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Local hybrid functionals are a more flexible class of density functional approximations al-

lowing for a position-dependent admixture of exact exchange. This additional flexibility,

however, comes with a more involved mathematical form and a more complicated de-

sign. A common denominator for previously constructed local hybrid funtionals is usage

of thermochemical benchmark data to construct these functionals. Herein, we design a

local hybrid functional without relying on benchmark data. Instead, we construct it in a

more ab initio manner, following the principles of modern meta-generalized gradient ap-

proximations and considering theoretical constrains. To achieve this, we make use of the

density matrix expansion and a local mixing function based on an approximate correlation

length. The accuracy of the developed density functional approximation is assessed for

thermochemistry, excitation energies, polarizabilities, magnetizabilities, NMR spin–spin

coupling constants, NMR shieldings and shifts, as well as EPR g-tensors and hyperfine

coupling constants. Here, the new exchange functional shows a robust performance and is

especially well suited for atomization energies, barrier heights, excitation energies, NMR

coupling constants, and EPR properties, whereas it looses some ground for the NMR shifts.

Therefore, the designed functional is a major step forwards for functionals that have been

designed from first principles.

a)C. Holzer and Y. J. Franzke contributed equally to this work.
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I. INTRODUCTION

The incorporation of exact exchange or Hartree–Fock (HF) exchange into semilocal density

functional theory (DFT) was a milestone in computational chemistry.1–3 Today, DFT is probably

the most widely applied computational method in chemistry and material science due to its favor-

able cost-accuracy ratio. Global hybrid functionals such as B3LYP,4–6 PBE0,7,8 or TPSSh 9,10 use

a fixed or static amount of HF exchange. Typically, global hybrid functionals use 5–25% of HF

exchange.3 While this leads to accurate results for many chemical properties, such a rigid admix-

ture of exact exchange is not suited for charge-transfer excitations or the dissociation curve. Global

hybrid functionals with the given amount of exact exchange still feature a self-interaction error.

This is especially pronounced in one-electron regions. Therefore, range-separated hybrid (RSH)

functionals, which typically use a significantly larger amount of exact exchange in the long-range

region, were introduced.11–14

Local hybrid functionals (LHFs) feature a position-dependent admixture of Hartree–Fock ex-

change via a local mixing function (LMF).15 Thus, the LMF increases the flexibility of the func-

tional as the amount of HF exchange can be increased or decreased in certain regions and LHFs are

a more general class of hybrid density functional approximations. Compared to range-separated

hybrid functionals, this functional form results in a smoother transition from spatial regions with a

small amount of HF exchange to regions with a large amount of HF exchange, as it is possible to

interpolate between the semilocal DFT and HF limits. However, LHFs introduce a gauge depen-

dence of the exact-exchange energy density.16 Thus, a so-called calibration function 16–18 (CF) is

introduced in modern local hybrid functionals such as LH14t-calPBE 17 and LH20t.19

The LMF is the key ingredient of LHFs and different ansätze were suggested.20,21 The first

and still most prominent method to distinguish the electronic regions is the iso-orbital indica-

tor (t-LMF).15 This allows to identify one-electron regions, those accurate description requires

an increased amount of exact exchange. Other approaches are based on the correlation length

(z-LMF),22 reduced (spin) density gradients (s-LMF),23,24 the density overlap regions indica-

tor (DORI-LMF),25,26 or the second-order Görling–Levy perturbation limit 27 of the correlation

(PSTS-LMF).28 We have recently carried out benchmark calculations of electric and magnetic re-

sponse properties for LHFs based on different LMFs.29 This showed encouraging results for John-

son’s LHF 22 based on the correlation length—especially for heavy elements. We note that this

LMF is also advantageous in numerically demanding cases and results in a smooth convergence
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behavior.30 However, only one functional based on this LMF was optimized,22 which consists of

Becke’s 1988 exchange 31 and correlation terms.32 Moreover, this functional does not make use of

a calibration function, which is commonly included in the latest generation of LHFs based on the

iso-orbital indicator. Therefore, we will first re-parameterize this functional with the Becke 1995

correlation term 33 and also add a CF in this work.

In a second step, we will design a more sophisticated local hybrid functional from first princi-

ples. Modern (range-separated) hybrid and local hybrid functionals are typically optimized using

(large) thermochemical test sets. While this may result in well performing density functionals

approximations for the properties considered in the design, it may also come with a loss of gen-

erality and physical insight.34,35 In contrast, modern semilocal functionals 36–39 are first designed

to include (almost) all known theoretical constrains and then applied to large benchmark test sets.

Herein, we will follow this route and adapt it to the form of local hybrid functionals.

In addition to electron correlation, an accurate description of the electronic structure throughout

the periodic table of elements necessitates a proper treatment of relativistic effects.40–46 Herein,

we will also generalize the two-component framework for open-shell systems developed in Ref. 47

to include the z-LMF 22 and PSTS-LMF, 28 as well as higher-order derivatives to add the so-called

calibration function of modern local hybrid functionals.19,21 It is shown that these functionals lead

to substantially improved results for EPR properties, which are a problematic case for the first and

second generation of t-LMF based functionals.47

The paper is structured as follows. First, we will discuss the theoretical framework. In doing

so, the optimization of a density functional approximation based on the correlation length from

first principles is described. Then, the accuracy of the developed functionals is assessed for ther-

mochemisty, excitations, polarizabilities, magnetizabilities, and NMR/EPR properties.

II. THEORY AND IMPLEMENTATION

We will first review local hybrid functionals within an unrestricted Kohn–Sham (UKS) for-

malism and the calibration function in subsections II A and II B. This ensures that all optimized

parameters are described herein. Furthermore, the generalization to a two-component framework

is described in Sec. II C. In subsection II D, we construct an optimized LHF based on the correla-

tion length similar to Johnson’s work.22 Motivated by the success of this approach, a local hybrid

exchange functional is constructed from first principles in subsection II E.
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A. Unrestricted Kohn–Sham Formalism for LHFs

In an UKS framework, the exchange-correlation (XC) energy is given by

ELHF
XC = ∑

σ=α,β

∫
d~r
[
{1−aσ (~r)}eDFT

X,σ (~r)+aσ (~r)eHF
X,σ (~r)

]
+EDFT

C (~r), (1)

where a is the LMF, eDFT
X,σ is the semilocal DFT exchange energy density, and eHF

X,σ denotes the

exact-exchange or Hartree–Fock exchange energy density. EDFT
C refers to the correlation energy.

The LMF may depend on the spin quantities or total quantities. LMFs based on the latter include

spin polarization and are called common LMFs.48 To carry out the integration in Eq. 1, Plessow

and Weigend suggested to use a seminumerical scheme,49 as this also computes the LMF, the

exact-exchange energy contribution, and the semilocal DFT exchange energy density on a grid.

The exact-exchange term follows as

eHF
X,σ (~r) =−

1
2 ∑

pqrs
Dσ

pqDσ
rs

∫
d~r ′

φ∗p(~r)φr(~r)φ∗q (~r
′)φs(~r ′)

|~r−~r ′|
, (2)

where the integration with respect to ~r ′ is evaluated. φp and Dσ
pq denote the one-electron basis

functions and the spin density matrix, respectively. The remaining integration with respect to~r is

performed numerically on a grid. Therefore, the position-dependent admixture of exact exchange

is directly included in the DFT routines according to

ELHF
X = ∑

σ

∑
g

wg [1−aσ (~rg)] eHF
X,σ (~rg), (3)

with g denoting a grid point. This LHF scheme was later applied self-consistently 50 to various

molecular properties such as geometry gradients,29,51 excitation energies and polarizabilities,52–55

ionization potentials with the GW method,29,56 magnetizabilities,29 and nuclear magnetic reso-

nance (NMR) parameters.29,30,57–60 The latter were also used to compute the magnetically induced

current density and ring current strengths of aromatic systems.29 The reworked implementations

of these properties are described in Refs. 29 and 55.

First, the LMF may be formulated based on the iso-orbital indicator.15 The respective t-LMF

reads

aσ (~r) = ct
τvW

σ

τσ

= ct
|∇ρσ |2

8ρσ τσ

. (4)

Here, the kinetic-energy density τ is compared to the von Weizsäcker approximation τvW.61 ρσ

denotes the (spin) density. In case of a common LMF, the total (kinetic-energy) densities are used.

The prefactor ct in Eq. 4 is an optimized parameter.
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Second, Johnson introduced a LMF using the correlation length z according to22

aσ (~r) = erf(cz zσσ ) (5)

with the empirical parameter cz. Note that only the contribution of parallel spins is considered.

Here, the correlation length is computed with the exchange potential UX and the exchange hole hX

as

zσσ ′ = cσσ ′
(
|UX,σ |−1 + |UX,σ ′|−1) , (6)

UX,σ =
∫

ds
1
s
|hX,σ (~r,s)|, (7)

where cσσ ′ are given by cαβ = 0.63 and cσσ = 0.88.32 Notably, this z-LMF depends explicitly on

the underlying exchange functional.

B. Calibration Function

Tao et al. pointed out that the exchange-energy densities are gauge dependent.16 This ambiguity

leads to the so-called gauge problem.16,17,62,63 The respective gauge transformation reads

eHF,DFT
X,σ (~r) = eHF,DFT

X,σ (~r)+Λσ (~r). (8)

This gauge transformation term or calibration function Λσ (~r) is required to meet the condition∫
d~r Λσ (~r) = 0. (9)

Hence, this does not change the exchange energy of a global hybrid functional. However, the term

including the LMF,
∫

d~r [1−aσ (~r)]Λσ (~r), is not zero. Including the calibration function Λσ (~r) in

a LHF leads to the correlation-exchange energy expression

ELHF
XC = ∑

σ

∫
d~r
[
(1−aσ (~r))

{
eDFT

X,σ (~r)+Λσ (~r)
}
+aσ (~r)eHF

X,σ (~r)
]
+EDFT

C (~r). (10)

Different CFs were suggested in the literature.16–18 In the original ansatz by Tao et al., a CF

based on the exact-exchange energy density, its first and second derivatives is constructed.16 Such

a CF is numerically demanding and consequently Kaupp et al. derived CFs based on the electron

density and its derivatives up to terms depending on ~∇τ .17,18 Herein, we use the so-called pig2

(second-order partial integration gauge) calibration function. This CF reads 18

Λσ (~r) = f1 f2 ρ
4/3
σ s2

σ ·
d2Fd(sσ )

ds2
σ

·
(

pσ −
4
3

s2
σ

)
,

+ f1 f2 ρ
4/3
σ sσ ·

dFd(sσ )

dsσ

·
(

pσ +qσ −
5
3

s2
σ

)
,

(11)
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where f1 and f2 are empirical prefactors, while sσ , qσ , and pσ are the reduced (spin) density

gradient, the reduced density Laplacian, and the reduced density Hessian, respectively. Fd is a cut-

off or damping function, which is typically computed based on Becke’s 1988 31 or 1998 exchange

functional.64 The reduced spin density gradient sσ is defined as

sσ =
1
k

γ
1/2
σσ

ρ
4/3
σ

, (12)

k = 2(6π
2)1/3, (13)

γσζ = ~∇T
ρσ ·~∇ρζ , (14)

and the remaining density-dependent quantities qσ and pσ are given as

qσ =
1
k2

~∇T~∇ρσ

ρ
5/3
σ

, (15)

pσ =
1
k2

ησ ,σσ

γσσ ·ρ5/3
σ

, (16)

ηθ ,σζ = ~∇T
ρσ ·~∇~∇T

ρθ ·~∇ρζ . (17)

We use a damping function of the Becke 1988 exchange functional 31 given as

Fd(sσ ) =
k2β

1+6βk · sσ · asinh(k · sσ )
(18)

with an empirical parameter β . Note that this CF is already implemented for non-relativistic

or scalar-relativistic one-component approaches up to second-order properties.18,58,60 However,

this CF also increases the numerical demands and comparably large integration grids may be

needed.17,29,30 Also, the thresholds for the XC integration need to be tightened for the SCF and

response equations to ensure a smoother convergence.30

C. Generalization to a Non-Collinear Two-Component Framework

A self-consistent treatment of spin-orbit coupling necessitates a generalized two-component

Kohn–Sham formalism. This requires not only the spin excess density but the complete spin

magnetization vector, which is is introduced according to

~m = ∑
i

ϕ
†
i ~σϕi (19)
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with the two-component spinor function ϕi and the vector ~σ containing the (2 ××× 2) Pauli spin

matrices. The total electron density ρ and the non-collinear spin density ρs are given as 65,66

ρ = ∑
i

ϕ
†
i ϕi, (20)

ρs = (~m ·~m)1/2 . (21)

In a basis set representation, the non-collinear exchange-correlation energy depends on the total

density matrix M0 and the three spin vector density matrices Mi with i = x,y,z. These are defined

as 65,66

M0 = Re(Pαα)+Re(Pββ ), (22)

Mx = Re(Pαβ )+Re(Pβα), (23)

My = Im(Pαβ )− Im(Pβα), (24)

Mz = Re(Pαα)−Re(Pββ ). (25)

The XC potential follows as

VXC[M0(~r),Mi(~r)] =
δEXC[M0(~r),ρi(~r)]

δM0(~r)
+ ∑

i=x,y,z
~σi

δEXC[M0(~r),Mi(~r)]
δMi(~r)

. (26)

The generalization of a non-relativistic spin-density functional is done using the spin-up and spin-

down densities 67,68

ρ
↑ = (ρ +ρs)/2, (27)

ρ
↓ = (ρ−ρs)/2. (28)

Only considering M0 and Mz results in the UKS limit. Therefore, an unrestricted Kohn–Sham

implementation of the XC potential and the XC energy can be extended straightforwardly.67 This

involves the following major steps. First, the electron (spin) density and its derivatives such as

the gradient and the Laplacian or the kinetic-energy density are evaluated at a given grid point.

Second, the respective derivatives are multiplied with its spin density matrix contribution and the

sum of all three vector components is formed. The inverse of the total spin density is used as a

prefactor. Third, the spin-up and spin-down contributions are constructed. Then, the exchange

and correlation functional expressions can be evaluated similar to UKS. For further details, we

refer to Refs. 67 and 69. Herein, we have implemented this scheme up to the Hessian of the

electron density and the gradient of the kinetic-energy density to evaluate all calibration functions
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described in Ref. 18. A generalization of spin-dependent local mixing function is more involved

and many modern LHFs based on the t-LMF use a common local mixing function. Therefore, the

implementation of the 2c t-LMF is still restricted to the common variant. Thus, LH07t-SVWN 70

or LH14t-calPBE 17 are not yet available. Moreover, current-dependent terms arise as spin–orbit

coupling is closely related to magnetic induction and these are neglected herein,71 however, their

implementation will be presented elsewhere.

D. Optimized Functionals based on the Correlation Length

The original LHF of Johnson, termed LHJ14 herein, is based on Becke’s 1988 (B88) exchange

contribution 31 and his 1988 modified correlation term.32 The latter is rarely used in common

hybrid and range-separated hybrid density functional approximations. Thus, we use Becke’s 1995

(B95) correlation term 33 instead and re-optimized the parameter cz in Eq. 5. Furthermore, a pig2

calibration function including the damping function of the B88 exchange contribution was added.

The parameters for the calibration function were taken from Ref. 18 for the B88 functional.31 The

parameter cz, controlling the mixing of exact exchange and local exchange, was subsequently fitted

to the exchange-correlation energies of the rare-gas atoms He to Xe. For the fitting procedure, the

sum of exchange and correlation energies were fitted to allow for error cancellation of the LHF

exchange together with the B95 correlation functional.33 The obtained parameters are summarized

in Tab. I. An optimized parameter cz = 0.20 is obtained.

LHJ-HF is a good example of outlining the simplicity at which sophisticated, calibrated LHFs

can be obtained. Only data available from atomic calculations enter each component, making it

strictly independent from any thermochemical data, frequently used to parametrize density func-

tional approximations. Yet, more elaborate functionals may be needed to fully exploit the possi-

bilities of the local mixing of exact exchange. In the next section, we will therefore outline a more

TABLE I. Parameters found for LHJ-HFcal. The simplified version LHJ-HF does not consider the parame-

ters of the pig2 calibration function ( f1, f2) and the Becke damping function (β ). Parameters were fitted to

the exchange-correlation energies of the rare-gas atoms He to Xe.

cz f1 f2 β

0.20 −2.244 0.821 0.003667
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rigorous approach, which will distinguish between diverse spatial regions in the density.

E. Designing a Local Hybrid Exchange Functional from First Principles

A common denominator for previously constructed local hybrid funtionals is usage of thermo-

chemical benchmark data to construct these functionals. In this paper, we aim at constructing a

local hybrid exchange functional without relying on benchmark data. Instead, we construct it in a

more ab initio manner, following the principles of previous metaGGA functionals.9,36,37

We define the local exchange part eX as usual using an enhancement factor FX,

EX = ∑
σ=α,β

∫
d~r FX(ρσ ,∇∇∇ρσ ,τσ ;~r) · eunif

X (ρσ ;~r), (29)

where the exchange energy density from the local (spin) density approximation is defined as

eLSDA
X (ρσ ;~r) = ρσ eunif

X (ρσ ;~r) =−3ρσ

4π
(3π

2
ρσ )

1/3. (30)

As in many recent density functional approximations (DFAs), we chose a semilocal enhancement

factor, where FX is a function of the density ρσ , the gradient of the density ∇∇∇ρσ , and the kinetic

energy density τσ . As the exchange enhancement factor only depends on a single spin coordinate,

it is dropped in the following equations. Particularly, we adopt the density matrix expansion

(DME) approach of Tao and Mo,36 which has been shown to perform well for solids.72–74 Within

the DME of Tao and Mo, the enhancement factor FDME
X is given as

FDME
X =

1
f 2
X
+

7RX

9 f 4
X
. (31)

The auxiliary quantities RX and fX are defined as

RX =1+
594
54

y−
[

τ−3(λ 2
X−λX +0.5)×

(
τ− τ

unif− |∇ρ|2

72ρ

)]
1

τunif (32)

and

fX =

[
1+10

70y
27

+βXy2
]

(33)

with τunif = (3/10)(3π2)2/3ρ5/3. λ is a real number between 0.5 and 1, describing the coor-

dinate transformation. λ = 1 corresponds to the conventional exchange hole.36 Furthermore,

y = (2λ − 1)2 p, is a scaled version of the reduced density gradient depending on the coordinate

transformation with p = s2. For a local hybrid functional, exact and local exchange are combined.
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Therefore, we choose λX = 1, corresponding to the untransformed exchange hole. The parameter

βX will be determined later. As outlined by Tao and Mo, the DME is not exact for slowly varying

densities. Hence, it is advisable to pair it with a fourth-order gradient correction.36 We use the

same expressions as Tao and Mo for the correction in the slowly varying limit

FSC
X ={1+10[(10/81+50p/729)p+146q̃2/2025

− (73q̃/405) [3τ
vW/(5τ)](1− τ

vW/τ)]}1/10
(34)

with q̃ = (9/20)(α−1)+2p/3, and α =
(
τ− τvW)/τunif.36 The interpolation between FDME

X and

FSC
X is also unaltered from the Tao–Mo functional, yielding the final enhancement factor FX as

FX = wFDME
X +(1−w)FSC

X (35)

with the interpolation function w = [(τvW/τ)2 + 3(τvW/τ)3]/[1+(τvW/τ)3]2. As missing piece

to construct a local hybrid functional, a suitable mixing function, augmenting the DME with exact

exchange, is needed. We adopt an approach similar to the correlation length as suggested by

Johnson.22 Using an approximated correlation length zDME,

zDME
σσ ′ = (|Uσ |−1 + |Uσ ′ |−1), (36)

we define U as

Uσ = cF [(1+ζ )ρσ ]
1/3
(

1
f 2
L
+

7RL

9 f 4
L

)
(37)

with cF = 3/8 · 42/3(3/π)1/3 and ζ = (ρσ − ρσ ′)/(ρσ + ρσ ′). Uσ ′ is obtained by reversing the

spin indices. The expressions of RL and fL are equivalent to those in the equations 32 and 33. The

different subscripts hint at the parameters βL and λL being different from those used in Eqs. 32

and 33. To map zDME
σσ ′ to the interval {0,1}, we define the local mixing function aDME as

aDME = 1− exp
(
−cL · zDME

σσ ′
)
. (38)

The parameters βL = 79.873 and λL = 0.6866 are set to the values obtained for the hydrogen atom

by Tao and Mo.36 Therefore, the correlation length is measured for the transformed exchange hole.

Contrary, for the exchange enhancement factor in Eq. 31, a value of λX = 1.0 is set, parametrizing

the untransformed exchange hole.

What is left to be determined are only the parameters βX from the DME, parameterizing the

untransformed exchange hole, and cL, accounting for the inclusion of exact exchange through

the LMF. The latter two parameters are obtained by fitting them to spin-unpolarized two-electron
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TABLE II. Parameters of TMHF. cL, βL, and λL are employed for the LMF, while βX and λX are used for

the exchange density. Note that all parameters were derived from physical constraints

cL βL λL βX λX

0.18 79.873 0.6866 265.25 1.0

densities.75,76 As our aim is to design a functional without any prior exact knowledge of total

exchange-correlation energies, even atomic ones, we fit the parameters to theoretical considera-

tions. First, in the low density limit, which challenges the Lieb–Oxford bound more, the energy

is constrained by eX = 1.174eLSDA
X .76 Second, in the high density limit, we expect the results to

be closer to the Hartree–Fock solution, i.e. eX = 1.16588eLSDA
X .77 Both of these values can be

derived analytically. To guide the optimization, we choose two two-electron systems, as for those

Hartree-Fock exchange provides solutions close to the exact solution.75 For the low-density limit,

He is used, while we chose Hg78+ as guide for the high-density limit. For both atoms, we evaluate

the corresponding LSDA exchange energies at the Hartree-Fock solution using saturated basis sets.

For He and Hg78+, we find LSDA energies of −0.885 and −42.699 Hartree. Both of these values

are within 2 mHartree of those obtained for the exact density.75 Multiplying with the analytic pref-

actors yields−1.039 and−49.781 Hartree, respectively. Finally, we optimize βX for a given value

of cL, yielding possible pairs of solutions. We chose the pair with the highest value for cL, yielding

cL = 0.18 and βX = 265.25. It shall be noted that while the Lieb–Oxford bound was taken into

account during the evaluation of the parameters, the derived exchange approximation may still

violate it for certain systems and basis sets, as it is not strictly constrained by it. Furthermore, our

functional certainly violates the conjectured local version of the Lieb–Oxford bound. The latter

issue could be remedied by a gauge transformation. For convenience, the parameters of the devel-

oped functional (TMHF) are summarized in Tab. II. We pair this local hybrid exchange functional

again with the B95 correlation functional, as the latter has shown to work well in conjunction with

local hybrid exchange functionals.19

The DME local mixing function is outlined in Fig. 1 for Li2 at 5.0 bohrs and at 10.0 bohrs.

It clearly shows the different behavior between bonded and stretched Li2. In the former case,

the LMF has a local minimum at the center, while in the latter case a local maximum is found.

Comparably, at the bond center the amount of exact exchange included is raised by roughly 25%

in the stretched dimer. This effect will lead to significantly improved barrier heights, while not
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degrading the overall performance for other properties. In Ref. 78 it was noticed that, due to

the order-of-limits problem of the interpolation function, stretched Li2 will not converge with

the Tao–Mo functional using the aug-cc-pVQZ basis set,79–81 which was confirmed by us. The

root of this issue is a singularity located at the center between the two Li atoms, caused by the

order-of-limits problem.78 TMHF, however, converges smoothly for the stretched Li2. This can

can be attributed to the large amount of exact exchange incorporated at the center of the stretched

bond, and the increased numerical rigor of our implementation. Still, the local exchange part

of TMHF is plagued by the order-of-limits problem, but for stretched bonds it is expected to be

less harmful. Near the nucleus, where the LMF approaches 0, the singularity from the order-of-

limits problem is, however, not countered. Therefore, no improvements of TMHF over the initial

Tao–Mo functional (or other standard metaGGA functionals) are expected for properties that are

sensitive to the exchange contribution and the electron density in the vicinity of the nuclei.

FIG. 1. DME local mixing function as a function of z at various distances between two Li atoms, calculated

using the aug-cc-pVQZ basis set. Distance between the two Li atoms is r = 5.0 bohrs (solid line) and at

r = 10.0 bohrs (dashed line).
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F. Implementation

The outlined functionals were implemented into the TURBOMOLE program suite.82–85 The

mathematical functions for the LMFs were generated using MAPLE scripts,86 while the individ-

ual exchange and correlation functional terms are computed with Libxc.87–89 As stated in Ref. 47,

for 2c calculations it is advantageous to work with “common” mixing functions, using a single

mixing function for both spin channels. Obtaining a common mixing function based on Eq. 38

is straightforward. Simply τσ needs to be replaced by τσ + τσ ′ , and |∇ρσσ |/ρσ is replaced

by |∇ρσσ + 2∇ρσσ ′ +∇ρσ ′σ ′|/(ρσ + ρσ ′) during the evaluation of zDME
σσ ′ . For convenience, the

MAPLE files of TMHF are part of the Supporting Information and can be included in the routines

for LHFs.

The existing Kramers unrestricted two-component implementation 47 was reworked for effi-

ciency and extended to include higher-order derivatives of the density, i.e. the Laplacian, Hessian,

and the gradient of τ . This allows us to use the pig1, pig2, and tpig1 calibration function 18 as

well as general metaGGAs for LHFs. Therefore, the LH20t functional 19 is now also available

in two-component open-shell calculations. We further added interfaces to Libxc 87–89 to support

(almost) all exchange and correlation functional ingredients. The revised thresholds of Ref. 30

are used for the numerical integration.90,91 Note that the CF is neglected in the non-collinear two-

component exchange-correlation kernel to avoid numerical instabilities.30,54,55 The efficiency was

increased by using the routines developed in Refs. 29 and 55, i.e. the screening procedure and

memory handling described therein is applied in the general two-component case.

We note that the reworked LHF gradient routines evaluate the high-angular momentum con-

tributions similar to the integral routines developed for the finite nucleus model in relativistic

all-electron calculations.92 Parallelization is available throughout with the OpenMP scheme.93,94

III. COMPUTATIONAL DETAILS

We will limit the assessment of accuracy to thermochemistry, excitation energies, and EPR

properties in the main text. Further studies on magnetizabilities, polarizabilities, NMR spin-spin

coupling constants, as well as NMR shielding constants and shifts are presented in the Supporting

Information. The respective computational details are also given therein.
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A. Thermochemistry

Atomization energies and barrier heights are important quality measures for DFAs. They yield

a first overview of the general quality of a functionals, and are themselves commonly used when

new, parameterized functionals are designed. Atomization energies were assessed for the W4-

11 test set,95 and barrier heights for the BH76 test set.96–98 Both of those sets are subsets of

the extensive “general main group thermochemistry, kinetics, and noncovalent interactions” set

(GMTKN).99 To yield values which can be directly compared to the GMTKN values, the def2-

QZVP basis set 100 was used throughout, in conjunction with a large integration grid (grid 5) for

numerical integration.90,91 Results for other functionals are taken from Ref. 99. To provide a com-

prehensive overview, we compare to a variety of density functionals commonly used nowadays, as

well as earlier designed local hybrid functionals that have been fitted to thermochemical data. This

includes the metaGGAs TPSS,9 Tao–Mo,36 SCAN,37 the hybrid functionals PBE0,7,8 B3LYP,4–6

TPSSh,9,10 the range-separated functionals CAM-B3LYP,14 LC-ωPBE,101 ωB97X-D,102 and the

local hybrid functionals LH12ct-SsirPW92,48 LH14t-calPBE,17 and LH20t.19

B. Excitation Energies

For the excitation energies, we consider the benchmark test set of Suellen and co-workers with

experimental reference results, which match third-order coupled cluster (CC3) values to within

0.05 eV or less.103 Structures were taken from Ref. 103. In line with this reference, we use the

aug-cc-pVTZ basis set 79–81 and large grids (grid size 4) for the numerical integration of the DFT

parts.90,91 Tight SCF thresholds of 10−9 Hartree for the energy and 10−7 a.u. for the root mean

square of the density matrix are applied. Response equations are converged with a threshold of

10−5 a.u. for the norm of the residuum.104 The excitation energies are corrected by the B3LYP

zero-point vibrational energies.105 Excitation energies have been evaluated using the functionals

also used in the previous section. Results with conventional functionals are taken from Ref. 103,

while results with all previously designed local hybrids are taken from Ref. 29.

C. EPR Calculations

EPR properties such as the hyperfine coupling (HFC) constant and the g-tensor are chal-

lenging properties for local hybrid functionals due to the high-density limit.47 We have re-
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cently benchmarked EPR properties in a self-consistent spin–orbit exact two-component (X2C)

framework.106,107 Herein, we extent these studies to local hybrid functionals, those general

two-component implementation is described in the main text. To do so, we consider the 17

small transition-metal complexes of Ref. 108, namely [MoNCl4]2−, [MoOF4]−, [MoOCl4]−,

[MoOF5]2−, [MoOBr5]2−, [WOCl4]−, [WOF5]2−, [WOBr5]2−, [TcNF4]−, [TcNCl4]−, [TcNBr4]−,

[ReNF4]−, [ReNCl4]−, [ReNBr4]−, [ReOBr4], [ReOF5]−, and [OsOF5]. We use the same com-

putational parameters as in Refs. 106 and 107. In detail, the x2c-QZVPall-2c basis set 109 is

applied for all elements. Large grids (grid 5a) are chosen for the numerical integration.90,91,110

The conductor-like screening model (COSMO) is applied with the default parameters to compen-

sate the negative charge.111,112 We use the X2C Hamiltonian in the diagonal local approximation

to the unitary transformation (DLU).30,92,106,107,113–116 The restricted kinetic balance (RKB) con-

dition 117 is employed for the HFC, whereas both RKB and the restricted magnetic balance (RMB)

condition 118 are employed for the g-tensor. An SCF threshold of 10−9 Hartree is applied. In ad-

dition to the functionals used in the previous section and the Hartee–Fock method, we consider

the following DFAs additionally to provide a more complete overview in this chapter, as data is

yet comparably rare. S-VWN,119–121 KT3,122 BP86,31,123 PBE,7 revTPSS,124,125 r2SCAN,38,39

BH&HLYP,5,31,126 PBE0 including 40% of HF exchange (PBE0-40HF),7,8,108 B97,127 B97-2,128

revTPSSh,124,125 TPSS0,10,129 r2SCANh,38,39,130 r2SCAN0,38,39,130 r2SCAN50,38,39,130 CAM-

QPT-00,131 CAM-QTP-02,132 HSE06,133–135 LH12ct-SsifPW92,48 LH20t* (LH20t without cal-

ibration function),19 LHJ14,22 mPSTS-a1,28,29 and mPSTS-noa2.28,29 Note that SCAN has been

replaced by r2SCAN, as HFC constants and g-tensors are considerably more sensitive to the

integration grid.

IV. ASSESSMENT OF ACCURACY FOR THERMOCHEMISTRY

To assess the basic properties of the newly constructed functionals, their thermochemical prop-

erties are investigated. The W4-1195 and BH76 subset 96–98 from the GMTKN55 test set 99 were

chosen, outlining the principal capabilities of a density functional approximation (DFA) for the

calculation of atomization energies (W4-11) and barrier heights (BH76). The results are displayed

in Figs. 2 and 3.

TMHF is a major step forwards for functionals that have been designed from first principles.

With MAE/RMSD values of 2.78/4.60kcal/mol for the W4-11 atomization energy subset, and
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FIG. 2. Mean standard deviation (MSD), mean average deviation (MAD), and root mean square deviation

(RMSD) for the atomization energies of the W4-11 test set. All values in kcal/mol.

FIG. 3. Mean standard deviation (MSD), mean average deviation (MAD), and root mean square deviation

(RMSD) for the barrier heights of the BH76 test set. All values in kcal/mol.
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2.80/3.36kcal/mol for the barrier heights of the BH76 subset, it outperforms any other functionals

that has been constructed from first principles. Popular thermochemically optimized functionals

such as ωB97X-D exhibit similar errors for the W4-11 subset. Furthermore, previously reported

thermochemically optimized local hybrid functionals, as for example LH20t, are not able to sig-

nificantly outperform TMHF. From a viewpoint of thermochemistry, therefore TMHF performs

nearly as well as the best parameterized functionals. While for barrier heights parameterized func-

tionals still hold an edge, the differences are rather small and probably do no longer outweigh the

loss of generality.

Table III summarizes the errors of thermochemical properties for a set of DFAs that has been

derived from first principles. Here, a clear trend is observed following Jacob’s ladder. The most

pronounced error reduction happens from GGA to metaGGAs, followed by the step to global

hybrids. SCAN indeed is able to perform as well as global hybrids, still losing out for barrier

heights. The latter are more sensitive to the inclusion of exact exchange, generally preferring

functionals with a higher amount of exact exchange. The parameter-free local hybrid presented in

this work, TMHF, again lowers the bar significantly. The statistical errors in barrier heights are

nearly halved. Atomization energies are also improved by more than 1kcal/mol on average, yet

yielding a less pronounced underbinding when compared to the global hybrids TPSSh and PBE0.

TABLE III. Mean standard deviation (MSD), mean average deviation (MAD), and root mean square devia-

tion (RMSD) for the atomization energies of the W4-11 test set and the barrier heights of the BH76 test set.

All values in kcal/mol.

W4-11 BH76

MSD MAD RMSD MSD MAD RMSD

PBE 13.35 14.96 18.50 −9.11 9.15 10.39

Tao–Mo 3.27 7.45 9.66 −8.21 8.24 9.24

TPSS 3.27 5.11 6.65 −8.61 8.63 9.58

TPSSh −1.62 4.41 6.12 −6.65 6.68 7.48

SCAN −0.17 4.01 5.72 −7.36 7.66 8.37

PBE0 −1.75 3.62 5.73 −3.17 4.62 5.90

TMHF −0.73 2.78 4.60 −2.71 2.80 3.36
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V. ASSESSMENT OF ACCURACY FOR EXCITATION ENERGIES

The test set of Suellen et al., which is composed of 41 excitation energies with accurate ex-

perimental and approximate coupled cluster singles, doubles, and triples (CC3) reference values

has become a popular way of benchmarking the capabilities to predict excitation energies.103 For

these molecules, TMHF performs very well too as shown in Fig. 4.

FIG. 4. Mean standard deviation (MSD), mean average deviation (MAD), standard deviation (STD),

root mean square deviation (RMSD), and maximum error (Max.Err.) for 41 excitation energies of small

molecules. All values in eV.

Most obviously, the parameterized functionals, which performed best for thermochemistry, are

now no longer the top contenders. TMHF easily outperforms most other DFAs, though most sta-

tistical values are rather close for the top performers here. However, while overall performing very

well, TMHF features the by far lowest maximum error of all functionals approximations that have

been tested.103 A maximum error of 0.46eV equals a reduction of 0.1–0.3eV compared to other

popular DFAs. Even compared to coupled-cluster singles and doubles (CCSD), which exhibits a

maximum error of 0.43eV, it remains competitive. Common to most local hybrid functionals, the

average deviation of TMHF is again centered around 0eV. This outlines the balanced interpolation

between local and exact exchange of the newly constructed TMHF local hybrid.
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VI. ASSESSMENT OF ACCURACY FOR EPR PROPERTIES

The results for the HFC constant and the g-tensor are shown in Figs. 5 and 6, respectively. Here,

the statistical evaluation of the g-tensor is shown with the RMB condition. The previous functional

generation with LH12ct-SsirPW92 and LHJ14 does not yield accurate results. These functionals

show larger errors than the conventional hybrid functionals. The mPSTS-noa2 and mPSTS-a1

functionals perform similar to established global hybrid functionals such as B3LYP, TPSSh, and

the B97 family. However, it is outperformed by many range-separated hybrid functionals, TPSS0,

and PBE0-40HF. Among the conventional hybrids, the latter show the smallest errors with MAPDs

of 5–6% for the HFC constant and also yield smaller errors for the g-tensor (MAPDs of 13–18%).

TMHF performs remarkably well with an error of 4.77% for the HFC constant and 11.93%

for the g-tensor. Thus, TMHF outperforms all other density functional approximations. This is

also a remarkable improvement over the parent functional of Tao and Mo, which results in errors

of 29.73% and 34.23%, respectively. The LH20t functional and the newly developed LHJ-HF

functionals deliver similar results and are among the top performers with errors of about 7% for

the HFC and 12–14% for the g-tensor. For LHJ-HF, the improvements can be mainly attributed

to the re-optimized parameter for the admixture of HF exchange as EPR properties are sensitive

towards the amount of exact exchange.106,107

The impact of the calibration function on the EPR properties is negligible, whereas it may

lead to an unfavorable SCF convergence behavior due to the increased numerical difficulties of

the higher order derivatives. This is especially important for two-component calculations, which

require re-optimized thresholds for the numerical integration.30,110 Thus, we recommend func-

tionals without the calibration function for two-component calculations of open-shell compounds.

The calibration function is also not used for the two-component exchange-correlation kernel of

second-order properties to avoid numerical instabilities and inaccuracies.29,30,54

Taking together, local hybrid functionals are generally able to deliver accurate results for EPR

parameters. Overall, TMHF outperforms all other functionals. The LH20t and LHJ-HF fami-

lies lead to similar errors for the HFC constant and LHJ-HF shows minor improvements for the

g-tensor. However, the functionals differ in the number of optimized parameters and the SCF con-

vergence behavior, which deteriorates substantially with the CF. To illustrate the performance of

local hybrid functionals for systems with more than one unpaired electron, we list the hyperfine

coupling constants for [TbPc2]− in the Supporting Information.
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Pure Functionals Global Hybrids RSHs Local Hybrid Functionals

FIG. 5. Assessment of various density functional approximations for the HFC constant compared to the

experimental findings for a set of 12 transition-metal complexes.108 MAPD and STD denote the mean

absolute percent-wise error and its standard deviation. The data of the conventional functionals are taken

from Ref. 106.

Pure Functionals Global Hybrids RSHs Local Hybrid Functionals

FIG. 6. Assessment of various density functional approximations for the ∆g-shift compared to the experi-

mental findings for the set of 17 transition-metal complexes.108 MAPD and STD denote the mean absolute

percent-wise error and its standard deviation. The data of the conventional functionals are taken from

Ref. 107. [TcNCl4]− and [ReNBr4]− are neglected in the statistical evaluation.
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VII. SUMMARY AND CONCLUSIONS

We derived a new local hybrid exchange approximation, termed TMHF, from first principles.

For its construction, we only take into account the exact solution of the hydrogen atom, as well

as the low-density and high-density limits of the exchange energies of two-electron systems. The

derived functional is therefore not fitted to any bound systems or reaction energies. Statistical

errors of thermochemical properties reveal that indeed the TMHF exchange model is a significant

step forward for density functional approximations designed from first principles. Being the next

step on rung 4 of Jacob’s ladder,136 TMHF significantly outperforms all previously presented

approximations from first principles.

In subsequent investigations of various properties, the assumption that density functional ap-

proximation from first principles are generally applicable could be verified. For various properties

such as the calculation of excited states, EPR parameters, or NMR coupling constants, TMHF

is best in class. Not only does it provide significantly lower statistical errors, but also far lower

maximum errors as compared to other leading functionals. This leads to more reliable predictions

across different molecules and properties, which may have very different needs. There are, of

course, still points where future work is desperately needed. For example, rather a simple local

correlation model is used, not being able to truly describe multi-configurational settings. Fur-

thermore, core-related properties such as NMR shifts are not improved, given the lack of exact

exchange near the nucleus from our model. Finally, van–der–Waals interactions still need to be

included using a dispersion correction model, as long range correlation can also not be modeled

by our approach alone.

Despite the remaining deficiencies, we conclude that certainly TMHF is strikingly close to a

one-for-all functional for the time being.
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SUPPLEMENTARY MATERIAL

Supporting Information is available

• Individual results and statistical evaluation for magnetizabilities and polarizabilities

• Individual results and statistical evaluation for NMR spin–spin coupling constants

• Individual results and statistical evaluation for NMR shieldings and shifts

• Individual results for thermochemistry

• Individual results and statistical evaluation for excitation energies

• Individual results and statistical evaluation for hyperfine coupling constants and g-tensors

• Application to the isotropic EPR hyperfine coupling constant of [TbPc2]−

• Maple files of TMHF to allow for an easy incorporation into quantum chemical programs
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