for the BM2 calculation of the s-trans isomer
using 𝑛reg = 8. The average number of the QAA operations
per iteration varies depending on the orbital type (LMO or
CMO) and on the particle-conservation treatment (PN or
FS). Compared to the CMOs, the use of LMOs resulted in
fewer QAA operations, which are a frequency of 1.0 and
4.5 times per iteration for the PN and FS treatment, respec-
tively. This is related to the fact that when using the LMOs,
the configuration distribution of the prepared state is widely
spreading (see also Figure S2) to a more significant degree
than the CMO case, and less dissimilar to that of the initial
state that begins with a uniform distribution. The PN treat-
ment plays a favorable role in reducing the cost associated
with the amplification compared to the FN treatment. Note
that marginalizing the hidden layer of RBM’s 𝐶v lowers the
probability of the target state by a factor of approximately√

2𝑛v; thus, the number of the QAA cycles required is much
larger, scaling up exponentially with 𝑛v, compared to the
BM cases.

In Figure 4, we attempt to show a numerical compari-
son between the resulting ANN parameters and the physical
quantities computed from the ANN state. Figure 4d and 4f
are heat maps of the so-called particle correlation 𝐼𝑖 𝑗 ,53

𝐼𝑖 𝑗 B ⟨Ψ|�̂�𝑖 �̂� 𝑗 |Ψ⟩ − ⟨Ψ|�̂�𝑖 |Ψ⟩⟨Ψ|�̂� 𝑗 |Ψ⟩ (16)

evaluated with the trained BM2/CMO and BM2/LMO
wavefunctions, respectively, for the s-trans isomer. The
number operator �̂�𝑖 is written using the second-quantization
operators as �̂�𝑖 = 𝑎†𝑖 𝑎𝑖 . We constructed a metric compara-
ble to 𝐼𝑖 𝑗 using a linear mixture of the ANN parameters 𝑎𝑖
and 𝑤𝑖 𝑗 . Although there is arbitrariness in the mixture, one
given as

𝑊𝑖 𝑗 B
{
𝑤𝑖 𝑗 + (𝑎𝑖 + 𝑤𝑖𝑖)/6 + (𝑎 𝑗 + 𝑤 𝑗 𝑗)/6

} (1 − 𝛿𝑖 𝑗) (17)

with the Kronecker delta 𝛿𝑖 𝑗 is shown in Figure 4c and e
using the ANN parameters of the trained BM2/CMO and
BM2/LMO models, respectively. Equation (17) is derived
in terms of satisfying the relation 𝐸BM2(v;𝜽) = ∑

𝑖 𝑗 𝑣𝑖𝑣 𝑗𝑊𝑖 𝑗

for doubly-occupied v. Interestingly, the heat maps of 𝑊𝑖 𝑗
appear to capture some parts of the feature of those of the
particle correlation 𝐼𝑖 𝑗 for both LMO and CMO cases; how-
ever, there is no overall coherent relation between 𝑊𝑖 𝑗 and
𝐼𝑖 𝑗 .

Table 1: Predicted total energies (in 𝑚Eh) of s-trans and s-cis
butadiene and their energy difference Δ𝐸 (in 𝑚Eh) using BM2,
BM3 and RBM models using CMO and LMO basis with PN
treatment. The total energies presented are subtracted from
−153 Eh.

s-trans s-cis Δ𝐸 s-trans s-cis Δ𝐸
(CMO) (CMO) (LMO) (LMO)

RHF −16.49 −14.04 2.46
CASCI −102.70 −100.30 2.40 −102.70 −100.30 2.40
BM2
6 qubits −88.92 −85.00 3.92 −102.57 −100.11 2.46
8 qubits −90.64 −85.88 4.77 −102.65 −100.25 2.41
50 qubits −90.82 −86.09 4.73 −102.67 −100.26 2.41
BM3
6 qubits −88.05 −83.46 4.59 −102.55 −99.90 2.66
8 qubits −9002 −87.03 3.00 −102.65 −100.27 2.38
50 qubits −90.22 −87.24 2.98 −102.69 −100.30 2.39
RBM 𝑎

8 qubits −54.89 −52.69 2.20 −101.54 −99.20 2.35
𝑎 𝑛v = 4

PABI Potential Energy Curve Calculation

As a realistic test case, we here present the PEC calcula-
tion of the ring-opening isomerization reaction of the or-
ganic molecule, pentaarylbiimidazole (PABI)54 (Figure 5a).
This reaction, which is experimentally activated by photo-
irradiation, affords a transient metastable species with the
resonance hybrid of an open-shell biradical form and a
closed-shell quinoid form of two dissociated imidazolyl moi-
eties. Figure 5b shows the CMOs obtained from the RHF
calculations and used as the active MOs in the CAS(4e,4o)
treatment. The total energies of the S0 state predicted with
the BM models with LMO and CMO basis as a function
of the progress of the ring-open reaction are displayed in
Figure 5c. The BM models with six energy register qubits
(𝑛reg = 6) were sufficiently accurate for capturing the for-
mation of the high-energy meta-stable state at the open-ring
structure, which was confirmed in the previous spectroscopic
research.54 The errors of the PECs relative to the CAS-CI
results indicate that the energies of BM2 with 𝑛reg = 6 are
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accurate to an error of less than 1 𝑚Eh. An increase in
𝑛reg and the connectivity order of the BM is apt to improve
the accuracy that approaches the CAS-CI quality (Figure 5d
and e).

Figure 5f and 5g show the natural orbital occupation num-
bers (NOONs) of the state calculated at the closed-ring and
open-ring geometries, respectively. This analysis shows that
the electronic character of the closed-ring structure is of the
quinoidal nature, which is within the single-determinant pic-
ture using CMO basis, whereas the open-shell biradical na-
ture emerges at the open-ring structure as is reflected by
the half-integer NOONs of NO2 and NO3, which are ap-
proximately 1.6 and 0.4, respectively. As indicated by the
distribution of the configurations (Figure S4), the biradical
state is of multireference (or strongly-corrected) electronic
character. These calculations thus demonstrated that our
quantum computation of the BM-based models is within
reach of accurate multireference wavefunction calculations
that involve a variation between quinoidal and radical na-
ture.

3 Conclusions

In this work, a formalism based on the use of quantum
gates to form the ML-inspired quantum state, NQS, with the
BM2, BM3, and RBM energy functions on a QC has been
developed for the materialization of neural networks trained
as quantum chemical objects. Qubits play a role in quantum-
mechanically representing bitstrings of occupancies of con-
figurations, which are descriptors of this ANN model. With
the energy and its gradients estimated via quantum mea-
surements, the training of the network parameters towards
learning the superposition structure of the CAS-CI state is
efficiently performed by classical computations. The marked
features of the present NQS preparation algorithm are as fol-
lows:
1. The process to prepare the HBM-based NQS represent-

ing the CAS-CI state is fully quantum-native, forgoing
the random sampling of the intermediate state done in
the approach by Xia and Kais.

2. Kitaev’s QPE36,37 is exploited to evaluate the BM en-
ergy functions via its phase kickback trick with a flavor
similar to the GEQS algorithm28 of the general-purpose
QML. Unlike the way of using the QPE in Hamilto-
nian evolution as done by Aspuru-Guzik et al. and
others,45,55–57 our approach for preparing a single NQS
uses it in a noniterative manner with no time evolution
nor Trotter steps.

3. The rescaling parameters for the energy function have to
be determined, requiring an additional quantum treat-
ment subject to the QUBO problem50 to find the max-
imum and minimum of a function.

4. The values of the rescaled energy functions with a bit-
vector representation are efficiently calculated and stored
into a given number of energy register qubits, which can
thus suffer the roundoff errors. In our test cases, the
use of ten energy register qubits showed satisfactorily
convergent results.

5. The key factor determining the depth of NQS’s quantum
circuits is the number of the QAA cycles to amplify the
probability of the desired state. We found that it can be
relatively small if the resultant state is near maximally
entangled or highly multireference.

6. The NQS described in this study is a hybrid quantum-
classical algorithm and classified as a VQE type.

7. The HBM energy functions with no hidden nodes,
namely BM2, BM3, or even higher-order, are a suited
class of underlying ANNs for NQS prepared on a QC.
With HBM, our approach allows for the estimation of
analytical gradients of the energy with respect to net-
work parameters using the prepared NQS state, just as
the energy is calculated from the expectation values of
Pauli strings.

8. As analyzed in Section S1.7, the number of QAA cycles
(𝑁QAA) is a critical factor in determining the depth of
the quantum circuits in NQS. 𝑁QAA varies depending
on systems and basis types, and is apt to be small in
multireference cases.

9. Formulation with the RBM model for our quantum algo-
rithm is straightforward; however, several concerns are
aroused in the implementation. (i) the gradients of the
energy cannot be analytically computed on a QC as a
sum of the expectation values of Pauli strings because
of the involvement of the sigmoid function, which is in
contrast absent in HBM. (ii) With an increasing number
of the hidden nodes, the qubits proportionally increase
in number. Contrarily, HBM has no dependence of the
number of qubits on its order. (iii) Our testing on the
simulator revealed that marginalizing the hidden layer of
RBM’s 𝐶v lessens the probability of the target state by a
factor of approximately

√
2𝑛v in Gibbs state preparation.

This means that 𝑁QAA grows rapidly with increasing
𝑛v.

We have confirmed on the simulator that the quantum
algorithm (Algorithm 1) is implementable with the use of
elementary quantum gates except for the process to deter-
mine 𝐷 and Δ, and formally involves no approximation to
the given NQS ansatz except the roundoff errors due to the
finite precision of the energy register. The NQS calcula-
tions simulated for illustrative molecules overall reproduced
the ground-state CAS-CI energy and wavefunction with high
accuracy when the computational conditions were properly
given. The errors of the trained NQS compared to the CAS-
CI wavefunction are fundamentally irrelevant to the use of
quantum state preparation proposed in this work, and are
the same nature of error as what was observed in the fully
classical NQS scheme studied in the previous work. The
fully visible nature of the HBM neural networks plays a cru-
cial role in its good accommodation to a quantum algorithm,
and this special usability of HBM introduced in our previous
study for NQS should benefit the general-purpose QML.

4 Methods

Our hybrid quantum-classical algorithm for determining the
NQS was implemented into a Python-based computer code
fully running on a conventional computer as a prototype
(see also Section S1.8 for details). We performed bench-
mark calculations on three molecular systems; the hydro-
gen molecule H2, butadiene C4H6, and pentaarylbiimida-
zole (PABI)54 C36H24N4. The STO-3G basis set58 was
throughout used for the atomic orbital basis to represent
the second-quantized form of Hamiltonian. The canonical
molecular orbitals (CMOs) were determined at the restricted
Hartree-Fock (RHF) level of theory. For H2, HOMO and
LUMO were used as the molecular orbitals considered in
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Figure 5: a. Molecular structures of closed-ring and open-ring form of pentaarylbiimidazole (PABI). b. Active orbitals considered in
the CAS-CI(4e,4o) treatment. c. Potential energies curves of the ring-opening isomerization reaction of PABI calculated with full CI
and with the BM2 model using CMO and LMO basis with 𝑛reg = 6 and 50. The errors of PEC energies predicted with (d) BM2 and
(e) BM3 relative to the full CI values. The NOONs of the ground state calculated at the (f) closed-ring and (g) open-ring geometries.

the calculation, referred to as active orbitals. For butadi-
ene and PABI, HOMO-1, HOMO, LUMO, and LUMO+1
were used as the active orbitals. With these orbital se-
tups, our quantum chemical models of the systems corre-
spond to the complete-active-space (CAS) treatment24,25

with two electrons in two orbitals, denoted CAS(2e,2o), for
H2, and CAS(4e,4o) for butadiene and PABI. The local-
ized molecular orbitals (LMOs) were additionally obtained
by the unitary transformation of the active orbitals via the
Pipek-Mezey localization scheme.59 Two kinds of the active-
space Hamiltonian for a given system were constructed with
CMOs and LMOs, respectively, and used for NQS calcula-
tions as different test cases. The entanglement structures
of the resultant NQS wavefunctions should differ depending
on the orbital types. This nature was exploited in order to
assess our approaches against different entanglement char-
acters with the same system.

The bond dissociation energy curves of H2 were calcu-
lated with the bond length ranging from 0.25 to 1.95 Å. The
geometries of cis- and trans-conformers of 1,3-butadiene,
which were determined by the geometry optimization at
B3LYP/cc-pVDZ level of theory,60,61 are provided in Sup-
porting Information. All the single-point structures used in
the potential energy curve (PEC) calculations for the elec-
trocyclic reaction of the PABI are tabulated in Supporting
Information.

Two types of the initial state for the visible qubits in the
state preparation of NQS were used. They change the treat-
ment of the particle-number subspaces. The first type is
the Hadamard-transformed state, as written in Section 2,
involving 2𝑛v basis states, which are complete with span-
ning the Fock space for the given second-quantized Hamil-
tonian. The use of this initial state, designated FS, consid-
ers all possible numbers of electrons with arbitrary spins in
constructing NQS. The second type is the particle-number
(PN) state, prepared using the quantum circuit shown by
Gard et al.51 It is an equally-weighted superposition like the
Hadamard-transformed state but only using the basis states
with a desired number of electrons. The PN-conserving ini-
tial state undergoes our state preparation process, resulting
in the formation of an NQS as a superposition of these PN
conserving basis states. Figure S1 shows a PN circut used
as the initial state for the CAS(4e,4o) calculations. The
BM2 and BM3 states prepared with the FS treatment are
denoted BM2(FS) and BM3(FS), respectively, while those

with the PN-conserving basis states were denoted BM2(PN)
and BM3(PN), respectively.

The trained NQS models with BM2 and BM3 were ob-
tained for all the systems. We tested the various number
of the energy register qubits to gauge its impact on the ac-
curacy in the prepared state. The examined 𝑛reg was 6, 8,
10, and 12 for H2 and C4H6, and 6 for PABI. For compari-
son, the reference data were obtained with 50 energy register
qubits, offering near double-precision accuracy. The RBM
energies were calculated for H2 with 𝑛reg set to 8 and 50
and for butadiene with 𝑛reg set to 8. The numbers of hid-
den nodes (𝑛h) were tested to be 2, 3, 4, and 5 for H2 and 4
for butadiene. As shown in Figure 4a, with 𝑛reg = 6, where
obtaining stable convergence was difficult, we used the low-
est of the energies of the training history as the energy of
the solution.

It should be noted that the noise and system errors were
not considered in all the quantum-computing simulations.
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