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Abstract 
The structure-property relationships of polybenzenoid hydrocarbons (PBHs) were 
investigated with interpretable machine learning, for which two new tools were developed 
and applied. First, a novel textual molecular representation, based on the annulation 
sequence of PBHs was defined and developed. This representation can be used either in 
its textual form or as a basis for a curated feature-vector; both forms show improved 
interpretability over the standard SMILES representation, and the former also has 
increased predictive accuracy. Second, the recently-developed model, CUSTODI, was 
applied for the first time as an interpretable model and identified important structural 
features that impact various electronic molecular properties. The resulting insights not 
only validate several well-known “rules of thumb” of organic chemistry but also reveal new 
behaviors and influential structural motifs, thus providing guiding principles for rational 
design and fine-tuning of PBHs.  

Introduction 
In recent years, machine learning (ML) has been increasingly used in chemistry to address 
a wide variety of challenges, ranging from drug design1,2 to automatic synthesis,3–5 to 
accelerating traditional computations.6–8 Whereas the success of earlier models was 
measured by efficiency and accuracy in prediction, current models are often aimed 
towards better  “interpretability” – i.e., an ability to provide guiding principles and insight 
into domain relationships.9 In other words, scientists wish to understand “what the model 
has learned”, which may serve to validate existing chemical laws and intuitions,10,11 or, 
hopefully, even lead to the discovery of new physical and chemical insights.9,12,13  

Recent reports have demonstrated that ML can “rediscover” concepts and conventional 
wisdom in chemistry and physics. Examples include: the effect of specific functional 
groups on solubility and HOMO level,11 the hard and soft acids and bases (HSAB) principle 
for stability of inorganic complexes, and the identification of important normal modes for 
molecular dissociation14. Alongside these, there is discussion of how ML can lead to 
entirely new discoveries.12 It should be mentioned, however, that in all of these cases, 



domain expertise is required, either to engineer the features given to the model or to place 
the “understanding” of the model in a domain-appropriate context. 

In this work, we apply interpretable machine learning to the question of structure-
property relationships in the family of compounds known as cata-condensed 
polybenzenoid hydrocarbons (PBHs; sometimes also referred to as catafusenes or as 
polycyclic aromatic hydrocarbons, PAHs). These molecules are impactful in many areas, 
in particular in human and environmental health15,16 and in organic electronics.17–19 Due 
to their importance, these compounds have been extensively studied for many decades, 
both computationally and experimentally. They continue to garner attention for their 
potential to be used as organic semiconductors20 and because they are precursors to nano-
graphene sheets.21 Understanding the properties of PBHs is crucial to both understanding 
their reactivity and designing new functional materials and new pathways for safe disposal 
of harmful ones. Thus, obtaining a deeper understanding of structure-property 
relationships governing the behavior of PBHs is of interest both from the conceptual 
aspect and from the practical one.  

Beyond these reasons to study PBHs, there is also a fundamental issue. To paraphrase 
Randic:22 in order to understand the behavior of polycyclic aromatic systems (PASs) in a 
general way, one must first understand the systems comprising the archetypal aromatic 
unit – benzene. We envision that the current study is the necessary foundation for future 
investigations of broader swaths of the PAS chemical space. The prevalence of PASs in 
both natural and man-made materials entails that factors affecting their molecular 
properties are important to consider in designing new functional molecules and materials.  

We approach the subject of interpretable ML in the context of aromatic molecules from 
two directions: a) the introduction of a new type of molecular representation specifically 
suited to this kind of molecules and b) the application of a novel interpretable ML method, 
named CUSTODI,23 which does not require any human-aided feature selection. We show 
that our new representation is suitable for extracting chemically meaningful insight and 
has similar performance to state-of-the-art techniques, but with shorter training times and 
fewer data required for training. The combination of these two new tools allows us both to 
validate structure-property relationships previously revealed using electronic-structure 
investigations and also to uncover additional relationships. These can then inform the 
rational design and/or fine-tuning of properties.  

Methods 
The LALAS Representation 
Our group has demonstrated in a series of reports over the past few years that cata-
condensed PASs can be broken down into their smaller components (monocyclic, bicyclic, 
and tricyclic), and the magnetic properties of the larger molecules can be predicted by 
summing the contributions of these smaller subunits using an additivity scheme.24–26  

For the particular case of the PBHs, molecular properties can be predicted by the type and 
order of the tricyclic components themselves, where the two tricyclic subunits differ only 
in their annulation: linear or angular, i.e., anthracene or phenanthrene, respectively. This 
conclusion allows for a reduction of the molecular structure to the sequence of tricyclic 
subunits (i.e., the annulation sequence). We have formulated this sequence as a textual 
representation of the molecule (Figure 1a), containing only the characters “L”, “A”, “(“ and 



“)” (parentheses are used to denote branching points, where applicable; see Figure 1b for 
a selection of PBHs and their respective annulation sequences). The resulting names are 
strings of varying lengths comprising the letters “L” and “A”, which we have accordingly 
named “LALA Strings” or “LALAS” (the terms “LALAS representations”, “LALAS”, and 
“annulation sequences” are interchangeable). 

The annulation sequence, or LALAS, has been clearly demonstrated to be linked to 
molecular properties: molecules sharing the same annulation sequence are equiaromatic 
(i.e., the same aromatic behavior) in both the ground state and the lowest excited triplet 
state.27 In addition, we have shown that the annulation sequences themselves demonstrate 
a clear connection to and enable prediction of numerous molecular properties, including 
relative stability, aromatic character, singlet-triplet energy gaps, and location of spin 
density in the triplet excited state.27  

The generation of a LALAS for a given molecule proceeds according to the following 
protocol (similar to IUPAC rules for naming branched alkanes), which we have automated 
in a modified version of Predi-XY.28 The modified code for generating the LALAS is freely 
accessible online. 

a. For unbranched molecules, each tricyclic subcomponent is denoted as a letter “L” 
or “A”, depending on the type of annulation. The choice of “left-to-right” or “right-
to-left” is random, i.e., each molecule has (at least) two valid LALAS. E.g., the 
molecule LLA (Figure 1B) can also be read as ALL. 

b. For branched molecules, we search for the longest possible path through the 
molecule, and denote this the “main branch”. E.g., the main branch of molecule 
LLA()is a chain of 5 rings. 

c. If there are branching points, they are denoted with “()” (e.g., LLA() in Figure 1B). 
Note that branching points will always follow an “A”, as they are by necessity 
connected to the middle ring of an angular annulation. Note, also, that the notation 
“()” implies a branch containing a single ring. 

d. Branches longer than a single ring will have their own sequence, which will be 
detailed within the parentheses (e.g., LAA(L)LL in Figure 1B). 

e. If there are two different paths of similar length, the one with more branching 
points is chosen as the main branch. 



 

Figure 1: A) Illustration of the LALAS for a simple pentacyclic PBH (left). B) examples of selected PBHs and 
their LALAS (right). The direction of reading along the main branches that is consistent with the given name 
is shown with solid red arrows; additional branches are shown with dashed red arrows. Double bonds were 
omitted for clarity. 

We emphasize that, in contrast to SMILES or SELFIES, which describe molecules on an 
atom-connectivity basis, LALAS describe molecules using ring-based subunits. As such, 
they reduce the dimensionality of the molecular representation, while retaining important 
structural information. This trait could allow for significant improvement in efficiency of 
training ML models –in reducing both the training time and the required training set size. 
We also note that several graph-theoretical based notations for PBHs have been previously 
proposed, most notably by Gutman,29 Balaban,30–32 and Cyvin.33 To the best of our 
knowledge, these have been used mostly for enumeration of isomers of various types of 
PBHs. The 3-digit code developed by Balaban in the 1960s, which is the most similar in 
approach to our own formulation, has been also used to identify correlations to molecular 
properties (e.g., ionization potential, IP, and electron affinity, EA).34,35 In this work, 
LALAS representations were generated using a modified version of the Predi-XY code 
developed in our group28 and were used in two ways: a) tokenization directly from the 
string format (LALAS) and b) as a basis for generating a LALA-based feature vector (LFV) 
for each molecule (vide infra). 

Data Sources 
With the advent of more efficient computational techniques, data-driven investigations 
have become increasingly common; however, it has been difficult to apply such methods 
to PBHs, as there is a paucity of suitable data. Recently, our group reported on the 
COMPAS Project: the construction of a novel COMputational database of Polycyclic 
Aromatic Systems.36 The first instalment of the database, denoted COMPAS-1D, contains 
data on ~8,600 cata-condensed PBHs, including their optimized structures and a 
selection of electronic properties (calculated with DFT at the B3LYP-D3BJ/def2-svp 
level), as well as their respective SMILES representations and LALAS representations.  

For the current study, we removed benzene and naphthalene from the dataset, as they are 
too short to have a LALAS. Both LALAS and SMILES representations were tokenized using 
two methods: one-hot37 and CUSTODI.23 



The properties we extracted from the COMPAS-1D database for this study were: a) HOMO 
energy; b) LUMO energy; c) HOMO-LUMO gap; d) adiabatic ionization potential (AIP); 
e) adiabatic electron affinity (AEA); f) relative single-point energy. 

LALA Feature-Vector (LFV) 
In addition to the LALAS, we generated for each molecule a feature-vector based on 
curated structural features derived from the LALAS, denoted LFV. This set of chemically 
intuitive features (detailed in Table 1) was inspired by our collective experience studying 
PBHs and by structure-property relationships previously found in smaller datasets.24,27 
The purpose of using the LFV as input was threefold: (1) to validate the intuition we 
developed previously, (2) to check the predictive power of these descriptors, and (3) to 
compare the conclusions derived from this set of PBH-specific features to those derived 
from more general chemical representation. 

 

 

 

Table 1. List of curated structural features extracted from the LALAS of each molecule.  

feature # Description 
1 Longest linear stretch 
2 Number of rings 
3 Ratio of “L” tokens in total LALAS 
4 Number of branching points 
5 Longest linear stretch degeneracy 
6 Longest angular stretch 
7 Second longest linear stretch 
8 Number of “LAL” subsequences 

 
The CUSTODI Framework 
CUSTODI is a recently developed tokenization technique for text-based molecular 
representations. A full description of the method is beyond the scope of this report. In 
brief, the approach of CUSTODI is to find, using linear regression, the best fitting 
tokenization dictionary for a given target property. The resulting dictionary can be used 
for tokenization (CUSTODI representation) or for prediction (CUSTODI model), as shown 
in Figure 2. Both the CUSTODI representation and the CUSTODI model were used in this 
work. For further details on the method, the reader is referred to reference 23. 



  

Figure 2: Schematic illustration of the use of SMILES and LALAS to create a CUSTODI representation and 
with the CUSTODI model. 

To perform a methodical comparison, four supervised learning models were used, ranging 
from standard to state-of-the-art (for further details on each model, please refer to Section 
S4 in the Supporting Information). Kernel ridge regression (KRR) and random forest (RF) 
were used in conjunction with CUSTODI tokenization and LALA features as input 
(denoted as CUSTODI[LALAS]); a recurrent neural network (RNN) was trained on one-
hot tokenization of the LALAS and SMILES (denoted One-Hot[SMILES] and One-
Hot[LALAS], respectively); and a state-of-the-art38,39 graph convolution (GC) model was 
used with the MolConv input.40 The KRR and RF models were implemented using scikit-
learn,41 the RNN model by using tensorflow,42 and the GC model by using DeepChem43 
with an identical architecture as the MoleculeNet benchmark.38 

The data was split into training and testing sets and hyperparameter optimization was 
performed using Bayesian optimization algorithm (Gaussian process) as implemented in 
the scikit-optimize python package.44 Model selection was done using 5-fold cross 
validation. Exact details on the hyperparameters of each model are in Section S4.2 in the 
Supporting Information. The best model was retrained on the whole training set and used 
to estimate the model’s performance. All properties were normalized using z-score 
normalization (0 mean and 1 standard deviation) and all tokenized strings were padded 
before insertion into the models. 

Interpretation of CUSTODI 
The interpretation of CUSTODI is relatively straightforward: each tokenization value 
corresponds to a substring (e.g., atom or functional group), and these values are used to 
make the model’s prediction (Eq. 1). In this work, each tokenization value corresponds to 
a tricyclic substructure within the PBH.  



)1(  bias ൅ ෍ ෍ 𝑛௖೔…௖೔శೖషభ𝑥௖೔…௖೔శೖషభ
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௞ୀଵ௖೔∈௦೔

ൌ 𝑝௜   

 

Where 𝑠௜ is the string representation of molecule 𝑖 in the database, 𝑐௜ is the 𝑖th character 
in 𝑠௜, 𝑛௖೔…௖೔శೖషభ is the number of occurrences of the substring 𝑐௜ … 𝑐௜ା௞ିଵ in 𝑠௜, 𝑥௖೔…௖೔శೖషభ  is 
the substring’s tokenization value and 𝑝௜ is the target property. From Eq. 1, the 
tokenization value is proportional to the significance of the represented substructure for a 
given property. The tokenization value 𝑥 is not independent of the number of occurrences 
𝑛, and there is actually an inverse proportion between them. To account for this 
proportion, the importance of each substring is given by 

)2(  𝛽௖೔…௖೔శೖషభ ൌ
𝑛௖೔…௖೔శೖషభ𝑥௖೔…௖೔శೖషభ

bias ൅ ∑ ∑ 𝑛௖೔…௖೔శೖషభ𝑥௖೔…௖೔శೖషభ
degree
௞ୀଵ௖೔∈௦೔

   

 

So that the sum of all the importance terms is 1.  

We emphasize that the analysis made here can be repeated for many chemical compounds 
and can produce similar intuition on the effects of various functional groups on properties. 
Unlike previous reports (a few are detailed in the Introduction, vide supra), CUSTODI 
does not rely on hand-crafted features. By iterating over all possible substrings, CUSTODI 
in essence performs its own data-driven feature-engineering. The main advantages are 
that this does not require any chemical intuition and tests all substructures in the dataset 
simultaneously. As a result, this reduces possible sources of bias and allows for 
identification of features that might not be obvious to experts. The disadvantages are that 
CUSTODI cannot search for varying-length substrings and will likely not identify features 
that involve non-adjacent structural components. 

Results and Discussion 
The two main aspects of the work are presented and discussed in the following sections: 
a) the performance of LALAS as a molecular representation and b) the use of LALAS in 
conjunction with interpretable ML models (CUSTODI and RF) to gain new chemical 
insights into PBHs. 

The Performance of LALAS 
As mentioned above, LALAS are specifically tailored to describe PBH compounds. To test 
the added value of this dedicated representation versus commonly used general-purpose 
representations, the performance of several models trained on LALAS was compared to 
the same models trained on other types of input (see Methods for further details on the 
selected models for comparison). The models employed are detailed in the Methods 
section and in Figure 3, which provides an illustration of all input+model combinations.  



 

Figure 3. Graphical illustration of the various molecular representations and model combinations used in this 
work.  

 

The results obtained with a training set containing 7,674 molecules (90%) are illustrated 
in Figure 4 (the full fit results on the database are in Section S6 in the Supporting 
Information).  

 



  

Figure 4: top: average test set MAE (average of MAE/standard deviation) for all the tested model-
representation pairs. Bottom: test set MAE of all model-representation  

As seen in the averaged performance plot (Figure 4, top row), the RNN model had the best 
performance of all models trained on the various LALA-based representations. We also 
observe that the RNN model is the only one in which both One-Hot[LALAS] and One-
Hot[SMILES] performed comparably well (and, surprisingly, almost as well as the GC 
model).  

In all other cases, the CUSTODI[LALAS] representation performed markedly better than 
the CUSTODI[SMILES] representation. What is more, when using CUSTODI[LALAS] as 
input, the RF model performed similarly to the best-performing RNN and GC models, 
which are considered much more sophisticated. A possible explanation is that the simpler 
syntax of LALAS better suits the linear approximation in CUSTODI, thus allowing for 
better tokenization dictionaries to be generated for LALA, as compared to SMILES.  

The LFV did not show consistent behavior as an input: the RF model trained on LFVs 
performed the poorest; however, the KRR model trained on LFVs performed better than 
both CUSTODI[SMILES] and CUSTODI[LALAS]. This variance in performance is not 
surprising, as the RF and KRR models work best on significantly different latent spaces.  

A visual inspection of the individual plots in Figure 4 indicates that the relative energy is 
the only property with a qualitatively different picture. For this property, it appears that 
there is a dramatic difference in the performance of the two RNN models, and the 



performance of RNN model trained on the One-Hot[LALAS] representation appears to be 
noticeably poorer than the model trained on the One-Hot[SMILES] representation. We 
must emphasize, however, that such an interpretation is misleading, considering that, in 
fact, all the models show very satisfactory accuracy: they predict the relative electronic 
energy with MAE < 0.002 eV, which is smaller than the margin of error of the DFT 
calculations. 

Nevertheless, this apparent shift in performance (relative to the other molecular 
properties) led us to consider possible differences between the representations, which 
might affect the prediction of relative energy. One important difference is the way LALAS 
treat angular annulations. Angular annulations can have two types of direction – clockwise 
and counter-clockwise. Consecutive angular annulations in opposite directions create a 
zig-zag type of topology, which is planar in the ground state.45,46 However, consecutive 
angular annulations in the same direction create cove, fjord, and eventually helix 
formations (for two, three, and four consecutive A annulations, respectively). These 
differences do not necessarily affect electronic properties (e.g., molecules with similar 
annulation sequences are equiaromatic – i.e., have similar aromaticity patterns – 
regardless of the direction of the A annulations), however such substructures can affect 
relative energy as they have an increasing degree of curvature, which introduces helical 
strain, i.e., higher relative energy. Whereas SMILES representations include this 
information, LALAS do not differentiate between the types of angular annulations. 
Therefore, in principle, there could be performance discrepancies between the two; in 
practice, we observe that both perform exceedingly well on the given data.  

Having analyzed the performance of the individual models in terms of prediction accuracy, 
we now turn to comparing the training time required for each of the models. Table S2 
(Supporting Information, Section S2) gives the average time per molecule for each of the 
models. In general, we find that using the LALAS (or representations derived from LALAS) 
markedly decreases training time for the RF and RNN models (by factors of ~6 and ~5, 
respectively), and moderately decreases training time for the KRR and CUSTODI models 
(by a factor of ~2 for both). 

Finally, a major advantage of LALAS is revealed when comparing the performance of 
models trained on smaller training sets. The top four best-performing input+model 
combinations were identified from Figure 4, and new models were trained on varying 
training-set sizes. Both LALAS and LFVs indeed show superior performance in small 
datasets compared to other tested methods. Using only 10% of the data for training, the 
RNN model trained on One-Hot[LALAS] achieved a normalized test set MAE of 0.12 eV, 
which is markedly lower than the other three models. At a training-set size of 40%, GC 
achieved similar results as the RNN, MAE = 0.11 eV, and at 70% all four models showed 
comparable results. This may be attributed to the concise nature of the LALAS: the LALAS 
of a given molecule is, on average, shorter by 86.5% (55 characters) than the SMILES of 
the same molecule. In addition, the complexity of the language is substantially reduced – 
only four types of characters. Thus, lower variance is expected for models trained on 
LALAS.  



 

Figure 5: Training set size dependence for the top-4 performing models. 

 
Interpretation Based on Annulation Sequence 
As mentioned above, the simplification that is inherent in LALAS affects not only model 
performance, but also interpretability, which is a main goal of this work. Whereas single 
atoms or atom-pairs can have meaning as functional groups in many organic molecules, 
in PBHs individual carbon atoms often do not carry significant chemical meaning. LALAS 
connect textual characters with chemically meaningful subunits, i.e., specific ring 
annulation patterns. This makes it amenable to interpretation when used for training text-
based models such as CUSTODI (the methodology for interpreting the CUSTODI model 
dictionary is presented in the Methods section).  

To extract the most meaningful insights from a given model, one should first ensure that 
the model shows good and reliable performance. Therefore, we initially performed a 
benchmarking procedure, to determine the optimal degree of CUSTODI for these data. 
This procedure is included in the hyperparameter optimization of the CUSTODI model, as 
the degree of CUSTODI is a hyperparameter of the model (see Methods for details). In 
other words: CUSTODI-1 was trained on subsequences of a single character (e.g., “L”, “)”), 
CUSTODI-2 was trained subsequences containing either one or two characters (e.g., “L”, 
“LA”), and CUSTODI-3 was trained on subsequences containing either one, two or three 
characters (e.g., “A”, “(L”, “ALA”). The best-performing model was found to be CUSTODI-
2. The importance terms of the trained CUSTODI-2 model are presented in Figure 6. We 
emphasize that, while these terms can help assign the importance of the various structural 
features, they do not tell us in which way the features impact each property, i.e., increasing 
or decreasing the value of the predicted property. Such an analysis requires different 
treatment, which is the subject of ongoing work and will be disclosed in due course.  



 

Figure 6: Importance terms (𝛽) for substrings of LALAS for each property in the database. Only substrings 
with importance greater than 5% are displayed. Importance is based on CUSTODI model trained on 88% of 
the data. 

Figure 6 shows that the properties HOMO, LUMO, and HOMO-LUMO gap have a similar 
dependence on particular substring sequences, which is not surprising. In addition, we 
observe a marked difference between the relative importance of the factors governing 
these three properties and those determining the relative energy of each molecule (note: 
the relative energy is calculated with respect to the respective lowest-energy isomer; for 
further details see 36). The adiabatic ionization potential (AIP) and adiabatic electron 
affinity (AEA) have some similarity to the three aforementioned electronic properties, 
which is in accordance with Koopman’s theorem.47 Yet, there are also dissimilarities, 
which demonstrate that the model is capable of distinguishing between the property types.  

The main factor influencing the HOMO, LUMO, and HOMO-LUMO gap is the presence 
of linear annulations (L, 𝛽̅ ൌ 17.7%) and stretches of two consecutive linear annulations 
(LL, 𝛽̅ ൌ 9.1%; i.e., four benzene rings annulated linearly, akin to naphthacene). These 
properties are affected by the presence of angular annulations to a lesser extent (A, 𝛽̅ ൌ
11.6%), while the existence of branching points does not seem to be important. Our recent 
analysis of the COMPAS-1D dataset showed that the HOMO, LUMO, and HOMO-LUMO 
gap all depend on the length of the Longest L subsequence. Because CUSTODI-2 only 
looks as subsequences up to two letters long, we cannot see here the importance of longer 
Longest L subsequences. Nevertheless, all of these observations are in line with our 
previous observations on these compounds.36 

In contrast, the main factors influencing the relative energy are different. We observe the 
following dependencies: linear annulations (L, 𝛽 ൌ 16.5%), consecutive series of angular 
annulations (AA, 𝛽 ൌ 11.3%), and branching points following an angular annulation (“)A”, 
𝛽 ൌ 10.8%). The subsequence “AL” also appears, which implies that it is not only the 
presence of angular annulations that matters, but also what surrounds them, or at what 
point the A sequence is broken. These results are in line with our previous observations 
pertaining to prediction of the relative energy, which we attributed to the strain that is 
incurred by sequences of consecutive A motifs. Specifically, we noted that consecutive 
sequences of A annulations can be either helical or planar, depending on the direction of 



the consecutive As. While A annulations in opposing directions lead to “zig-zag” formation 
that is planar, stretches of A annulations in the same direction lead to the formation of 
helical structures (known as cove, fjord, and helix). The features entail helical strain which 
raises the relative energy. Therefore, it is not surprising to find them among the main 
influencers in the prediction of relative energy. Corroboration for this interpretation can 
be found in our analysis of the COMPAS-1D dataset, which has shown that the increase in 
relative electronic energy is correlated to the deviation from planarity.36  

In this context, we note that the relationship between angular annulations and stability 
has also been investigated with other computational and conceptual tools. For example, 
the same observations can be interpreted in the context of Clar’s rule,48,49 which states that 
isomers with a larger number of Clar sextets are more stable than those with fewer Clar 
sextets. In general, angular annulations and branching points allow for more Clar sextets 
to be generated, which can therefore influence the relative energy. We are currently 
investigating the link between Clar structures, aromaticity indices, and the relative energy, 
to see if this interpretation can be substantiated. Other computational analyses have also 
rationalized the greater stability of angular isomers in the ground state via graph-theory,50 
additional π-bonding,51,52 and a greater number of resonance structures.53  

Though the L motifs are predicted by the model to have an importance effect, the direction 
of this effect is unknown. Hence, it can, in principle, be perceived in two ways: a) following 
the previous rationalization, the presence of L motifs can be seen as precluding the 
formation of such non-planar motifs and therefore contributing to stabilization; or b) the 
L motifs may contribute to destabilization, not via geometric deformation but rather 
through an electronic effect. Since it is well-established that the most stable isomers are 
the phenacenes (i.e., the “zig-zag” PBHs),51,52 one may conclude based on this previous 
knowledge that the operative case is (b). Nevertheless, we are currently working on 
implementation of more sophisticated DL models that also reveal the direction of each 
feature’s influence. 

As mentioned above, the AEA and AIP mostly show similarity to the HOMO, LUMO, and 
HOMO-LUMO gap analyses, with some exceptions. The main difference is that for both 
AIP and AEA the angular annulation (“A”, 𝛽̅ ൌ 17.7%) shows slightly greater importance 
than the linear annulation (“L”, 𝛽̅ ൌ 14.2%). One possible explanation can be found in the 
work of Khatymov et al., who found that the stabilization of the LUMO is hampered due 
to specific symmetry features in the angular phenanthrene, which may be generalized to 
homologous series of angularly annulated PBHs.54 As a result, within Koopmans’ theorem 
(though just a crude approximation for our DFT-calculated values), the EA is expected to 
decrease in magnitude. An alternative, or complementary, explanation is that many of the 
molecules containing multiple A annulations have some degree of helicity, which may 
affect the charge delocalization. Therefore, the presence of As becomes an important factor 
for the predictive model.   

We note that, for all properties, the intercept has a large importance value, i.e., a large 
influence on the predicted value. As described in the Methods section, the intercept is a 
constant value that describes the bias of the CUSTODI model. In cases where the bias itself 
has a large value, relative to the individual tokenization values, the intercept has a strong 
influence. This can be understood in the following way: the CUSTODI model learns the 



“average value” of a property and the importance assigned to each of the subsequences 
represents the effect of the respective subsequence on that relative value.  

Interpretation Based on the LFV 
The RF model has an inherent way of finding feature importance.55 Our analysis focuses 
on the RF model trained on LFVs (Figure 7). The results show very similar patterns to 
those obtained with CUSTODI[LALAS]. Considering that LFVs are essentially domain 
expertise-based features which we extracted from LALAS, this implies that the CUSTODI 
model successfully captures the features directly from the textual representations, without 
the need for human intervention. 

The RF model shows that the HOMO, LUMO, and HOMO-LUMO gap are mainly affected 
by the length of the longest stretch of linear annulations (“Longest L”, 87%). 
Unsurprisingly, the AIP and AEA are also mainly influenced by the linear annulations 
(“Longest L”, 80.2%). However, AEA and AIP are also affected by the number of rings, 
which is in line with previous reports of a size-dependency for these properties.56 It is 
generally considered that the larger a conjugated system is, the better it is expected to 
stabilize excess charge through delocalization.  

The relative energy displays a very different set of dependencies, chief among them are the 
longest stretch of angular annulations (“Longest A”, 27.1%), the number of branches in the 
molecule (“No. Branching points”, 21.2%), and the degeneracy of the longest linear 
sequence (“Longest L Degeneracy”, 20.6%). The ratio of L motifs, the longest linear 
sequence, and the number of LAL sequences also have non-negligible influences (10%, 
12.1%, and 6.4%, respectively). As mentioned above, we believe that the impact of the 
angular annulations can be attributed either to variations in helical strain or to the possible 
number of Clar sextets that can be formed. Similarly, the number of branches is influential 
because it is related to the tendency to form helical structures (an increase in branches 
precludes linear stretches and increases the likelihood of angular stretches in similar 
directions).  

As we explained above, we hypothesize that, while the A motifs appear to raise the energy 
through geometrical deformation, the L motifs raise it via electronic effects. Thus, we 
observe a dependence also on several features describing the presence of L motifs. As 
opposed to the other properties, where only the longest linear stretch was important, here 
also the degeneracy (i.e., the longest stretch that appears more than once) is important. 
This indicates that the effect of individual linear stretches on the relative energy may be 
additive, while on other properties it is exclusive. Interestingly, the relative energy also 
shows a dependence on a specific substructure, “LAL”. This particular subsequence was 
previously noted as behaving in an anomalous manner24 in the prediction of magnetic 
behavior in PBHs.  



 

Figure 7: Feature importance for the LALA features. Derived from RF model trained on 88% of the data. 

A similar analysis using the CUSTODI model trained on SMILES strings yielded no 
meaningful results, as the substrings used in CUSTODI models are short (this results from 
the hyperparameter optimization; see Section S4.2 in the Supporting Information for 
more details). The results of the influence analysis on SMILES strings are also provided in 
the Supporting Information (Section S5, Figure S1). Similarly, RF trained on 
CUSTODI[SMILES] did not afford any interpretable results.  

 

Conclusions 
In this work, we applied interpretable ML tools to investigate the structure-property 
relationships in the family of PBHs, which are archetypal polycyclic species. We 
introduced a new type of textual molecular representation, which is specifically suited for 
these molecules. This representation can be used either in string form (LALAS) or as the 
basis for a feature-vector (LFV). In addition, we applied a new type of interpretable ML 
method, CUSTODI. Comparison to standard models and input types demonstrated the 
added value of LALAS to both efficiency and interpretability.  

The application of these two new tools to the newly reported database, COMPAS-1D, [ref: 
database paper] allowed us to gain chemical insight into the structure-property 
relationships of PBHs. Four main conclusions were reached:  

(1) most of the electronic properties of PBHs we studied are primarily influenced by 
the presence and length of consecutive linear annulations in the molecule;  

(2) the relative energy of isomeric PBHs is mainly affected by the presence of angular 
annulations and branching points in the molecule;  

(3) as expected from Koopmans’ theorem, AIP and AEA have similar dependencies as 
HOMO, LUMO, and HOMO-LUMO gap, however, the former two are also size-
dependent while the latter appear not to be; 

(4) there are “privileged” subsequences, one of which we identified – “LAL”.  

To a certain extent, (some of) these insights may be considered well-known “rules of 
thumb” or “conventional wisdom” in the chemical community. However, to the best of our 
knowledge, have never been demonstrated in a data-driven manner. Indeed, the 



agreement between the ML interpretation and generally accepted chemical behavior 
indicates that the models performed reliably well, and we have validated these rules of 
thumb with an unprecedented dataset containing ~8,700 PBHs. Nevertheless, there are 
also new insights, such as factors influencing relative energy of PBH isomers and the 
existence of “privileged” subsequences. We also emphasize that the importance analysis 
presented here indicated that the relationship between linear sequences and the various 
molecular properties is different. Specifically, for all of the properties except the relative 
energy, it appears that only the single longest linear stretch is important and how many 
times such a sequence appears does not matter; in contrast, for the relative energy, the 
degeneracy of these sequences does matter, which suggests that they might contribute 
cumulatively to destabilization. 

Importantly, similar conclusions were obtained using the CUSTODI model, which was 
trained on LALAS without any preprocessing, and the RF model, which was trained on 
LFVs – domain-expert curated features. This serves to indicate that the CUSTODI model 
is capable of extracting the important structural features from this new representation 
automatically, without expert intervention. We emphasize that CUSTODI can be used in a 
similar manner on different string representations to derive structure-property 
relationships.  

Both the RF and CUSTODI models describe the relative importance of various structural 
features/subunits, but they could not describe their effect – i.e., increase or decrease in 
magnitude. Our group is currently exploring the use of additional interpretable algorithms 
to provide further insight into this, as well as other, aspects. In particular, we are 
investigating the direct impact of individual structural motifs on different aromaticity 
indices. Additional emphasis is on the expansion of the LALAS representation concept to 
include peri-condensed and poly(hetero)cyclic aromatic systems and on generating the 
relevant data to enable further exploration and analysis of this chemical space.   

Data and Code Availability 
The full code used in this paper appear in our GitLab repository at 
https://gitlab.com/porannegroup/lalas. The data was taken from the COMPAS Project 
repository at https://gitlab.com/porannegroup/compas. 

 

Acknowledgments 

The authors thank Prof. Dr. Peter Chen for his continued scientific and financial support 
and Mr. Felix Fleckenstein for technical assistance with developing the modified code for 
generating LALAS. R.G.P. and A.W. are grateful to the Branco Weiss Fellowship for 
supporting this research under a Society in Science grant. R.G.P. is a Branco Weiss Fellow 
and a Horev Fellow. 

 

Conflict of Interest 

The authors declare no conflict of interest. 



References 
 

(1)  Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial 
Intelligence in Chemistry and Drug Design. J. Comput. Aided. Mol. Des. 2020, 34 (7), 
709–715. https://doi.org/10.1007/s10822-020-00317-x. 

(2)  Harren, T.; Matter, H.; Hessler, G.; Rarey, M.; Grebner, C. Interpretation of 
Structure–Activity Relationships in Real-World Drug Design Data Sets Using Explainable 
Artificial Intelligence. J. Chem. Inf. Model. 2022, 62 (3), 447–462. 
https://doi.org/10.1021/acs.jcim.1c01263. 

(3)  Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Controlling an 
Organic Synthesis Robot with Machine Learning to Search for New Reactivity. Nature 
2018, 559 (7714), 377–381. https://doi.org/10.1038/s41586-018-0307-8. 

(4)  Eyke, N. S.; Koscher, B. A.; Jensen, K. F. Toward Machine Learning-Enhanced 
High-Throughput Experimentation. Trends in Chemistry 2021, 3 (2), 120–132. 
https://doi.org/10.1016/j.trechm.2020.12.001. 

(5)  Tao, H.; Wu, T.; Aldeghi, M.; Wu, T. C.; Aspuru-Guzik, A.; Kumacheva, E. 
Nanoparticle Synthesis Assisted by Machine Learning. Nat. Rev. Mater. 2021, 6 (8), 701–
716. https://doi.org/10.1038/s41578-021-00337-5. 

(6)  Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R. J.; Krenn, M.; Lavigne, 
C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C. T.; Yao, Z.; Aspuru-Guzik, A. Data-Driven 
Strategies for Accelerated Materials Design. Acc. Chem. Res. 2021, 54 (4), 849–860. 
https://doi.org/10.1021/acs.accounts.0c00785. 

(7)  Nandy, A.; Duan, C.; Taylor, M. G.; Liu, F.; Steeves, A. H.; Kulik, H. J. 
Computational Discovery of Transition-Metal Complexes: From High-Throughput 
Screening to Machine Learning. Chem. Rev. 2021, 121 (16), 9927–10000. 
https://doi.org/10.1021/acs.chemrev.1c00347. 

(8)  Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, 
K.-R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for 
Predictive Insights Into Chemical Systems. Chem. Rev. 2021, 121 (16), 9816–9872. 
https://doi.org/10.1021/acs.chemrev.1c00107. 

(9)  Kovalerchuk, B.; Ahmad, M. A.; Teredesai, A. Survey of Explainable Machine 
Learning with Visual and Granular Methods Beyond Quasi-Explanations. In Interpretable 
Artificial Intelligence: A Perspective of Granular Computing; Pedrycz, W., Chen, S.-M., 
Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, 
2021; pp 217–267. https://doi.org/10.1007/978-3-030-64949-4_8. 

(10)  George, J.; Hautier, G. Chemist versus Machine: Traditional Knowledge versus 
Machine Learning Techniques. Trends in Chemistry 2020. 
https://doi.org/10.1016/j.trechm.2020.10.007. 

(11)  Friederich, P.; Krenn, M.; Tamblyn, I.; Aspuru-Guzik, A. Scientific Intuition 
Inspired by Machine Learning Generated Hypotheses. arXiv:2010.14236 [physics, 
physics:quant-ph] 2020. 



(12)  Roscher, R.; Bohn, B.; Duarte, M. F.; Garcke, J. Explainable Machine Learning for 
Scientific Insights and Discoveries. IEEE Access 2020, 8, 42200–42216. 
https://doi.org/10.1109/ACCESS.2020.2976199. 

(13)  Rodríguez-Pérez, R.; Bajorath, J. Explainable Machine Learning for Property 
Predictions in Compound Optimization. J. Med. Chem. 2021, 64 (24), 17744–17752. 
https://doi.org/10.1021/acs.jmedchem.1c01789. 

(14)  Häse, F.; Fdez. Galván, I.; Aspuru-Guzik, A.; Lindh, R.; Vacher, M. How Machine 
Learning Can Assist the Interpretation of Ab Initio Molecular Dynamics Simulations and 
Conceptual Understanding of Chemistry. Chem. Sci. 2019, 10 (8), 2298–2307. 
https://doi.org/10.1039/C8SC04516J. 

(15)  Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; Ghissassi, F. E.; Cogliano, V.; Drewski, 
D.; Partanen, T.; Vähäkangas, K.; Stücker, I.; Borlak, J.; Feron, V. J.; Marques, M. M.; 
Gustavsson, P.; Fletcher, A.; Arey, J.; Beland, F. A.; Burchiel, S.; Flowers, L.; Herbert, R. 
A.; Mukhtar, H.; Nesnow, S.; Penning, T. M.; Sinha, R.; Shimada, T. Carcinogenicity of 
Polycyclic Aromatic Hydrocarbons. The Lancet Oncology 2005, 6 (12), 931–932. 
https://doi.org/10.1016/S1470-2045(05)70458-7. 

(16)  Abdel-Shafy, H. I.; Mansour, M. S. M. A Review on Polycyclic Aromatic 
Hydrocarbons: Source, Environmental Impact, Effect on Human Health and 
Remediation. Egyptian Journal of Petroleum 2016, 25 (1), 107–123. 
https://doi.org/10.1016/j.ejpe.2015.03.011. 

(17)  Anthony, J. E. Functionalized Acenes and Heteroacenes for Organic Electronics. 
Chem. Rev. 2006, 106, 5028–5048. https://doi.org/10.1021/cr050966z. 

(18)  Figueira-Duarte, T. M.; Muellen, Klaus. Pyrene-Based Materials for Organic 
Electronics. Chem. Rev. (Washington, DC, U. S.) 2011, 111, 7260–7314. 
https://doi.org/10.1021/cr100428a. 

(19)  Al Ruzaiqi, A.; Okamoto, H.; Kubozono, Y.; Zschieschang, U.; Klauk, H.; Baran, P.; 
Gleskova, H. Low-Voltage Organic Thin-Film Transistors Based on [n]Phenacenes. 
Organic Electronics 2019, 73, 286–291. https://doi.org/10.1016/j.orgel.2019.06.021. 

(20)  Tönshoff, C.; Bettinger, H. F. Pushing the Limits of Acene Chemistry: The Recent 
Surge of Large Acenes. Chem. Eur. J. 27, 3193. https://doi.org/10.1002/chem.202003112. 

(21)  Drummer, M. C.; Singh, V.; Gupta, N.; Gesiorski, J. L.; Weerasooriya, R. B.; Glusac, 
K. D. Photophysics of Nanographenes: From Polycyclic Aromatic Hydrocarbons to 
Graphene Nanoribbons. Photosynth. Res. 2022, 151 (2), 163–184. 
https://doi.org/10.1007/s11120-021-00838-y. 

(22)  Randić, M. Benzenoid Rings Resonance Energies and Local Aromaticity of 
Benzenoid Hydrocarbons. J. Comp. Chem. 2019, 40 (5), 753–762. 
https://doi.org/10.1002/jcc.25760. 

(23)  Fite, S.; Nitecki, O.; Gross, Z. Custom Tokenization Dictionary, CUSTODI: A 
General, Fast, and Reversible Data-Driven Representation and Regressor. J. Chem. Inf. 
Model. 2021, 61 (7), 3285–3291. https://doi.org/10.1021/acs.jcim.1c00563. 



(24)  Paenurk, E.; Feusi, S.; Gershoni-Poranne, R. Predicting Bond-Currents in 
Polybenzenoid Hydrocarbons with an Additivity Scheme. J. Chem. Phys. 2021, 154 (2), 
024110. https://doi.org/10.1063/5.0038292. 

(25)  Gershoni-Poranne, R. Piecing It Together: An Additivity Scheme for Aromaticity 
Using NICS-XY-Scans. Chem. Eur. J. 2018, 24 (16), 4165–4172. 
https://doi.org/10.1002/chem.201705407. 

(26)  Finkelstein, P.; Gershoni-Poranne, R. An Additivity Scheme for Aromaticity: The 
Heteroatom Case. ChemPhysChem 2019, 20, 1508–1520. 
https://doi.org/10.1002/cphc.201900128. 

(27)  Markert, G.; Paenurk, E.; Gershoni‐Poranne, R. Prediction of Spin Density, Baird-
Antiaromaticity, and Singlet–Triplet Energy Gap in Triplet-State Polybenzenoid Systems 
from Simple Structural Motifs. Chem. Eur. J. 2021, 27, 1–14. 
https://doi.org/10.1002/chem.202100464. 

(28)  Wahab, A.; Fleckenstein, F.; Feusi, S.; Gershoni-Poranne, R. Predi-XY: A Python 
Program for Automated Generation of NICS-XY-Scans Based on an Additivity Scheme. 
Electron. Struct. 2020, 2, 047002. https://doi.org/10.1088/2516-1075/abd081. 

(29)  Gutman, I.; BokoviC’, R. Topological Properties of Benzenoid Systems. 7. 

(30)  Balaban, A. T.; Harary, F. Chemical Graphs—V: Enumeration and Proposed 
Nomenclature of Benzenoid Cata-Condensed Polycyclic Aromatic Hydrocarbons. 
Tetrahedron 1968, 24 (6), 2505–2516. https://doi.org/10.1016/S0040-4020(01)82523-
0. 

(31)  Balaban, A. T. Chemical Graphs—VII: Proposed Nomenclature of Branched Cata-
Condensed Benzenoid Polycyclic Hydrocarbons. Tetrahedron 1969, 25 (15), 2949–2956. 
https://doi.org/10.1016/S0040-4020(01)82827-1. 

(32)  Balaban, A. T. Challenging problems involving benzenoid polycyclics and related 
systems. Pure and Applied Chemistry 1982, 54 (5), 1075–1096. 
https://doi.org/10.1351/pac198254051075. 

(33)  Cyvin, S. J.; Brunvoll, J.; Cyvin, B. N. Formulas and Numbers of Isomers for 
Benzenoid Hydrocarbons. Polycyclic Aromatic Compounds 1997, 12 (3), 201–212. 
https://doi.org/10.1080/10406639708233836. 

(34)  Balaban, A. T.; Pompe, M. QSPR for Physical Properties of Cata-Condensed 
Benzenoids Using Two Simple Dualist-Based Descriptors. J. Phys. Chem. A 2007, 111 (12), 
2448–2454. https://doi.org/10.1021/jp068743f. 

(35)  Randić, M.; Balaban, A. T. Ring Signatures for Benzenoids with up to Seven Rings, 
Part 1: Catacondensed Systems. Int. J. Quant. Chem. 2008, 108 (5), 865–897. 
https://doi.org/10.1002/qua.21578. 

(36)  Wahab, A.; Pfuderer, L.; Paenurk, E.; Gershoni-Poranne, R. The COMPAS Project: 
A Computational Database of Polycyclic Aromatic Systems. Phase 1: Cata-Condensed 
Polybenzenoid Hydrocarbons. 2022. https://doi.org/10.26434/chemrxiv-2022-2l1m9. 



(37)  Brownlee, J. Ordinal and One-Hot Encodings for Categorical Data. 
Machinelearningmastery. 

(38)  Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; 
Leswing, K.; Pande, V. MoleculeNet: A Benchmark for Molecular Machine Learning. 
Chem. Sci. 2018, 9 (2), 513–530. https://doi.org/10.1039/C7SC02664A. 

(39)  Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; 
Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molecular 
Machine Learning Models Lower than Hybrid DFT Error. J. Chem. Theory Comput. 2017, 
13 (11), 5255–5264. https://doi.org/10.1021/acs.jctc.7b00577. 

(40)  Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; 
Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for 
Learning Molecular Fingerprints. arXiv:1509.09292 [cs, stat] 2015. 

(41)  Scikit-Learn: Machine Learning in Python, Pedregosa et al., JMLR 12, Pp. 2825-
2830, 2011. 

(42)  (2016). Tensorflow: A System for Large-Scale Machine Learning. In 12th 
Symposium on Operating Systems Design and Implementation (Pp. 265–283). 

(43)  DeepChem: Deep-Learning Models for Drug Discovery and Quantum Chemistry; 
Http://Github.Com/Deepchem/ Deepchem; Accesss 2021-04-07. 

(44)  Head, T.; MechCoder; Louppe, G.; Iaroslav Shcherbatyi; Fcharras; Zé Vinícius; 
Cmmalone; Schröder, C.; Nel215; Campos, N.; Young, T.; Cereda, S.; Fan, T.; Rene-Rex; 
Kejia (KJ) Shi; Schwabedal, J.; Carlosdanielcsantos; Hvass-Labs; Pak, M.; 
SoManyUsernamesTaken; Callaway, F.; Estève, L.; Besson, L.; Cherti, M.; Karlson 
Pfannschmidt; Linzberger, F.; Cauet, C.; Gut, A.; Mueller, A.; Fabisch, A. Scikit-
Optimize/Scikit-Optimize: V0.5.2; Zenodo, 2018. 
https://doi.org/10.5281/ZENODO.1207017. 

(45)  Portella, G.; Poater, J.; Bofill, J. M.; Alemany, P.; Sola, M. Local Aromaticity of 
[n]Acenes, [n]Phenacenes, and [n]Helicenes (n = 1-9). J. Org. Chem. 2005, 70 (7), 2509–
2521. https://doi.org/10.1021/jo0480388. 

(46)  Pino-Rios, R.; Báez-Grez, R.; Solà, M. Acenes and Phenacenes in Their Lowest-
Lying Triplet States. Does Kinked Remain More Stable than Straight? Phys. Chem. Chem. 
Phys. 2021. https://doi.org/10.1039/D1CP01441B. 

(47)  Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den 
Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1–6), 104–113. 
https://doi.org/10.1016/S0031-8914(34)90011-2. 

(48)  Clar, E. Aromatic Sextet; New York, Wiley, 1972. 

(49)  Solà, M. Forty Years of Clar’s Aromatic π-Sextet Rule. Front. Chem. 2013, 1. 
https://doi.org/10.3389/fchem.2013.00022. 

(50)  Aihara, J. Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for 
Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A, 103 (37), 7487–7495. 
https://doi.org/10.1021/jp990092i. 



(51)  Poater, J.; Visser, R.; Solà, M.; Bickelhaupt, F. M. Polycyclic Benzenoids: Why 
Kinked Is More Stable than Straight. J. Org. Chem. 2007, 72 (4), 1134–1142. 
https://doi.org/10.1021/jo061637p. 

(52)  Poater, J.; Duran, M.; Solà, M. Aromaticity Determines the Relative Stability of 
Kinked vs. Straight Topologies in Polycyclic Aromatic Hydrocarbons. Front. Chem. 2018, 
6. https://doi.org/10.3389/fchem.2018.00561. 

(53)  Dias, J. R. Conjugation, Number of Dewar Resonance Structures (DSs) in 
Homologous Polyzethrene and Related Conjugated Polycyclic Hydrocarbon Series, and 
Kinked versus Straight. Mol. Phys. 2015, 113 (22), 3389–3394. 
https://doi.org/10.1080/00268976.2015.1025882. 

(54)  Khatymov, R. V.; Muftakhov, M. V.; Shchukin, P. V. Negative Ions, Molecular 
Electron Affinity and Orbital Structure of Cata-Condensed Polycyclic Aromatic 
Hydrocarbons. Rapid Comm. in Mass Spec. 2017, 31 (20), 1729–1741. 
https://doi.org/10.1002/rcm.7945. 

(55)  Rogers, J.; Gunn, S. Identifying Feature Relevance Using a Random Forest. In 
Subspace, Latent Structure and Feature Selection; Saunders, C., Grobelnik, M., Gunn, S., 
Shawe-Taylor, J., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: 
Berlin, Heidelberg, 2006; Vol. 3940, pp 173–184. https://doi.org/10.1007/11752790_12. 

(56)  Modelli, A.; Mussoni, L. Rapid Quantitative Prediction of Ionization Energies and 
Electron Affinities of Polycyclic Aromatic Hydrocarbons. Chem. Phys. 2007, 332 (2), 
367–374. https://doi.org/10.1016/j.chemphys.2007.01.004. 

 

 

 

TOC Graphic and Synopsis 

 

A text-based molecular representation was designed for polybenzenoid hydrocarbons, 
enabling automatic feature extraction by interpretable machine learning models. New 
structure-property relationships were found. 


