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Abstract
In this work, interpretable deep learning was
used to identify structure-property relation-
ships governing the HOMO-LUMO gap and rel-
ative stability of polybenzenoid hydrocarbons
(PBHs). To this end, a ring-based graph rep-
resentation was used. In addition to afford-
ing reduced training times and excellent predic-
tive ability, this representation could be com-
bined with a subunit-based perception of PBHs,
allowing chemical insights to be presented in
terms of intuitive and simple structural mo-
tifs. The resulting insights agree with conven-
tional organic chemistry knowledge and elec-
tronic structure-based analyses, and also reveal
new behaviors and identify influential struc-
tural motifs. In particular, we evaluated and
compared the effects of linear, angular, and
branching motifs on these two molecular prop-
erties, as well as explored the role of disper-
sion in mitigating torsional strain inherent in
non-planar PBHs. Hence, the observed regular-
ities and the proposed analysis contribute to a
deeper understanding of the behavior of PBHs
and form the foundation for design strategies
for new functional PBHs.

Introduction
Polybenzenoid hydrocarbons (PBHs) are
molecules comprising multiple fused benzene
rings. Such molecules are prevalent in chem-
istry and in materials science; they play key
roles in various areas, from human health to
functional materials, to the study of interstel-
lar space.1,2 They are known for their detrimen-
tal impact as carcinogens3,4 and pollutants,5–7

as well as for their advantageous impact as
tunable organic semiconductors.8–11 Important
advances, such as the design of novel functional
PBHs or development of degradation pathways
for harmful compounds, rely on understanding
their properties and reactivity. Therefore, it is
no surprise that PBHs have been the subject
of extensive investigation for several decades,
nor that they continue to hold the attention of
chemists and material scientists.

The study of PBHs extends through both the-
oretical and experimental research and mainly
focuses on understanding their intrinsic reactiv-
ity,12 developing new synthetic pathways,13–15

and uncovering their structure-property rela-
tionships.16–19 Whereas the first two avenues of
research enable the preparation and application
of new PBHs, the latter can inform us of which
PBHs are worth synthesizing – i.e., which will
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Figure 1: Schematic illustration of our prediction and interpretability pipeline: the graph of atoms is
reduced to the graph of rings, which is the input for the SE(3)-Transformer model. The output is the
predicted property. The GradRAM algorithm uses the last layer features and the pooling layer gradient
with respect to the output to produce the importance value (IV) of each ring.

have desirable properties – and how we can tune
these properties via structural modification.

Over the past few years, machine learning
(ML) and, in particular, deep learning (DL)
have become popular tools for performing such
(quantitative) structure-property/activity rela-
tionship investigation.20–25 Indeed, many suc-
cessful models (wherein success is indicated by
the model’s out-of-training-sample predictive
performance) have been implemented in chem-
istry and related fields. Nevertheless, these
models are usually ’black-boxes’, meaning that
one cannot determine the nature of the learned
relationship, or even judge whether it is a phys-
ically valid one. The recent introduction of in-
terpretable models26,27 has now made it possi-
ble to ’open’ the ’black box’ and examine what
the model has learned, leading to substantiation
of known physical and chemical concepts and to
the discovery of new ones.28–30 Such approaches
have been applied within the chemistry domain
to learn molecular properties and derive chem-
ical insight. For example, by implementing an
explanation mask that localizes on the most im-
pactful characters, Goh et al demonstrated the
interpretability of the SMILES2vec model in
predicting solubility.31 Xiong et al showed that
inverting the AttentiveFP graph neural network
and extracting the weights allows for interpreta-
tion, such as identification of aromatic subunits
and intramolecular hydrogen bonding, which
can aid molecular discovery.32

Methods

Data

The COMPAS-1D dataset of the COMPAS
Project,33 1 was used. The dataset contains the
density functional theory calculated structures
and properties of ∼9K cata-condensed PBHs
comprising 1–10 rings. In the current study,
we focused on two molecular properties: the
HOMO-LUMO gap (HLG) and the relative en-
ergy (Erel). Erel was defined as the difference in
energy between each molecule and its respec-
tive lowest-energy isomer, where ’energy’ refers
to the total energy calculated at the optimized
geometry using the B3LYP/def2-svp combina-
tion with Grimme’s D3 dispersion scheme34

and Becke-Johnson damping,35,36 without zero-
point correction. To probe the role of disper-
sion, we also used ESCF

rel – which is defined sim-
ilarly, but does not include the dispersion cor-
rection (SCF stands for self-consistent field).

Prediction Model

We used the SE(3)-Transformer37 as a predic-
tion model for the electronic properties of the
molecules. The model is a variant of the graph
attention network (GAT),38 which is, by con-
struction, invariant under continuous 3D rota-
tions and translations. As location and orienta-
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tion of input structures are arbitrary, they are
treated as equivalence classes under the action
of the special Euclidean group SE(3).

In our setting, the model receives as the in-
put a graph G representing the chemical struc-
ture, with three-dimensional coordinate vectors
xi at each node i. In our experiments, nodes
represent either individual atoms or the cen-
troids of individual benzene rings. The nodes
can be further endowed with feature tensors
collectively denoted as hi. For the purpose of
predicting properties for the entire structure,
a permutation-invariant pooling layer is added
at the end aggregating all node features into a
single feature vector. A detailed explanation of
the SE(3)-Transformers and how it achieves the
desired invariance can be found in Section S1 of
the SI.

SE(3)-invariant models, including the SE(3)-
Transformer, have been developed specifically
for modeling molecular structures. The un-
precedentedly accurate data-driven prediction
of protein folding achieved by AlphaFold239 is,
undoubtedly, a triumph of this family of mod-
els.

GradRAM Interpretability

Neural networks are often referred to as ’black-
box’ models, which do not allow interpretation
of their decision-making process. Interpretabil-
ity is crucial for extracting chemical insight
from a trained model. Over the last few years,
methods have been introduced to help with the
interpretability of graph neural networks.40

Gradient-weighted Regression Activation
Mapping (GradRAM)41 is the less-known vari-
ant of the popular Gradient-weighted Class
Activation Mapping (GradCAM)42 for regres-
sion tasks. The intuition behind both methods
is to inspect the gradients with respect to the
output in the last convolution layers (before the
pooling), to identify the contribution of each
node to the model’s decision. While GradRAM
was previously proposed only for regular convo-
lutional neural networks, in this work we have
adapted the method to graph neural networks
in the following way: the importance value (IV)
of each node i is calculated as the average of

the node features in the last convolution layer
weighted by the feature gradient in the pooling
layer,

IV(i) =
∑
k

βkh
(L)
ki (1)

where h
(L)
ki is the k-th feature of the last convo-

lution layer, and βk is the average gradient of
the feature k in the pooling layer,

βk =
1

n

∑
i

∂y

∂h
(L)
ki

(2)

with y denoting the model output. This
method assigns to each node the magnitude and
sign of its relative contribution to the output.
A positive (negative) IV indicates that the node
contributes to an increase (decrease) in the pre-
dicted property value. The IVs are unitless.

Molecular Representation

Most approaches applying graph neural net-
works in the field of chemistry use a molecu-
lar graph, in which the atoms are the nodes
and the bonds are the edges, as their represen-
tation (graph of atoms – GOA). In this work,
we tested the standard GOA as well as a graph
of rings (GOR) representation. In the GOR,
each node represents a benzene ring (the coor-
dinates of the node are the centroid of the ring)
and each edge is the fused bond of two adjacent
rings. This representation can be extended to
heteroatom-containing systems by setting the
ring type as a node feature.

Using the GOR affords the GradRAM inter-
pretability at the level of rings, which are our
focus, as they are the basic building blocks of
PBHs. Whereas in many organic compounds,
individual atoms or groups of atoms may be
perceived as building blocks, in PBHS a sin-
gle atom reveals very little about the molecule,
even if its nearest neighbors are considered. We
previously demonstrated that, for PBHs, ring-
or subunit-based perspectives reveal structure-
property relationships governing multiple elec-
tronic properties in an intuitive and simple
manner.43–46 The ring perspective presents a
clear advantage for molecular design as well:
the GOR provides the IV of each ring, i.e., how
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it affects the property of interest (e.g., rais-
ing or lowering the HLG). Based on this, one
can formulate local modifications to the molec-
ular structure (e.g., adding or removing rings)
in order to tune the property in a desired di-
rection. That said, future work will focus on
poly(hetero)cyclic aromatic systems, in which
changes to specific atoms (e.g., C to N), will be
relevant and will be explored appropriately.

Using the GOR representation also reduces
the complexity of the graph, while still provid-
ing an adequate representation of the molecule.
This alleviates the required computational re-
sources substantially.

Results and Discussion
Over the past few years, we have been studying
the structure-property relationships of PBHs
(and polycyclic aromatic systems, PASs, in
a more general sense) using the approach
of deconstructing them into smaller compo-
nents. With this perspective, we discovered
that the magnetic properties of larger cata-
condensed PASs can be predicted with an ad-
ditivity scheme,43–45 using tricyclic components
(depicted in Figure 2A). Further, we revealed
that the annulation sequence (see Figure 2B)
of PBHs enables prediction of a whole host
of molecular properties, including the singlet-
triplet gap, the location of the spin density in
the first triplet excited state, and the aromatic
character in both ground and triplet excited
states.46

One of the main conclusions from this body
of work was that many of the characteristics
of cata-condensed PBHs are encoded in the se-
quence of tricyclic annulations – linear or angu-
lar. This entails that the representation of such
molecules can be reduced dramatically, and
even encoded as a text sequence. We recently
reported on the development of this representa-
tion, named LALAS, and its performance with
several ML models.47 In this work, we reduced
the dimensionality of the molecular representa-
tion using a different approach: the GOR rep-
resentation (see Molecular Representation for
further details). Such graph representations
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Figure 2: A) Structural motifs. B) Illustration of
the annulation sequence for a hexacyclic PBH ex-
ample. C) Motifs that induce deviation from pla-
narity (from left: top, front, and side views). The
σz for each structure is given in Å units. Double
bonds and hydrogens omitted for clarity.

have been successfully employed previously in
the investigation of PBHs. Balaban,48,49 Gut-
man,50 Aihara,51 and others52 have derived a
great deal of chemical insight using such repre-
sentations within graph-theoretical constructs.
Yet, to the best of our knowledge, this is the
first attempt to use the GOR in conjunction
with interpretable DL techniques.

In the following sections we discuss the two
main aspects of this approach: a) predictive
performance, and b) interpretability and chem-
ical insight.
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Predictive Performance

For this study, we chose to focus on two molec-
ular properties: HOMO-LUMO gap (HLG) and
relative energy (Erel). To begin, we compared
the performance of our SE(3)-Transformer in
predicting these two properties to two state-of-
the-art methods: a) CHEM-BERT,53 a natu-
ral language processing (NLP)-based method
that uses SMILES as the input; and b) At-
tentiveFP,32 a GAT-based method that uses
(molecular) graphs as the input. The results
(Table 1) show that our method out-performed
these two methods in predicting the HLG by
a significant margin: the mean absolute er-
ror (MAE) for both SE(3) models was smaller
than the CHEM-BERT MAE by a factor of ∼3
and smaller than the MAE of AttentiveFP by
a factor of ∼5. Though both types of repre-
sentation – GOA and GOR – performed com-
parably for predicting the HLG, we note that
the latter required a markedly shorter training
time (∼6 hours) than the former (∼43 hours).
For prediction of Erel, the SE(3)-GOA model
showed MAEs ∼7 and ∼10 times smaller, and
the SE(3)-GOR model showed MAEs ∼4 and
∼5 times smaller than CHEM-BERT and At-
tentiveFP, respectively.

Some chemical insight could already be
gleaned at this stage, simply from compar-
ing the performance of the two types of graph
inputs. We observed that the SE(3)-GOA and
the SE(3)-GOR models had essentially identical
predictive performance for the HLG (0.34% and
0.38% error relative to the mean HLG value,
respectively) but more noticeably different er-
ror values for the Erel (0.62% and 1.29% error
relative to the mean Erel value, respectively).
This suggests that the structural information
contained in the GOA and not contained in
the GOR – i.e., the specific attributes of the
C–C and C–H bonds – influences the predic-
tion of the Erel. In other words, the model
is sensitive to variations in bond lengths and
angles. Such variations result from different
annulation topologies and can incur strain en-
ergy, which contributes to the Erel value. In
contrast, the observation that the GOR rep-
resentation performed comparably well to the

GOA representation for prediction of the HLG
suggests that this property is much less sen-
sitive to such structural variations. Overall,
these results demonstrate that the SE(3) mod-
els are successful at predicting the molecular
properties and indicate that the models are
sensitive to specific (and subtle) features that
affect the structure-property relationships.

Interpretability

For the interpretability investigation, we chose
to continue with the GOR representation. The
rationale underpinning this choice was simple:
we sought the minimal unit that has chemical
meaning. As explained in the Molecular Repre-
sentation section, for PBHs, individual rings are
meaningful chemical moieties, while individual
atoms are not. Note that in this text we use
the annulation sequence notation (introduced
in Ref. 46 and shown in Figure 2B), which de-
scribes PBHs using ‘L’, ‘A’, ‘(’ and ‘)’ characters
for linear, angular, and branching annulations,
respectively (Figure 2A).

Validity of the model – interpretability of
the HLG prediction.

Our previous work uncovered a set of regulari-
ties pertaining to the relationship between the
singlet-triplet energy gap and structural fea-
tures.46 In particular, we found that the struc-
tural feature that determines the singlet-triplet
gap is the Longest L feature, i.e., the longest se-
quence of linearly-annulated rings. We hypoth-
esized that this would also be true for the HLG.
Indeed, the kernel density estimates (KDEs) of
the various subsets of data show that the value
of the HLG decreases as the Longest L increases
(Figure 3). The effect is marked enough that
the individual substrings show distinct ranges
in the distribution plots.

As a test of the reliability of the interpretabil-
ity model, we used these observations to per-
form a ‘reality-check’, which involved training
new models on subsets of the data. First, we
excluded all molecules with an L-motif, which
led to very poor predictive performance. Sub-
sequently, we excluded all molecules with in-
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Table 1: Comparison of different models for prediction of molecular properties.

Model HUMO-LOMO gap Relative energy
MAE(eV) Relative MAE(eV) Relative

CHEM-BERT 0.033±0.015 1.04±0.49% 0.037±0.020 5.11±2.68%
AttentiveFP 0.053±0.052 1.66±0.63% 0.053±0.068 7.13±5.13%
SE(3)-GOA 0.011±0.004 0.34±0.13% 0.005±0.002 0.62±0.33%
SE(3)-GOR 0.012±0.002 0.38±0.05% 0.010±0.003 1.29±0.36%

1.5 2.0 2.5 3.0 3.5 4.0
HLG (eV)

LLLL (1.94±0.10)
LLL (2.34±0.13)
LL (2.85±0.16)
L (3.21±0.29)
Rest (3.67±0.13)

Figure 3: KDEs of the distributions of the HLG
for subsets of the PBH class containing L, LL, LLL,
and LLLL motifs.

creasingly longer Longest L-motifs (i.e., LL,
LLL, LLLL, etc.). We observed that the lower
boundary of the predicted HLG decreased in a
‘step-wise’ manner according to the Longest L
sequence included (in line with the distribution
ranges shown in Figure 3). In contrast, exclud-
ing all molecules of a particular number of rings
did not adversely affect the predictive ability
(see Section 1 and Figure S1 in the Supporting
Information for further details).

We then conducted a series of paired tests,
in which we removed specific rings from PBH
structures and compared the HLG of the par-
ent and daughter molecules (Figure 4A and B).
We observed that, indeed, removal of rings with
negative IVs resulted in increased HLGs, while
removing rings with positive IVs resulted in de-
creased HLGs. In addition to this visual in-

spection, we also performed a statistical anal-
ysis that substantiated this relationship (Fig-
ure 4C). Thus, these results verified that the
model was capturing the correct physical rela-
tionships.

Insights into structure-property relation-
ships for HLG

Having confirmed that the model is capable
of ’rediscovering’ chemically valid structure-
property relationships, we queried it further
to substantiate additional findings and to seek
out new connections. As the first step, we
plotted the distributions of IVs for the mid-
dle rings in L, A, and branching motifs (Fig-
ure 5A). These plots reveal that the L motif
has predominantly negative IVs and the angu-
lar/branching motifs have predominantly neg-
ligible IVs that tend towards positive values
(mean IVs of −0.063, 0.016 and 0.023, for lin-
ear, angular, and branching, respectively). This
suggests that, in general, linear stretches tend
to decrease the HLG more strongly than the an-
gular/branching points tend to increase it. Fol-
lowing these general conclusions, we performed
a more in-depth analysis, focusing on each of
these structural features in turn. These conclu-
sions are described below.

Linear motifs. Initially, we focused on the
importance of the linear stretches and how their
influence is manifested. We performed visual
inspections of a random selection of compounds
containing linear stretches of various lengths
and observed that, indeed, the rings contained
within these structural motifs have the most
dominant IVs in each molecule (representative
examples in Figure 5C). As outlined above, the
middle rings of L motifs generally exhibit a neg-
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Figure 4: Paired-tests demonstrating the effect of removing rings with different IVs. A), B) Representative
examples of a parent system (center) and daughter systems following removal of a positive-IV ring (right)
or a negative-IV ring (left). The sign and magnitude of the IVs are denoted with color, according to the
color bar. The HLG of the daughter systems decreases and increases accordingly. The circled rings are
those removed. The arrow points to the location in the daughter molecule where the ring has been removed.
C) Correlation between the IV value of the removed ring and the change in HLG value.

ative IV. Our visual inspection further revealed
that these values become more negative as the
L-sequence elongates, and also concentrate on
the central rings of the linear stretch. More-
over, the IVs show that for molecules with sev-
eral multi-L motifs, the longest one is the dom-
inant one (e.g., Figure 5C4). This is yet an-
other conclusion that is in line with our previous
findings for triplet-state PBHs46 and is also in
agreement with the well-documented relation-
ship between elongation of polyacenes and the
decrease in their HLG.54–56

Angular motifs. We then turned to consider
the effect of angular annulations (representa-
tive examples in Figure 5D). We distinguish be-
tween molecules that have only A motifs (i.e.,
‘all-A’) and those that have a mixture of L
and A motifs. We note that, Whereas L mo-
tifs have only a single direction, A motifs can
form in two directions (clockwise and counter-
clockwise). Therefore, the number of possible
isomers increases substantially with each addi-
tional annulation.46 As a result, there are mul-
tiple all-A PBHs, but only one all-L for each
isomer family. Among these all-A compounds,
polyphenacenes (i.e., ‘zig-zag’-type structures;
Figure 2A) and 5D1) are a specific and well-
known subset and have been quite extensively
studied.57–60 To the best of our knowledge, how-
ever, a systematic study has not been reported

on the structure-property relationships of other
all-A PBHs or on molecules containing mixtures
of A and L motifs.

For the all-A PBHs, we observed that the IVs
are almost always positive and are in the higher
range of IVs. Small negative IVs are seen only
in terminal rings (Figure 5B). The most influ-
ential rings are those that are part of a ‘zig-zag’
motif, rather than a ’cove’ motif (i.e., C and Z
motifs; Figure 2A). If there is more than one Z
motif, the one that is farther from the terminus
of the molecule and does not overlap with a C
motif contains the more influential rings (e.g.,
Figure 5D2). These observations echo our pre-
vious findings of a hierarchy of structural motifs
for determining the spin density distribution in
the triplet excited state.46

For molecules comprising both A and L mo-
tifs, we observed that the A subunit(s) that
’break(s)’ the linear stretch generally has a
stronger positive IV (e.g., Figure 5D2-D4).
However, overall, the IVs for the A rings are
small. To summarize, the middle rings of A
motifs have high IVs only when there are no
L motifs in the PBH. When the structure con-
tains both A and L motifs, the middle rings of
the A motifs generally have small IVs (in abso-
lute value), indicating that, in those cases, their
contribution to the HLG value is relatively mi-
nor.
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Figure 5: IVs obtained from the HLG-prediction model. A) KDE distributions of the IVs of the linear,
angular, and branching motifs. B) KDE distributions of the angular motifs at terminal and inner locations
for the all-A PBH isomers. C) Examples of PBHs demonstrating regularities of linear motifs. D) Examples
of PBHs demonstrating regularities of angular motifs. E) Examples of PBHs demonstrating regularities of
branching motifs.

Branching motifs. Whereas linearly and
angularly annulated PBHs have been quite
broadly investigated (in some cases exhaus-
tively so, e.g., polyacenes and polyphenacenes),
branched PBHs appear to have received less
attention. This is perhaps due to the greater
complexity of such structures and the diffi-
culty of disentangling branching points from
the L/A structural motifs. Based on the
success of the interpretable model in finding
the structure-property relationships for the un-
branched PBHs (vide supra), we envisioned it
might allow us to reveal new insights about
the effects of branching. The distribution of
IVs for the branching motifs shows that, for
the most part, these have negligible IVs (Figure
5A). However, in some cases, their IVs become
noticeably larger. Visual inspection revealed a
few regularities, including that the relative size
of the IVs depends on the type of motif next to
the branching point: if it is adjacent to an A
motif, the branching motif will have relatively

low IVs, and even negative values in the periph-
eral rings (e.g., Figure 5E1); if it is adjacent
to an L motif, the branching motif will have
relatively high positive IVs (e.g., Figure 5E2-
E4). These patterns indicate that the branch-
ing, in and of itself, does not have a dominant
effect on the HLG. Rather, its contribution to
the HLG is reliant on the absence/presence of L
motifs. This is corroborated by the distribution
of HLGs showing minimal or no dependence on
the presence/number of branches (Figure S2 in
the Supporting Information).

Extension to Erel

We next turned to examine a different molecu-
lar property – relative energy. In particular, we
focused on the effect of structural motifs and
their role in enabling stabilizing dispersion in-
teractions. To this end, we compared two dif-
ferent types of energy: Erel and ESCF

rel , where
the only difference between the two terms is
that the former contains the dispersion correc-
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A) IVs of Linear, Angular, Branched C) Relative energy vs. non-planarityB) IVs of Cove, Fjord, Helix

Figure 6: Comparison of results for the ESCF
rel (top) and Erel (bottom) models. A) KDE distributions of

the IVs of the linear, angular, and branched motifs. B) KDE distributions of the IVs of the cove, fjord,
and helix motifs. C) Scatter plot of the relative energy against the deviation from planarity, colored by the
cove, fjord, and helix structural motifs.

tion and the latter does not (see Data section
for the definitions of these two energies).

Again, we began by plotting the distribution
of IVs of the middle rings in each of the three
structural motifs. In contrast to the HLG case,
here we observed very small differentiation be-
tween the structural motifs and a large degree
of overlap and a trend of angular < branch-
ing < linear (Figure 6A bottom). The model
trained on ESCF

rel yielded a different trend of an-
gular < branching < linear (Figure 6A, top).
This was the first indication that the disper-
sion correction leads to a qualitatively different
interpretation, i.e., might be overriding other
inherent structure-related behaviors. Accord-
ingly, the absence of dispersion corrections may
bring these effects to light. Thus, we sought
to extract insight into the effects of the various
structural motifs on the relative stability of the
PBH isomers and on the role of dispersion in

this context.

Linear motifs. Visual inspection of the IVs
for the Erel-prediction model showed that the
most strongly positive IVs are in the linear
stretches and these become increasingly posi-
tive as the linear stretch elongates (see Figures
S3 and S4 in the Supporting Information). This
is in marked contrast to the HLG prediction,
where the same motifs contributed the most
strongly negative IVs. Interestingly, for the
ESCF

rel -based model, the same rings have even
higher IVs (Figure 7A; Figures S3 and S4). In
other words, the linear stretches contribute to
higher relative energy of the PBH isomers and
longer linear stretches have reduced dispersion
interactions.

The distribution of the molecular properties
verified these observations: we observed that
the relative energy increases with the elonga-

9



A) Linear C) CoveB) Branching E) HelixD) Fjord

Figure 7: Visual depictions of IVs obtained from the ESCF
rel (top) and the Erel (bottom) models. Examples

containing a A) linear motif; B) branching motif; C) cove motif; D) fjord motif; E) helix motif. Colors
within the ring correspond to IV values, as shown on the color bar (right).

tion of the linear stretch. For L, LL, LLL, and
LLLL, respectively, we found mean Erel values
of 0.71, 0.76, 0.94, 1.15 eV and mean ESCF

rel val-
ues of 0.83, 0.80, 0.91, and 1.14 eV (Figure
S5 in the Supporting Information). Notably,
the difference between the two types of rela-
tive energy changes as the L-sequence elongates
(Erel − ESCF

rel = −0.12, −0.04, 0.03, and 0.01
eV for L, LL, LLL, and LLLL, respectively).
In other words, as the interpretable model in-
dicated, the dispersion interactions stabilize
molecules with short linear stretches but do not
stabilize molecules with long ones. This can be
rationalized in the following way: for unsub-
stituted PBHs, the expected type of stabilizing
dispersion interactions is π − π stacking. Such
interactions can only occur if the geometry of
the molecule enables spatial overlap of individ-
ual rings. Molecules with longer linear stretches
are expected to be (mostly) planar and there-
fore are not expected to have significant stabi-
lizing π − π dispersion interactions.

Angular motifs. Visual inspection of all-A
PBHs showed that the terminal rings tend to-
ward negative IVs while inner rings tend toward
positive IVs. The distributions of IVs for the
terminal and inner rings corroborated this ob-

servation (Figure S6 in the Supporting Informa-
tion). They also revealed bi-modalities, which
are caused by the rings belonging to either C
or Z motifs (Figure S7 in the Supporting In-
formation). Unsurprisingly, the effect is more
noticeable for the terminal rings, where there is
no overlap with additional motifs. We observed
that the IVs of terminal rings in C motifs are
slightly positive when dispersion is omitted and
slightly negative when it is included. In con-
trast, the IVs of rings in Z motifs tend to be
negative for both cases (Figure S7 in the Sup-
porting Information). In other words, C mo-
tifs are inherently destabilizing and this effect is
mitigated by dispersion interactions, whereas Z
motifs are inherently stabilizing. Interestingly,
this is similar to the hierarchy of stabilization
we found in the first excited triplet state.46

To probe this further, we considered the cove,
fjord, and helix series of motifs, which are all
made of sequential angular annulations in the
same direction with an increasing number of
rings (four, five, and six rings, respectively; Fig-
ure 2C). The elongation of the motif leads to
an increase in curvature and in deviation from
planarity (σz values displayed in Figure 2C),
and therefore also increases the inherent tor-
sional/helical strain. Accordingly, all other con-
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ditions being equal, it is expected that the IVs
of rings should follow the trend cove < fjord <
helix. Indeed, for the model trained on ESCF

rel ,
this is the trend that is observed (Figure 6B,
top). However, for the model trained on Erel,
the trend in IVs changes to cove < helix < fjord
(Figure 6B, bottom). The shift in trends in-
dicates that the three motifs have different ex-
tents of stabilization via dispersion interactions.

The change in IVs shows that inclusion of the
dispersion correction mainly affects the helix
motif, and visual inspection revealed that this
is primarily due to the rings at the ends of the
helical motifs. We observed that, for the ESCF

rel -
based model, all of the rings of the helix motifs
have positive IVs (e.g., Figure 7E, top). How-
ever, in the Erel-based model, the end-rings that
overlap (or partially overlap) in space display
negative IVs (e.g., Figure 7E, bottom middle
and right examples). We hypothesized that this
is due to the participation of these end-rings in
π − π stacking interactions, which have a sta-
bilizing effect and therefore lower the Erel. Ad-
ditional corroboration can be seen in counter-
examples, one of which is displayed in Figure
7E, left example. This molecule contains a helix
motif in which the end-rings do not overlap and,
notably, the IVs of the helix end-rings remain
positive even when dispersion interactions are
included. Thus, the interpretability confirms
that the helix motif itself is inherently desta-
bilizing – which we attribute to helical strain –
but the extent of its destabilization is mitigated
by dispersion interactions, and specifically by
the π − π stacking of the end-rings.

To show the generality of these conclusions for
the entire data set, Figure 6C displays scatter
plots of the relative energy against σz (which
is a measure of deviation from planarity), col-
ored according to cove, fjord, and helix subsets.
The plot for ESCF

rel (top) shows that the rela-
tive energy generally increases as the deviation
from planarity increases, which follows along
the same trend of cove < fjord < helix (mean
ESCF

rel values are 0.746, 1.116, and 1.363 eV for
cove, fjord, and helix, respectively). The plot
for Erel (bottom) shows that, indeed, the subset
of data most influenced by addition of disper-
sion corrections is that of the helix-containing

molecules (mean Erel values are 0.709, 0.923,
0.842 eV). These trends and the relative effect
on the individual motifs are in agreement with
the results observed for the IVs themselves.

Thus, the interpretability of the two models
and the comparison between them enable iden-
tification of the two main components influenc-
ing the Erel in non-planar PBHs and demon-
strate the cost of helical strain and the role of
dispersion in mitigating this cost.

For molecules that contain both L and A mo-
tifs, the behavior is in line with the conclusions
above. Due to their relatively strong destabi-
lizing effects, the ESCF

rel -model assigns the larger
positive IVs to A motifs. Inclusion of dispersion
corrections mitigates the strain of the curved
motifs, to the extent that their overall desta-
bilizing effect lessens and, therefore, the Erel-
based model assigns higher positive IVs to the
L motifs.

Branching motifs. The presence and num-
ber of branching motifs clearly influence the
Erel, as seen in Figure 8A. Increasing the num-
ber of branches in the molecule leads to an in-
crease in Erel (mean Erel values of 0.64, 0.75,
0.93, 1.24 eV for 0, 1, 2, and 3 branching points,
respectively). This is in line with the IVs of
branching motifs having a positive mean value
(Figure 6A). When the dispersion correction is
omitted, the mean value of the IV increases,
which indicates that, on average, branching mo-
tifs are stabilized through dispersion effects.

Following our analysis on the behavior of the
angular motifs (vide supra), we hypothesized
that the trends observed for the branching mo-
tifs may be due not to the branching, per se,
but rather to the relationship between branch-
ing points and the formation of curved struc-
tures. As shown in Figure 8B, the formation
of the various curved motifs depends on the
number of branching points, n: as n increases,
so do the percentages of fjord and helix mo-
tifs in the molecules. Hence, the increase in
n is linked to greater deviation from planarity
and higher strain, i.e., higher relative energy.
This is also in line with the observation that
the effect of branching is dampened when dis-
persion is taken into account. Note that, while
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Figure 8: A) KDEs of the distribution of Erel for
subsets of the PBH class containing 0, 1, 2, and 3
branching points. B) Percentage of cove, fjord, and
helix motifs in molecules containing 0, 1, 2, 3, and
4 branching points.

the percentage of fjord motifs increases steadily,
the helix motifs decrease at n = 3 and disap-
pear completely at n = 4. This is because our
dataset contains molecules of up to 10 rings,
and having four branching points precludes a
single branch of six rings (necessary for form-
ing a helix). For larger isomers, it is expected
that the percentage of helices would continue to
increase.

Conclusions
In this work, we reported on the application of
interpretable deep-learning models to identify

structure-property relationships in the archety-
pal polycyclic aromatic systems, PBHs. In
principle, one may apply such methods to any
type of molecules. However, the ability to gain
meaningful understanding hinges on defining
representations and motifs that are amenable to
interpretation. Our GOR reductive representa-
tion enabled us to extract meaningful chemical
insight while also substantially reducing train-
ing times. By assigning IVs to individual rings,
we could combine the DL interpretability model
with our PBH-specific structural motif-based
analysis, which highlights patterns that are in-
tuitive to grasp. Importantly, the relationships
uncovered relate directly to the unique charac-
teristics of the studied molecules.

The investigation focused on two individual
properties, the HLG and the Erel, and their
relationship to the structural motifs. For the
HLG, the main findings were:

1. the HLG is primarily determined by the
Longest L sequence in the molecule – the
longer the linear stretch, the smaller the
HLG;

2. angular motifs increase the HLG;

3. in the absence of linear motifs, the Z mo-
tif is more influential than the C motif in
determining the HLG;

4. branching points do not have a great im-
pact, in and of themselves;

5. the effect of branching points depends on
the adjacent motif.

For the Erel, the main findings were:

1. linear stretches increase the Erel – the
longer the linear stretch, the greater the
increase in Erel;

2. torsional/helical strain destabilizes of
PBH isomers following the trend cove <
fjord < helix;

3. dispersion interactions stabilize the mo-
tifs, along the trend cove < fjord <
helix;
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4. as a result of these opposing effects, the
apparent trend in Erel is cove ≤ helix ≤
fjord;

5. the helix motifs are stabilized most
strongly due to π−π interactions in over-
lapping rings;

6. the apparent relationship between Erel

and the number of branching points is
due to the formation of longer (i.e., more
distorted) curving motifs, and not the
branching itself.

We note that, in a previous study that
used interpretable ML models47 and text-based
molecular representations, the same motifs were
identified as being influential, however, the di-
rection of their effect was unknown. There-
fore, it was not possible to develop a rational-
ization for the structure-property relationships.
In this work, the interpretability of the mod-
els allowed identification the influential motifs
as well as evaluation of the magnitude and di-
rection of their effect. These results made it
possible to construct a chemically-informed ra-
tionalization, which is both intuitive and infor-
mative.

In summary, this work has demonstrated ap-
plication of the GradRAM interpretable DL
method for obtaining chemical insight and ad-
vancing molecular design. We have shown the
advantages of combining this method with ring-
based molecular graph representation and with
the perception of large PBHs as sequences of
smaller structural motifs. The regularities we
identified not only give a deeper understanding
of the effects governing the behavior of PBHs,
but also provide guiding principles for the ra-
tional design of PBHs. We are currently work-
ing on expanding our investigation to additional
types of PASs, such as poly(hetero)cyclic aro-
matic systems and peri -condensed PBHs.

Data Availability
All data used in this project was obtained from
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1D, a freely available data repository2. All
code used to train, test, and analyze the mod-
els and the data is provided free of charge
at https://gitlab.com/porannegroup/PBHs-
interpretability.
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