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ABSTRACT:   Liquid electrolytes are one of the most important components of Li-ion batteries, which 

are a critical technology of the modern world. However, we still lack the computational tools required to 

accurately calculate key properties of these materials (viscosity, ionic diffusivity) from first principles 

necessary to support improved designs. In this work, we report a machine learning-based force field for 

liquid electrolyte simulations which bridges the gap between the accuracy of range-separated hybrid den-

sity functional theory and the efficiency of classical force fields. Predictions of material properties made 

with this force field are quantitatively accurate compared to experimental data. Our model uses the QRNN 

deep neural network architecture, which includes both long-range interactions and global charge equili-

bration. The training dataset is composed solely of non-periodic DFT, allowing the practical use of an 

accurate theory (here, ωB97X-D3BJ/def2-TZVPD) which would be prohibitively expensive for generat-

ing large datasets with periodic DFT. In this report we focus on seven common carbonates and LiPF6, but 

this methodology has very few assumptions and can be readily applied to any liquid electrolyte system. 

This provides a promising path forward for large scale atomistic modeling of many important battery 

chemistries.  
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INTRODUCTION 

 The development of rechargeable Li-ion batteries (LIBs) has revolutionized electric vehicles and 

portable electronic devices1, 2. Yet, further advancements are needed to improve the power, safety, relia-

bility, and lifetime of LIBs—such advances are required to enable grid-level energy storage and the oper-

ation of electric vehicles for commercial applications3, 4. Over the past few decades, atomistic modeling 

of battery materials has complemented experimental characterization techniques and become an important 

part of the development of new technologies5-7. Widespread application of computational methods is con-

tingent on their ability to quantitatively predict key properties that drive material design. In addition, for 

such methods to be truly predictive they should be free of parameters based on experimental data, which 

for prospective exploration of materials may not exist. For LIBs, some of the key properties are ionic 

mobility, viscosity of liquid electrolytes, thermal and electrochemical stability of electrolytes, and equi-

librium voltage.  

 Despite its high computational cost, ab initio molecular dynamics (AIMD) density functional the-

ory8, 9 (DFT) is the workhorse method for modeling battery materials at the atomic and electronic scales. 

For many systems it is the only method with sufficient accuracy while still being computationally tracta-

ble, and even then only for short time and length scales5, 7. For example, AIMD simulations have provided 

valuable insights into the decomposition pathways of ethylene carbonate (EC) on the surface of graphite 

electrodes10-12. In addition, DFT studies have contributed to the understanding of decomposition reactions 

of other common carbonates and the exfoliation process of graphite due to co-intercalation of propylene 

carbonate13-17. However, simulations are typically restricted to a few hundred atoms and picosecond time 

scales. Reliable predictions of dynamic bulk properties of liquids, such as viscosity and diffusivity require 

longer time scales than are typically infeasible with AIMD.  One of the least understood components—

but essential for stable operation—of LIBs is the solid electrolyte interphase (SEI), which is a mosaic 

structure that is formed on the electrode surfaces from the products of electrolyte decomposition18. The 
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formation of SEI involves a series of complex chemical reactions that are not well understood and spans 

several length and time scales, making it difficult to probe both experimentally and computationally. 

Therefore, alternative methods that are capable of accurately modeling larger length and time scales must 

be considered to aid in the development of the next generation of LIBs. 

 Empirically fitted force fields are complementary methods that allow large-scale atomistic simu-

lations19. The use of simple analytic formulas to describe interatomic interactions in these models signif-

icantly reduces the computational cost by several orders of magnitude compared to DFT, but at the ex-

pense of accuracy. Development of traditional force fields relies on a cumbersome parameterization and 

validation process. This parameterization process tries to map each atom to a set of parameters that rep-

resents the interatomic interactions by fitting the model to experimental and/or quantum chemical data. 

When parametrized for a specific task, both fixed charge and polarizable force fields have been shown to 

accurately model structural, thermodynamic and transport properties of bulk electrolytes and anode elec-

trolyte interfaces20-22.  Furthermore, the reductive decomposition of ethylene carbonate using eReaxFF23, 

a reactive force field, was consistent with DFT simulations24. ReaxFF has also been used for modeling 

the formation and growth of the SEI25, 26. Nonetheless, like most other reactive force fields, eReaxFF and 

ReaxFF suffers from a lack of transferability and must be reparametrized for each system of interest.  

A promising alternative is machine learning-based force fields (MLFFs)27. Unlike traditional force 

fields, these make few prior assumptions about the shape of the interatomic potentials. These models are 

more computationally efficient than quantum chemical methods and can achieve chemical accuracy rela-

tive to the method they are trained to reproduce28-34. Furthermore, MLFFs have shown to accurately re-

produce both equilibrium and reactive regions of the PES27, while traditional empirically fitted force fields 

have trouble with reactive systems without major modifications to the functional form and substantial 

parameterization. In essence, MLFFs are constructed by applying a regression algorithm to a highly flex-

ible functional form such as Gaussian process regression, and kernel rigid regression, or high-dimensional 

neural network potentials (HDNNPs). A key step that affects the performance of MLFFs is the 
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featurization, which transforms the input (atomic coordinates and net charge) into “model readable” data 

that enforces symmetry and locality. For comprehensive reviews on MLFFs, see the article by Behler27 

and the article by Deringer et al35.   

In the context of battery materials research, MLFFs are starting to be developed to address the 

practical problems discussed above35-37. The greatest focus has been on various chemistries related to 

anode materials. Specifically, new models have been developed to study bulk anode phases38, and inter-

calation of alkali-metals in disordered carbon anodes materials39. Some progress has also been made mod-

eling Li+ diffusion in a solid electrolyte material40. However, to date, application of machine learning 

models to liquid electrolytes and electrode/electrolyte interfaces are limited35-37, which we view as the 

most relevant systems from a practical perspective.  

In this report, we construct a HDNNP, utilizing the recently reported charge recursive neural net-

work architecture (QRNN)28, for liquid electrolyte simulations. The model was trained using an active 

learning approach41-44 . In addition, the QRNN was trained exclusively to non-periodic DFT cluster data 

without any parametrization against experimental data (Scheme 1), a strategy that has been proven to be 

successful for liquid water45. With the addition of LiPF6, the common carbonates that we selected for this 

study were EC, propylene carbonate (PC), vinylene carbonate (VC), fluoroethylene carbonate (FEC), di-

methyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). The chemical 

structures of all the 7 carbonate solvents and the PF6- anion are depicted in Figure S1 of the SI. These 

seven carbonates were selected based upon their widespread use in LIBs and the availability of experi-

mental values of liquid thermodynamic and transport properties for comparison with the predicted values.  

In this work, we focus on the comparison between the predicted values from our QRNN model to exper-

imental bulk thermodynamic and transport properties of pure carbonate solvents and electrolyte mixtures 

over a range of temperatures and salt concentrations. Overall, the predicted bulk properties from the 

QRNN electrolyte model agrees well with experimental observations. This lays the foundation to extend 



 5 

our model generalizability to accurately predict more complicated chemistries that occur during reactions 

at the electrode/electrolyte interface. 

RESULTS AND DISCUSSION 

QRNN performance on cluster test set: We trained a QRNN28 force field to a relatively small (~360K 

data points compared to ~5M for ANI-1x46) dataset of electrolyte clusters, including common carbonate 

solvents  (EC, PC, VC, FEC, DMC, DEC, EMC), Li+, and PF6- ions. To evaluate the model performance, 

we constructed an independently sampled test set of 2.5k cluster data points extracted from the production 

NPT trajectories of pure carbonate solvents and electrolyte mixtures. For the cluster extraction details 

please refer to the subsection Dataset Construction in the Methods section. This test set includes clusters 

from dimers to heptamers, thus containing cluster sizes that are not in the training dataset, which stops at 

hexamers. Here we compare the absolute energies (Figure 1a), dipoles components (Figure 1b), and force 

components (Figure 1c) relative to the reference level of theory (wB97X-D3BJ/def2-TZVPD). The en-

ergy, dipole, force RMSEs are 0.40 kcal mol-1, 0.11 Debye, and 0.47 kcal mol-1 Å-1, respectively. Overall, 

the QRNN electrolyte model shows good performance on the cluster test set, which is necessary but not 

sufficient for accuracy in the liquid state since the model was trained on cluster data. Therefore, the more 

stringent and useful tests for our model are quantitatively accurate predictions of thermodynamic and 

transport properties of liquid electrolytes compared to experiments. These tests are discussed in the fol-

lowing sections. 

Thermodynamic and transport properties of liquid carbonate solvents: Prediction of the thermodynamic 

and transport properties of bulk liquids requires stable simulations over fairly large time and length scales: 

1000+ atoms in size and > 500 ps of molecular dynamics (MD). Therefore, the stability of the QRNN 

electrolyte model was exhaustively tested by running MD simulations of our systems of interest. We 

analyzed the final state of each system, distributions of bond distances of the molecules during the MD 

trajectories, and temporal evolution of total energy of the system to ensure that the system did not undergo 

any spurious chemical reactions or energy drift. Additional details are provided in the SI. 
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Once we were confident in our ability to run long time-scale MD simulations, we validated the 

accuracy of the QRNN potential by comparing the bulk thermodynamic properties (density, specific heat 

at constant volume (Cv) and heat of vaporization (Hvap)) and transport properties (self-diffusivity and 

viscosity) computed using the MD simulations to experimental data. The selection of the above properties 

was motivated by the availability of experimental data in the literature and their relevance for the design 

of liquid electrolytes for LIBs. All the properties were computed at a temperature of 298 K for all the 

solvents except for EC and FEC, where the simulations were performed at a temperature of 313 K to 

match the conditions of available experimental data. We also computed the same properties using the 

OPLS4 force field47 as a benchmark of the performance of more traditional methods. A detailed compar-

ison of the computed properties (using QRNN and OPLS4) against the available experimental data is 

shown in Figure 2 and summarized in Table S2, S3 of the SI. 

The QRNN computed density, Hvap and CV for each of the pure solvents are in excellent agreement 

with the experimental data21, 48-56 as shown in Figure 2 (a), (b) and (c), respectively. Similarly, the OPLS4 

gives good predictions of the density and the heat of vaporization for all the solvents but overestimates 

the Cv values as compared to experimental data21, 48-56. The root-mean-squared error (RMSE) of the 

QRNN and OPLS4 predicted densities is 0.030 g/cm3 and 0.029 g/cm3, respectively suggesting similar 

performance of both the force fields for density prediction of pure liquid solvents. However, QRNN gives 

better predictions of Hvap with a lower RMSE of 3.23 kJ/mol compared to 9.15 kJ/mol for OPLS4 predic-

tions.  

The accurate prediction of viscosities from liquid simulations is more challenging compared to 

the prediction of bulk thermodynamic properties57. Nonetheless, QRNN computed viscosity values are in 

excellent agreement with the experimentally measured values54, 56, 58 as shown in Figure 2 (d), apart from 

the underestimation for DEC. On the other hand, OPLS4 systematically overestimates the experimental 

viscosities by a significant amount for all the pure carbonate solvents. The lower RMSE of the QRNN 

computed viscosities (~0.31 cP) as compared to OPLS4 computed values (~1.06 cP) indicates that the 
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viscosity prediction of the pure solvents can be significantly improved by the QRNN force field. The 

experimental self-diffusivity data59 is available for only 3 (EC, PC and DMC) out of the 7 carbonate 

solvents considered in the paper. In general, both QRNN and OPLS4 force fields underestimate the self-

diffusivities compared to the experimental data59 as shown in Figure 2 (e). However, the QRNN computed 

self-diffusivity for PC and DMC solvents are in better agreement with the experimental value59 as com-

pared to the OPLS4 computed value. For pure EC solvent, QRNN and OPLS4 under-predict the diffusiv-

ity values by 40% and 25%, respectively. Overall, the QRNN force field affords significant improvement 

in the predicted properties for the pure solvents as compared to the OPLS4. 

Temperature Dependence of Viscosity for EC and PC: To further demonstrate the capabilities of the 

QRNN force field, we computed the viscosities of liquid EC and PC solvents over a wide temperature 

range and compared the results against experimental data60. For liquid EC, the simulations were per-

formed at temperatures in the range of 313 K to 473 K, and for PC, 298 K to 423 K, to match the available 

experimental data60. The comparison of the QRNN and OPLS4 computed viscosities with the experi-

mental data is shown in Figure 3 (a), (b) and summarized in Table S4 of the SI. The QRNN and OPLS4 

computed viscosities for EC are in excellent agreement with the experimental values60 over the entire 

temperature range. For liquid PC, OPLS4 overestimates the viscosity values compared to experimental 

data60 at lower temperature, whereas the QRNN predicted viscosities are in excellent agreement with 

experimental values (within 0.2 cP).  

Salt Concentration Dependence of Viscosity of Electrolyte Mixtures: For LIB design it is critical to 

understand the effect of salt concentration on the viscosities of mixed solvent electrolytes. Here, we used 

a 3: 7 weight % mixture of EC: DMC solvents with varying concentrations (0-2 m (mol/kg)) of LiPF6 salt 

to match the experimental conditions61. Such solvent blends, mixture of EC with lower viscosity linear 

carbonate solvent, are routinely used as electrolytes for LIBs. The viscosities of the electrolyte mixture 

are computed using QRNN and OPLS4 force fields at a temperature of 313 K and compared against 

experimental data61 as shown in Figure 4. OPLS4 consistently overestimates the viscosity values for all 
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salt concentrations. The QRNN computed viscosities show excellent agreement with the experimental 

values61 up to a salt concentration of 1.0 m. For the high salt concentration electrolytes (> 1 m LiPF6), 

QRNN significantly overpredicts the viscosity values compared to the experimental data61 as summarized 

in Table S5 of the SI. 

We have found that the disagreement of the QRNN predicted viscosity values at higher salt con-

centrations can be attributed to convergence limitations of our current sampling protocol (NVT replicas 

of 1 ns each) and the small simulation box dimensions (finite size effect) required by our prototype QRNN 

implementation. We employed the OPLS4 force field (due to its superior computational efficiency) to test 

the effect of NVT simulation duration (1 ns vs 10 ns) on the convergence of computed viscosity values, 

as shown in Figure S7 of the SI. The plots demonstrate that 1 ns simulation time is sufficient for the 

convergence for the low viscosity electrolyte (0 m LiPF6) whereas longer NVT simulation duration of 10 

ns is required for the case of high viscosity electrolytes (2 m LiPF6). We also compared the effect of 

number of atoms (or simulation box size) on the computed viscosity values for the low and high viscosity 

electrolytes using the OPLS4 force field as shown in Figure S8 of the SI.  We observe only a weak de-

pendence of viscosity on the number of atoms for low viscosity electrolytes, which agrees with the results 

reported in literature61. However, for high viscosity electrolyte (i.e., 2 m LiPF6) the computed viscosity 

increases rapidly as simulation size is below 2000 atoms. Thus, the over-prediction of the viscosity values 

by the QRNN force field for the high viscosity electrolytes can be attributed to the convergence issues 

associated with short simulation duration of NVT replicas (i.e., 1 ns) and finite size effects due to small 

simulation box dimensions (< 1000 atoms) used for current prototype QRNN simulations. More extensive 

calculations are needed to determine the optimal sampling protocol for high viscosity liquid solutions 

using the QRNN potential which are beyond the scope of the current work. The simplest approach is to 

make the QRNN implementation (currently a research prototype in PyTorch25) faster and less memory-

intensive so that it can handle larger length and time scale simulations. 
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Temperature Dependence of Diffusivity of Electrolyte Mixtures: Using the QRNN force field, we also 

computed the self-diffusivity of ions and solvent molecules as a function of temperature for various elec-

trolyte systems. Accurate prediction of the diffusion of ions in the bulk electrolyte is critical for the design 

of next-generation electrolytes, since higher ion diffusivity values allow faster battery charging and dis-

charging. Here, we computed diffusivities of Li+, PF6- and solvent molecules (EC, PC and DEC) for 3 

model electrolytes, i.e., EC + 1M LiPF6, PC + 1M LiPF6 and DEC + 1M LiPF6 for temperature values 

ranging from 273 K to 353 K. The QRNN predicted diffusivities for the ions and solvents molecules are 

then compared with the experimental data62 and the OPLS4 predictions. For the case of DEC + 1M LiPF6, 

the QRNN computed diffusivities as a function of temperature for the Li+, PF6- ions and DEC solvent 

molecules agree well with the experimental data as shown in Figure 5. The QRNN computed diffusivities 

of Li+ and PF6- ions are similar in magnitude whereas the diffusion of DEC solvent molecules is about 

twice as fast as that of the ions, in good agreement with experimental data. Since QRNN computed diffu-

sivities include a finite size correction for the small simulation boxes, the diffusivity values depend on the 

computed viscosity values for the electrolyte at each temperature. At higher temperatures of 333 K and 

353 K, QRNN over-predicts the diffusivity values for the ions and the DEC solvent molecules which can 

be correlated to the under-prediction of the viscosity (compared to experimental data) for the pure DEC 

solvent as discussed earlier. In comparison, OPLS4 consistently under-predicts the computed diffusivities 

for the ions and the solvent molecules across the entire temperature range of 273 K – 353 K resulting in 

slower diffusion of the species in the electrolyte. Similar trends are observed for EC + 1M and LiPF6 and 

PC + 1M LiPF6 as discussed in the SI (Figure S9 and S10). Overall, QRNN accurately reproduces the 

experimentally measured diffusivity values for the different electrolytes and reproduces the trend of in-

creasing diffusivity of ions and solvent molecules with temperature. 

Structural Properties of Electrolytes: To characterize the effect of EC vs DMC on the solvation structure 

around Li+ cation, we computed the radial distribution function (RDF) and the average coordination num-

ber of the solvent in the first solvation shell of Li+ ion as shown in Figure 6. The simulations are performed 



 10 

by equilibrating the electrolyte systems at 298 K and 1 atm pressure for 1 ns using the NPT ensemble. 

The NPT equilibration is followed by 1 ns NVT simulation at 298 K. The NVT trajectory is utilized to 

compute the RDF for each electrolyte system. The first solvation shell of Li+ cation consists of ~3.8 EC 

and ~3.6 DMC molecules at an average distance of ~3.0 Å for EC + 1M LiPF6, DMC + 1M LiPF6 elec-

trolytes, respectively20, 63. The Li-Oc peak positions for the two electrolytes (1.94 Å) are in good agreement 

with the values reported in the literature63, 64. The similar values of RDF peak positions for the EC and 

DMC electrolytes indicate that the Li-Oc distance is mainly dictated by the electrostatic interactions be-

tween the Li+ cation and the carbonyl oxygen atom of the solvent molecules. This is in good agreement 

with the trend observed in AIMD simulations in the literature63. We analyzed the temporal evolution of 

the average number of solvent molecules and PF6- anions within the first solvation shell of Li+ cations 

(within 3 Å) for the EC + 1M LiPF6 and DMC + 1M LiPF6 electrolytes during the 1 ns NVT trajectory to 

understand the composition of the Li+ solvation shell during the MD trajectory as discussed in Figure S11 

of the SI. 

Conclusion: We report the development and validation of a HDNNP for liquid electrolyte simulations, 

comparing it against its reference level of DFT, against experiment, and against a highly optimized general 

purpose force field with traditional functional form (OPLS4). Overall, OPLS4 performs reasonably for 

some properties but it is not reliable for all properties (e.g., Cv, viscosity and diffusivity). It is well-known 

that QM-based charge fitting can improve the bulk properties of liquid systems when using classical force 

fields20, 21, 64. However, it is not our focus to develop parameterization methods to improve the perfor-

mance of the OPLS4. In comparison, the QRNN electrolyte potential very accurately predicts thermody-

namic and transport properties across a subset of chemical compounds the are utilized in industrial liquid 

electrolytes. Specifically, the dynamic charge model in the QRNN architecture can describe charge trans-

fer and polarization effects, which are important when modeling ionic systems like electrolytes28. Overall, 

our results show promise for building a general liquid electrolyte model.  
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 We accomplished accurate bulk property predictions by training the QRNN electrolyte model 

against gas-phase molecular clusters without any empirical parameterization. This highlights the accuracy 

and transferability of the range-separated hybrid wB97X-D3BJ functional used to generate energy, forces, 

and dipole labels for our training data. Training to a gas-phase clusters dataset allows higher level DFT 

reference labels, which are impractical for a periodic dataset. MLFFs that are trained to periodic datasets 

are typically trained to pure functionals (e.g. PBE65) because the computational scaling of hybrid func-

tionals in periodic boxes or orders of magnitude worse than that of pure functionals. Therefore, it is of 

interest to compare the accuracy of predicted bulk properties of MLFFs that are trained to higher rungs of 

the “Jacob’s ladder” of density functional approximations66. In the context of MLFFs for liquids, the cur-

rent state of the art achieves DFT-level accuracy on prototypical systems like water27, 45.  Moreover, most 

MLFFs that are developed for bulk property prediction are trained to a single chemical system, which 

lacks generalizability27. Recently, a HDNNP was developed for liquid water simulations and trained to 

hybrid DFT cluster data45. Overall, this model predicted accurate density and self-diffusivity45. In contrast, 

our model covers a broader chemical space, including common multi-component liquid electrolytes, and 

is validated more rigorously against multiple experimental of pure solvents and electrolyte mixtures.    

 Due to the superior quasi-linear scaling of the QRNN model28 compared to the roughly cubic 

scaling of DFT, we are able run simulations on length and time scales that are impractical with pure DFT 

functionals. In addition, previous energy and force timing tests showed that the QRNN is ~104 faster 

compared to wB97X-D/6-31G* on a single 2.4 GHz CPU28. With our current implementation we can 

achieve MD timings of ~200 ps/day on a GTX 1080 Ti GPU, affording physical simulation time of a few 

ns.  However, due to memory limitations only ~1000 atoms can be simulated, which inhibits reliable 

transport property predictions of liquid electrolyte with high viscosities (> 3.0 cP). We anticipate that 

future work will be focused on the development of performant implementation of the QRNN model to 

facilitate simulations of longer time scales and larger systems.    
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Here, we also report some predicted properties which do not have yet experimental values availa-

ble in the literature, such as the diffusivities of pure liquid solvents (i.e., VC, FEC, EMC and DEC). 

Although we cannot judge the accuracy of these predictions directly, our results for known properties 

suggest that they are reliable, and we hope to see them confirmed. The non-empirical nature of the method 

allows it to be used prospectively, to predict the transport properties of novel single- and multi-component 

electrolytes with quantitative accuracy—an exciting prospect for computational screening of materials. It 

also holds the promise of detailed structural analysis of transport properties such as Li ion diffusivity, 

which may be useful in structure-based design of electrolyte mixtures. Finally, the flexible functional 

form of HDNNPs should allow our model to be used in situations where atom type and covalent bond 

labels are not feasible, such as metals and redox reactions. Although not included in this work, this is a 

key motivation for the use of HDNNPs as we progress towards accurate atomistic simulations of battery 

materials to advance the development of the next generation of LIBs. 

METHODS 

Dataset construction: We have constructed a dataset for common electrolyte liquid simulations of com-

mon electrolytes using an active learning approach41-44. In summary, each active learning round (Scheme 

1) is initialized by running MD of the systems in question (pure carbonates and/or mixed electrolytes). If 

a spurious reaction took place during MD, which is quite possible for HDNNPs, snapshots of the trajectory 

leading up to the reactive event were included. We found that including these reactive configurations 

helped the MD stability in the later rounds of active learning. Molecular clusters were extracted from the 

MD trajectories, then filtering of clusters based upon the uncertainty (𝜌) of an ensemble of trained QRNN 

models, where 𝜌 = !
"#!"#$%

 and s is the standard deviation of ensemble energy predictions. Here, any 

clusters that contained a value of 0.25 kcal mol-1 or lower were removed. After filtering, normal mode 

sampling (NMS)32 was conducted to generate more geometry samples from the remaining clusters. This 

active learning loop was conducted for six cycles and is summarized in Scheme 1. The following sections 
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will describe the details of each round of active learning as it occurred any and additional sampling meth-

ods that were used.  

 The dataset was initialized by running MD of EC using the OPLS447 force field and extracting 

~10K molecular clusters along the equilibrated trajectory. Random spherical clusters from MD simula-

tions were extracted as follows. First, initial clusters from a given MD snapshot are created by iterating 

over each molecule—defining it as the central molecule—and extending the cluster if any atom of a 

neighboring molecule is within the radial cutoff of the atomic environment vector, which is 5.2 Å. These 

initial clusters are then filtered based upon the uniqueness of all the atomic pairwise distances. After fil-

tering the initial clusters, random subclusters were selected up to a maximum size of five EC molecules. 

Pentamers were selected as the maximum cluster size since approximately five EC molecules would fit 

in a sphere with a radius of 5.2 Å, given the experimental density of EC at 313 K. It is important to note 

that the initial central molecule was not required to be in the subclusters, permitting sparse clusters to be 

generated. In addition, the number of clusters produced for a given cluster size (monomers up to pen-

tamers) were weighted based upon the roughly cubic scaling of DFT (𝑁_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ∝ 	 ( $
%&'()*_(,-*

).). After 

the clusters were extracted, the geometries of ~10% of the EC clusters were optimized using the previ-

ously reported SANI67 model followed by NMS32, to provide more samples near the equilibrium geometry 

of EC (which OPLS4 is not designed to reproduce, particularly as regards exact bond lengths). These 

initial 119,381 datapoints were labeled with the reference level of theory. From this dataset, a five-member 

ensemble was trained, with each member being initialized with a different random seed. 

 For the first three rounds of active learning, the dataset was composed only of clusters of pure EC, 

with no other chemical species. In round two, EC cluster datapoints were generated from pure EC MD at 

conditions 313 K / 1 atm, 423 K / 1 atm, and313 K / 10 atm. In round four, DMC, PC, Li+, and PF6- were 

introduced. For DMC and PC, round four sampling was performed using liquid MD at 298 K with the 

round 3 model, followed by cluster extraction, filtering, and NMS. For Li+ and PF6-, ions were inserted 

into a ~1% subset of the EC clusters that were generated in the first three rounds. The ions were inserted 
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into each cluster of EC molecules at random position and orientation, then filtered by checking if any ion 

atom was closer than 1.0 Å or further than 4.0 Å from any of the EC atoms. The atomic positions of these 

new datapoints with Li+ and PF6- were then optimized using GFN2xTB68 with a loose convergence crite-

rion of 10 kcal/mol/Å. This allowed reasonable geometries for the ion-containing clusters without having 

to rely on OPLS4, which was expected to be less reliable for these geometries. 

For rounds five and six, a periodic system with ~200 randomly placed molecules, with an equal 

number of the seven common carbonates listed above and LiPF6, was used for MD sampling. This system 

allowed us to collect diverse cluster datapoints of mixed carbonates with LiPF6. Lastly, we sampled the 

decomposition of monomers of the seven common carbonates, and dimers that included the seven com-

mon carbonates plus either Li+ or PF6- . This decomposition sampling added 1193 new datapoints, mostly 

high-energy geometries, which further helped the MD stability when using the QRNN potential by in-

structing the QRNN model that these were unfavorable. The decomposition sampling began by scaling 

all intermolecular distance by +/- 20% (of course, the monomers had no intermolecular degrees of free-

dom). After the scaling the intermolecular distance, the internal degrees of freedom were randomly per-

turbed according to a normal distribution (+/- representing the standard deviation): bonds (+/- 0.1 Å), 

angles (+/- 15°), torsions (+/- 20°), and Cartesian coordinates (+/- 0.1 Å). This was followed by stretching 

each bond individually, in steps of 10%: 1.0x, 1.1x, 1.21x, 1.33, 1.45, and 1.61x its original length. 

During the round 6 MD simulations of mixed carbonate systems with high salt concentrations we 

observed the formation of unphysical Li+ ion clusters. These unphysical clusters contained up to four Li+ 

ions with the Li+-Li+ closest distance being < 3.0 Å. Furthermore, once formed, the Li+ ion clusters did 

not dissociate within the simulation time of 1 ns. In our last round of active learning (round 7) our sam-

pling strategy was focused on fixing this Li+ ion clustering problem. Therefore, we extracted clusters from 

round 6 MD and removed any cluster that did not have at least 2 Li+ ions. In addition, we added cluster 

datapoints extracted from MD simulations of racemic mixtures of FEC and PC. These cluster datapoints 



 15 

were then used as input to the empirical sampling protocol described above, resulting in 54,498 new 

datapoints.     

In total, 362,382 datapoints were generated from the seven rounds of active learning. DFT ener-

gies, atomic forces, and dipoles were calculated for each datapoint. All DFT calculations were conducted 

using the wB97X-D3BJ69, 70 functional and the def2-TZVPD71 basis set with the electronic structure soft-

ware package Psi4-1.372. Each single-point energy calculation was performed using density fitting, a 1e-

10 DFT basis tolerance, a 1e-10 Schwarz screening threshold, and a 1e-6 linear dependency cutoff.  

Model training: As stated above, we used the previously reported QRNN architecture28 to train our elec-

trolyte models using a locally modified copy of torchani open source software package25, 73. Some small 

differences in the training protocol were used compared to the training of the direct learned ionic QRNN 

model previously reported28. Specifically, throughout the active learning process we trained to both energy 

and dipoles labels via multitask learning74, 75 while using early stopping and a 1% learning rate decay on 

plateau, with a patience of zero and a maximum of 500 epochs. In our last three models we included the 

force error in the multitask loss function during the training. For the training of our final model, we pruned 

the dataset by filtering any datapoints where the force on any atom > 0.5 Hartree/Å. After force filtering, 

the dataset was further pruned by removing any datapoints where the energy (after removing linear atomic 

energies) was greater than 10x the standard deviation from the mean of each net charge state. This resulted 

in 40,252 datapoints that were removed. Lastly, weight normalization76 was used during the training of 

our last mode. With the initialization described by Arpit and co-workers77 except that g was capped at 2.0. 

The norms of the weight matrix columns, g, were subsequently excluded from the optimization. We found 

that this change reduced the dependence on weight decay regularization and produced more stable MD. 

Molecular dynamics: All the molecular dynamics (MD) simulations of liquid electrolytes were performed 

using the QRNN force field implemented as a calculator in the Atomic Simulation Environment (ASE) 

package78 using a constant time step of 0.5 fs. All simulations were performed using NPT or NVT 
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ensembles, as appropriate, with the Nose-Hoover thermostat and Parrinello-Rahman (PR) barostat79. A 

relaxation time constant of 0.05 ps was chosen for the thermostat and 2.5 ps for the barostat. The initial 

geometries of the liquid electrolytes were created using Disordered System Builder as implemented in 

Maestro. The total number of atoms in each system was limited to ~1000 atoms to maintain a balance 

between the computational cost of the MD simulations and the GPU memory. The initial dimensions of 

the cubic boxes were determined using the experimental densities of the pure solvents. For the systems 

containing LiPF6 salt, the number of molecules of the LiPF6 salt were calculated based on the volume of 

the initial box created for the corresponding pure solvent system and the salt concentration. A summary 

of the number of molecules of the solvent, LiPF6 salt and the dimensions of the initial simulation boxes 

are provided in Table S1. We performed additional benchmarking simulations for each liquid electrolyte 

systems using the OPLS447 force field as implemented in the MD package Desmond80. The initial geom-

etries for the OPLS447 systems were created with 8 times the number of molecules and 8 times the volume 

of the initial simulation box of the corresponding QRNN system, allowing to reduce time and box size 

convergence effects. Additional details regarding thermodynamic and transport property predictions can 

be found the supporting information.     

 

TABLES AND FIGURES 
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Scheme 1: Overview of the active learning process utilized to construct the QRNN potential for liquid 

electrolyte simulations. The cycle is initialized by running MD, followed by extracting clusters. The clus-

ter training data is labeled with the wB97X-D3BJ/def2-TZVPD reference level of theory. Once the new 

data is added to the dataset an ensemble of QRNN models is trained, followed by MD. This cycle was 

repeated for six rounds, which resulted in a stable potential for pure carbonate and mixed electrolyte liquid 

simulations.  

 

Figure 1: Correlation of wB97X-D3BJ/def2-TZVPD cluster test set energies (left), dipole x, y, z compo-

nents (center), and atomic force x, y, z components (right) to the QRNN predictions. 

 

Figure 2: Comparison of the QRNN and OPLS4 computed and experimental values of (a) density51, 54, 56, 

(b) specific heat at constant volume (Cv)49, 50, (c) heat of vaporization (Hvap)21, 48, 52, 53, 55, (d) self-diffusivity59 

and (e) viscosity54, 56, 58 for pure liquid carbonate solvents. The error bars for the QRNN self-diffusivity 

and viscosity values are obtained by bootstrapping. 
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Figure 3: Temperature dependence of the viscosities of liquid (a) EC and (b) PC computed using QRNN, 

OPLS4 and compared with experimental data60. 

 

Figure 4: Figure 4: Viscosity as a function of LiPF6 salt concentration for EC:DMC (3:7) with 0-2 m 

LiPF6 salt computed using QRNN, OPLS4 and compared with experimental data61. 

 

Figure 5: Temperature dependence of diffusivity62 of (a) Li+, (b) PF6
- and (c) DEC for DEC + 1M LiPF6 

electrolyte. 
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Figure 6: The Li+-Oc radial distribution function (solid line) and the running coordination number (dished 

line) from QRNN MD simulations of EC + 1 M LiPF6 (a) and DMC + 1 M LiPF6 (b). 
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