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Gómez-Bombarelli2, Connor W. Coley4,5 and Vijay
Gadepally1

1Lincoln Laboratory, Massachusetts Institute of Technology, 244
Wood Street, Lexington, 02421, MA, USA.

2Department of Materials Science and Engineering,
Massachusetts Institute of Technology, 77 Massachusetts Ave,

Cambridge, 02139, MA, USA.
3Department of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, 02138, MA, USA.

4Department of Chemical Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Ave, Cambridge, 02139, MA, USA.

5Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 77 Massachusetts Ave,

Cambridge, 02139, MA, USA.

*Corresponding author(s). E-mail(s): ncfrey@mit.edu;
Contributing authors: ryan.soklaski@ll.mit.edu;

simonaxelrod@g.harvard.edu; ssamsi@mit.edu; rafagb@mit.edu;
ccoley@mit.edu; vijayg@mit.edu;

Abstract

Massive scale, both in terms of data availability and computation,
enables significant breakthroughs in key application areas of deep learn-
ing such as natural language processing (NLP) and computer vision.
There is emerging evidence that scale may be a key ingredient in sci-
entific deep learning, but the importance of physical priors in scientific
domains makes the strategies and benefits of scaling uncertain. Here,
we investigate neural scaling behavior in large chemical models by vary-
ing model and dataset sizes over many orders of magnitude, studying
models with over one billion parameters, pre-trained on datasets of
up to ten million datapoints. We consider large language models for
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generative chemistry and graph neural networks for machine-learned
interatomic potentials. To enable large-scale scientific deep learning
studies under resource constraints, we develop the Training Perfor-
mance Estimation (TPE) framework to reduce the costs of scalable
hyperparameter optimization by up to 90%. Using this framework,
we discover empirical neural scaling relations for deep chemical mod-
els and investigate the interplay between physical priors and scale.
Potential applications of large, pre-trained models for “prompt engineer-
ing” and unsupervised representation learning of molecules are shown.

Keywords: chemistry, deep learning, graph neural networks, hyperparameter
optimization, neural scaling

1 Introduction

The “unreasonable effectiveness” of deep learning [1] in domains such as com-
puter vision (CV) and natural language processing (NLP) relies on the ability
of deep neural networks (DNNs) to leverage ever-increasing amounts of com-
pute, data, and model capacity. Large-scale models, including Bidirectional
Encoder Representations from Transformers (BERT) [2] and DALL-E [3], have
been so successful at synthesizing information from large datasets via self-
supervised pre-training and performing a variety of downstream tasks with
little to no finetuning that most state-of-the-art (SOTA) models in NLP and
CV are adapted from a small set of large, pre-trained models [4]. Naturally, we
might expect that massive model and dataset scaling will be a prerequisite to
achieving out-sized success for deep learning in science. Recent work such as
AlphaFold [5], the Open Catalyst Project [6, 7], and ChemBERTa [8] indicate
that larger datasets and models, pre-training, and self-supervised learning –
all key ingredients in CV and NLP – unlock new capabilities for deep learning
in chemistry. However, unlike in CV and NLP, the path to scaling deep chem-
ical networks and the potential benefits are unclear. Chemical deep learning
can incorporate physics-based priors that may ameliorate the steep resource
requirements seen in other fields [9–12]. Moreover, because of the heterogene-
ity and complexity of chemical space [13] and molecular machine learning
(ML) tasks [14, 15], training general and robust models that perform well on
a wide variety of downstream tasks remains a pressing challenge [8, 16, 17].
The enormity of chemical space and heterogeneity of these tasks motivates
investigations of large-scale models in chemistry, because such models are well-
suited to unlabeled, multi-modal datasets [3, 4]. Recently, neural scaling laws
[18, 19] have emerged as a way to characterize the striking trends of improved
model performance over many orders of magnitude with respect to model size,
dataset size, and compute; however, these experiments require immense com-
putational resources and rely on well-known, domain-specific model training
procedures that do not apply outside of traditional deep learning application
areas.
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With the inordinate costs of developing and deploying large models [20],
it is difficult to investigate neural scaling behaviors of scientific deep learn-
ing models, which require expensive hyperparameter optimization (HPO) and
experimentation. Architectures and hyperparameters that work well for small
models and small datasets do not transfer to larger scales [21]. This presents
a risk that scientific deep learning will become increasingly inaccessible as
resource demands increase. Techniques for accelerating neural architecture
search (NAS) and hyperparameter transfer such as training speed estimation
(TSE) [22] and µTransfer [21] could accelerate the development of large-scale
scientific deep learning models, where rapid advances in architecture design
and complex data manifolds prevent the easy transfer of parameters and set-
tings used in CV and NLP. To investigate the capabilities of deep chemical
models across resource scales, practical and principled approaches are needed
to accelerate hyperparameter transfer and characterize neural scaling.

In this paper, we develop strategies for scaling deep chemical models and
investigate neural scaling behavior in large language models for generative
chemical modeling and graph neural networks (GNNs) for machine-learned
interatomic potentials. We introduce ChemGPT, a generative pre-trained
transformer for autoregressive language modeling of small molecules. We train
ChemGPT models with over one billion parameters, using datasets of up to
ten million unique molecules. We also examine large, invariant and equivari-
ant GNNs trained on trajectories from molecular dynamics and investigate
how physics-based priors affect scaling behavior. To overcome the challenges
of hyperparameter tuning at scale in new domains, we extend techniques for
accelerating neural architecture search to reduce total time and compute bud-
gets by up to 90% during HPO and neural architecture selection. We identify
trends in chemical model scaling with respect to model capacity and dataset
size, and show the performance improvements seen with increasing scale. We
demonstrate the capability to tune ChemGPT’s outputs via “prompt engineer-
ing” and sampling strategies. Pre-trained ChemGPT models are also robust,
self-supervised representation learners that generalize to previously unseen
regions of chemical space and enable embedding-based nearest-neighbor search.
The scaling strategies and results enable immediate, significant improvements
to model performance, as well as computational and data efficiency for deep
chemical models. Our results provide motivation and practical guidance for
scaling studies in scientific deep learning, as well as many fruitful new research
directions at the intersection of massive scale and physics-informed deep
learning.

2 Main

In this section we describe the aspects of the workflow developed in this paper,
summarized graphically in Figure 1. We define neural scaling and the model
architectures considered here, which are chosen specifically for their likelihood
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to exhibit interesting scaling behavior. Then we introduce strategies to enable
scaling large chemical models and investigations of scaling behavior.

Neural scaling. For large language and computer vision models trained
to convergence with sufficient model parameters and/or data, performance is
characterized by empirical scaling laws where the loss scales as a power-law
[18] of the form

L(R) = αR−β (1)

for coefficient α, scaling exponent β, and resource R. R is the number of model
parameters, dataset size, or compute. β measures the slope of the power-law
and indicates the scaling efficiency of the model with respect to a scaling
factor, R. The power-law trends break down in “resolution-limited” regimes
[23], indicating that the model (dataset) size is insufficient for the given amount
of data (model parameters).

Neural scaling presents a best-case scenario for model performance with
increasing resources, and allows for optimal allocation of fixed budgets, e.g.,
to decide whether longer training, more data, or larger models will be most
efficient for improving performance. Comparing neural scaling exponents
also provides a fundamental metric for measuring resource efficiency across
model architectures. Investigations into neural scaling in the NLP domain
have revealed general conclusions about overfitting, sensitivity to architec-
tural choices, transfer learning, and sample efficiency [18]. These factors are
equally or more important in scientific deep learning applications, where rapid
advances are being made in specialized architecture development, and it is
often unclear how architectures will perform beyond the small benchmark
datasets that are commonly available in scientific settings.

Large chemical language models. Strings are a simple representation
for molecular graphs [24], thereby making sequence-based ML models a natural
choice for working with chemical data. Following the demonstrated perfor-
mance improvements of Transformer-based models with increasing model and
dataset sizes [8, 18, 23], we designed a large generative language model for
chemistry called ChemGPT to investigate the impact of dataset and model
size on pre-training loss. ChemGPT is a Generative Pre-trained Transformer
3 (GPT3)-style model [25, 26] based on GPT-Neo [27, 28] with a tokenizer
for Self-referencing embedded strings (SELFIES) [24, 29] representations of
molecules. SELFIES enforce chemical validity and are straightforward to
tokenize, but ChemGPT can easily be used with simplified molecular-input
line-entry system (SMILES) strings as well [30]. For chemical language mod-
eling, a set of molecules (x1, x2, ..., xn) is represented with each molecule as
a sequence of symbols (s1, s2, ..., sn). The probability of a sequence, p(x) is
factorized as the product of conditional probabilities [31]:

p(x) =

n∏
i=1

p(si|s1, ..., si−1). (2)
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Fig. 1 Training performance estimation uses training speed to accelerate model
selection and hyperparameter optimization, enabling the discovery of neural
scaling relations for deep chemical models. Over a domain of (a) model candidates,
final, converged model performance is (b) predicted from only a few initial epochs of training
for large-scale models. (c) Non-optimal model architectures and hyperparameter configura-
tions are identified early in training, allowing for efficient selection of the ideal architecture
and hyperparameters. The model with the best hyperparameters is then trained with varying
model and dataset sizes to discover neural scaling relations.

ChemGPT uses the Transformer [32] architecture with a self-attention mech-
anism to compute conditional probabilities, estimate p(x), and sample from it
to generate new molecules. ChemGPT is pre-trained on molecules from Pub-
Chem [33] with a causal language modeling task, where the model must predict
the next token in a sequence, given the previous tokens. ChemGPT models
of up to one billion non-embedding parameters are trained on up to ten mil-
lion molecules, whereas typical chemical generative models have less than one
million parameters and are trained on less than one million samples [30].

Graph neural network force fields (GNNFFs). For many tasks in
chemistry, molecular geometry and 3D structure is essential and string-based
representations are not sufficient. Neural force fields (NFFs) are graph neu-
ral networks (GNNs) that take molecular geometries as inputs, described
by a set of atomic numbers (Z1, ..., Zn|Zi ∈ N) and Cartesian coordinates
(~r1, ..., ~rn|~ri ∈ R3). The NFF with parameters θ, fθ, predicts a real-valued
energy Ê = fθ(X) for an atomistic configurationX. The NFF produces energy-
conserving atomic forces by differentiating the energies with respect to the
atomic coordinates,

F̂ij = − ∂Ê

∂rij
(3)

for atom i and Cartesian coordinate j. Typically, the network is trained by
minimizing the loss L computed from the average mean squared error for a
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mini-batch of size N ,

L =
1

N

N∑
i=1

[αE‖Ei − Êi‖2 + αF ‖Fi − F̂i‖2] (4)

where αE and αF are coefficients that determine the relative weighting of
energy and force predictions during training [34]. For scaling experiments we
use the L1 loss or mean absolute error,

L =
1

N

N∑
i=1

[αE‖Ei − Êi‖+ αF ‖Fi − F̂i‖] (5)

which we empirically find to show more robust convergence behavior.
In this work we consider four flavors of NFFs: SchNet [35], PaiNN [36],

Allegro [10], and SpookyNet [37]. This series of models represents increas-
ingly physics-informed model architectures, from models with internal layers
that manipulate only E(3) invariant quantities (SchNet) to those that use
E(3) equivariant quantities (PaiNN, Allegro, SpookyNet), strictly local mod-
els with learned many-body functions and no message passing (Allegro), and
physically-informed via empirical corrections (SpookyNet). The power and
expressivity of these GNNs can be defined in terms of their capacity [38],

c = d ∗ w (6)

where d is depth (number of layers or convolutions [35]) and w is width
(the embedding dimension or number of basis functions employed by each
convolution). Capacity is a simple parameter to vary during neural scaling
experiments, because model size is not a strictly useful scaling parameter for
GNNs [38]. Typical evaluations of NFFs consider training dataset sizes of less
than 1,000 3D geometries of a single chemical species, which leads to insen-
sitivity to model capacity because of the simplicity of the learning task [17].
Here, we consider up to 100,000 training geometries (corresponding to 4.5
million force labels) and GNNs with millions of trainable parameters.

Accelerating hyperparameter optimization with training perfor-
mance estimation. Because model hyperparameters, including learning rates
and batch sizes, are essential for achieving optimal model performance and
are non-transferable between different domains and model/dataset sizes [21],
we need efficient strategies for scalable HPO in deep chemical models. We
adapt Training Speed Estimation (TSE) [22], a simple technique for ranking
computer vision architectures during neural architecture searches, to acceler-
ate HPO and model selection for ChemGPT and GNNs. We call this method
“Training Performance Estimation” (TPE), as it uses training speed to more
generally enable performance estimation across a wide range of applications.
TPE generalizes TSE to HPO for new deep learning domains (Large Language
Models [LLMs], GNNs) and can be used to directly predict converged loss, in
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addition to rank ordering different architectures. HPO typically involves train-
ing tens or hundreds of networks and using random search and/or Bayesian
optimization to identify optimal hyperparameters. For optimal performance,
the process must be repeated when considering new datasets or distribution
shift.

By calculating the “training speed” from only the first few epochs of
training, the converged model performance is predicted and optimal hyperpa-
rameters are identified using only a small fraction of the total training budget.
For example, networks that require 100 epochs to train to convergence are
trained for only 10–20 epochs, and the final performance is predicted using
TPE to identify the best performing networks, thereby saving 80–90% of the
total training budget.

Training speed is estimated by summing the training losses of each mini-
batch during the first T epochs of training. After training the network for T
epochs with B training steps per epoch, TSE is defined as

TSE =

T∑
t=1

(
1

B

B∑
i=1

L(fθ(t,i)(Xi),yi)

)
, (7)

for a loss function L and a neural network fθ(t,i), with parameters θ at epoch t
and mini-batch i. (Xi,yi) is a tuple of inputs and labels in the i-th mini-batch.
TSE is correlated with the converged performance of the network and can be
used to rank networks early in training to yield substantial compute savings.
Given a sufficient number of networks (5–10) that are trained to convergence,
a linear regression of the form

L = m · TSE + b (8)

is fit with parameters m and b and the calculated TSE values to predict
the converged loss, L. This allows predictions of converged network loss for
partially-trained networks evaluated during HPO based on its TSE values. In
our experiments, we noted that L is monotonic in TSE, meaning that Equation
8 is not needed to simply choose the best hyperparameters. The TSE values
computed after a small number of epochs are sufficient for ranking model
configurations and finding the optimal ones. Although leveraging Equation 8
requires training some small number of networks to convergence in order to fit
the parameters, it provides the benefit of being able to predict the expected
performance of new hyperparameter choices.

3 Results

Training performance estimation accelerates hyperparameter opti-
mization for new datasets, models, and scales. To conduct extensive
scaling experiments, we first need to find reasonable hyperparameters and
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training settings. Unlike for NLP and CV, there are no default model archi-
tectures, datasets, tasks, hyperparameter settings, or training settings for
large-scale chemical deep learning. Simply transferring empirical results from
other deep learning domains or smaller scale experiments will lead to subopti-
mal results [21]. Whereas large models and datasets are standard in traditional
deep learning application areas, to investigate scaling in deep chemical mod-
els, we must lay the groundwork for large-scale experiments. To this end,
we first tackle the problem of accelerating HPO in general settings, for new
model architectures, heterogeneous datasets, and at scales that have not been
previously investigated.

Model
configuration

Optimal 
configurations

ChemGPT

Default 
settings

Fig. 2 Optimal models are identified early in training with training performance
estimation and training of non-optimal models is stopped to save 80%+ total
compute consumption. ChemGPT final validation loss (cross-entropy for causal language
modeling) predicted from 20% of training budget using training performance estimation.
Model configurations are determined through a grid search of different batch sizes and
learning rates. Models are trained on two million molecules from Molecular Sets (MOSES).

Figure 2 shows the results of TPE for ChemGPT models trained on two
million molecules from the Molecular Sets (MOSES) [39] dataset. MOSES is
significantly smaller than PubChem and is representative of datasets on which
chemical generative models are typically trained [30, 39]. Here, we use MOSES
to demonstrate how optimal settings for a chemical LLM such as ChemGPT
can be quickly discovered using TPE. To enable scaling experiments, we are
mainly concerned with settings related to the learning dynamics (e.g., batch
size and learning rate), that will significantly impact large-scale training and
fluctuate depending on the type of model and the characteristics of the dataset.
To demonstrate the effectiveness of TPE, we initialize ChemGPT with the
default learning rate and batch size for causal language modeling in Hugging-
Face. We then vary the learning rate and batch size and train models with
different hyperparameters for 50 epochs. Figure 2 shows the true loss after 50
epochs versus the predicted loss using TPE after only 10 epochs. R2 = 0.98 for
the linear regression (Equation 8), and Spearman’s rank correlation ρ = 1.0.
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With only 20% of the total training budget, we are able to identify model
configurations that significantly outperform the default settings from Hug-
gingFace. The procedure is easily repeatable for new datasets and enables
accelerated HPO.

SchNet PaiNN SpookyNet
a b c

Model 
configuration

Fig. 3 Optimal models are identified early in training with training performance
estimation and training of non-optimal models is stopped to save 80%+ total
compute consumption. Neural force field (a SchNet, b PaiNN, c SpookyNet) model
performance – measured via Equation 5 – predicted from <= 20% of training budget using
training performance estimation. Model configurations are determined through a grid search
of different batch sizes and learning rates. Models are trained on 10,000 frames from the
revised MD-17 dataset.

Table 1 Goodness of fit metrics for graph neural network model performance using linear
regression from TPE.

Model R2 Spearman’s ρ

SchNet 0.99 0.99
PaiNN 0.91 0.97

SpookyNet 0.86 0.92

While training procedures for large language models like ChemGPT are
well established, scaling NFFs to larger datasets and more expressive models
requires new, scalable training procedures [17]. Large-batch training through
data parallelism is one method for accelerating training, but there are known
limitations and correct batch sizes vary widely for different domains [40]. This
problem is particularly acute for NFFs, where each datapoint actually contains
3N + 1 labels for energies and atomic forces, where N is the number of atoms,
creating a large effective batch size with large variance within each mini-batch.
Hence, it has been observed that small batch sizes (even mini-batches of 1)
work well across different NFF architectures [9, 37]. TPE provides a method
for quickly evaluating the speed-accuracy trade off for different combinations
of batch size and learning rate, which are interdependent and must be varied
together to enable large-batch training.

TPE performs equally well for GNNs. We repeat the TPE procedure, vary-
ing the learning rate and batch size, for SchNet, PaiNN, and SpookyNet,
training on 10,000 frames (1,000 frames/molecule) from the revised MD-17 [41]



10 Neural Scaling of Deep Chemical Models

dataset of 10 small organic molecules. Using only 20% of the total training bud-
get, we achieve excellent predictive power (Figure 3) with TPE for SchNet and
PaiNN. The variance in model performance using the entire training budget
is significant, indicating the importance of proper HPO.

Because SpookyNet is a complex architecture that includes non-local inter-
actions and empirical corrections, it exhibits slow convergence and the training
speed is less correlated with the model performance than SchNet and PaiNN.
However, the rank ordering of model configurations for SpookyNet from TPE
is still robust (Spearman’s ρ = 0.92), which allows for discarding non-optimal
model configurations early in training, representing significant computational
savings. The goodness of fit metrics for linear regressions using TPE are given
in Table 1.

Neural scaling quantifies the performance improvements of large
chemical models with increasing model and dataset sizes. Next, with a
strategy in place to efficiently scale up experiments using TPE, we investigate
neural scaling in ChemGPT and NFFs. For each model, we perform TPE
to identify good hyperparameter choices that are predicted to perform well
over a range of model and dataset sizes. Then, we systematically vary the
dataset size (d) and model size (m) and perform exhaustive experiments to
determine the converged loss, L(m, d). For efficiency and to isolate scaling
behavior, we fix hyperparameters from TPE as m and d are varied, but strictly
speaking the optimal hyperparameters will change as m and d vary [21]. Due
to computational resource limitations, we train ChemGPT models for a fixed
number of epochs (10) to determine the loss.

Figure 4 shows the pre-training loss as a function of model and dataset
size over many orders of magnitude. Models are trained in a self-supervised,
causal language modeling setting and evaluated on next-token prediction for a
fixed validation set. Surprisingly, no limitations in performance improvement
are seen with increasing scale. The pre-training loss monotonically improves
with increasing dataset size up to nearly 10 million molecules. Furthermore,
for a fixed data budget, increasing model size provides monotonic improve-
ments to the pre-training loss until the model reaches 1B+ non-embedding
parameters. This indicates that even for small datasets, much larger mod-
els than were previously considered for deep generative modeling [30] may be
useful for pre-training. For the largest dataset considered here, diminishing
returns to performance improvements are seen for models above 100 million
non-embedding parameters. Interestingly, greater performance improvements
are seen with increasing model sizes for smaller datasets than larger ones. For
the largest dataset considered, model performance saturates quickly beyond
100 million parameters. However, for the smallest dataset considered, per-
formance plateaus for model sizes between 105 − 107 parameters and then
improves considerably. This indicates that for a fixed, small pre-training data
budget, significant improvements are possible simply by scaling up the model
size. Irrespective of model size, increasing dataset size provides continuous per-
formance improvements with no evidence of diminishing returns for the dataset
sizes considered here.
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Fig. 4 Neural scaling of ChemGPT model performance (test loss) as a func-
tion of model (number of non-embedding parameters) and dataset (number
of tokens) size. ChemGPT is pre-trained on up to 10 million molecules (300 million
tokens) from PubChem. Performance improvements are seen for models up to one bil-
lion non-embedding parameters and continuous improvements are observed with increasing
pre-training dataset size.

Depending on the dataset size, regimes of power-law-like scaling behavior
are seen for different ranges of model sizes. Power-law scaling is graphically
identifiable as an approximately straight line fit of loss versus model size on
a log-log plot. For larger datasets, power law scaling is observed for smaller
model sizes. For example, the largest dataset exhibits approximate power law
scaling for models between 105 and 107 non-embedding parameters (Figure
A.1). Conversely, for smaller datasets power law scaling is observed for larger
models and over a more limited range of model sizes. The smallest dataset
exhibits approximate power law scaling for models between 107 and 108 non-
embedding parameters (not shown).

The break down in power-law scaling is indicative of “resolution-limited”
neural scaling [23], where the model is sufficiently large but the dataset is
not, or vice-versa. Identifying these resolution-limited regimes from the neu-
ral scaling relations allows us to understand in general terms whether model
performance is limited by data availability or model capacity. The scaling
exponent β is equal to 0.17 ± 0.01 for the largest dataset (Figure A.1), after
discarding the three largest models from the power law fit. β = 0.30 ± 0.01
for the next largest dataset (Figure A.2). The scaling exponent quantifies the
performance improvements due to increasing model size, for a fixed data bud-
get. A larger value of β corresponds to a steeper slope and better performance
with increasing data/model size.

Graph neural network (GNN) interatomic potentials exhibit
robust neural scaling behavior. The potential benefits of large-scale GNNs
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Fig. 5 Neural scaling of PaiNN model performance (test loss) as a function of
model capacity (depth * width) and dataset size (number of geometries). PaiNN is
trained to predict atomic forces from density functional theory calculations on small organic
molecules from the ANI-1x dataset. Performance improvements are seen for models with
greater capacity and continuous improvements are observed with increasing dataset size.

are less clear than for LLMs, as are the relevant parameters to vary, due to
the inequivalence of depth and width for GNNs [38] and additional parameters
beyond notions of model size that impact performance, e.g., nearest-neighbor
cutoff in graph construction. To simplify GNN scaling experiments, here we
vary GNN capacity (depth * width) by systematically changing network width
and the number of convolutions (depth). We train GNNs to predict atomic
forces from the ANI-1x dataset [42], the largest publicly available dataset of
energies and forces for small molecules. NFF models are trained with a learning
rate scheduler that reduces the learning rate every 50 epochs without improve-
ment in the validation loss, until the learning rate reaches 10−7. The loss is
an L1 loss (Equation 5), shown in Figure 5 over four orders of magnitude of
dataset size.

The neural scaling results for the equivariant GNN, PaiNN (Figure 5),
show monotonic improvements to the loss with increasing dataset size. For
a fixed dataset size, the converged loss is strongly correlated with the total
training time (compute) and model capacity. Other than for 104 datapoints (for
which some small models reach convergence quickly), the converged loss has a
Spearman correlation coefficient ρ >= 0.88 with the model capacity and ρ >=
0.75 with the total training time. This means that the best models are those
with optimal capacity that are able to train the longest without the validation
loss plateauing. The optimal capacity and depth versus width change with the
dataset size, i.e., the ideal GNN capacity is dataset-size dependent, and these
choices can significantly impact the converged loss. These effects may also be
artifacts of random initialization that would diminish with repeated trials.
Interestingly, there is a stark change at 104 datapoints – the converged loss is
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then nearly perfectly rank correlated with model capacity (Spearman’s ρ >=
0.93). This might indicate that substantial overlap exists between the training
and validation set, such that higher capacity models are merely exhibiting
better memorization than lower capacity models. In these experiments, the
validation set is constructed from unseen geometries and seen species (chemical
species are the same in the training and validation sets). Repeating these
experiments with a hold-out set of unseen chemical species will reveal if the
same trend holds, which would indicate that rather than memorizing, the
network is achieving generalization to new chemistries.

We observe similar trends in neural scaling for the invariant GNN, SchNet
(Figure A.3, although the equivariant GNNs, PaiNN and Allegro (Figure A.4),
exhibit significantly better scaling efficiency. A comparison of neural scaling
between SchNet, PaiNN, and Allegro for models with fixed capacity (Equation
6), c = 64 (4 layers, width 16), is shown in Figure A.5. Over many orders
of magnitude of dataset size, PaiNN and Allegro exhibit significantly greater
sample efficiency, quantified by the calculated scaling exponents (Table A.1).
That is, not only do the equivariant GNNs achieve better performance for a
given data budget, they achieve increasingly greater performance gains given
more training data. This is due to the models’ equivariance, which is known
to produce greater sample efficiency [9, 10], but it is interesting to note that
this trend persists to much larger and more chemically diverse datasets than
were previously considered, which typically include only 102 − 103 molecular
geometries from a single molecular species.

Training performance estimation and neural scaling enable sig-
nificant improvements to model performance, and computational
and data efficiency. Next, we briefly highlight the practical outcomes and
usages of TPE and neural scaling as enabling technologies for scalable scien-
tific deep learning. Based on the results presented above, TPE can be used
in conjunction with any HPO routine to enable aggressive early stopping and
accelerate HPO without sacrificing model performance. Clearly, the benefits
of this approach become more pronounced in chemical and biological appli-
cations, where new network architectures must be continuously retrained,
optimized, and evaluated on heterogeneous datasets.

Similarly, neural scaling provides practical ways to improve model per-
formance and efficiency. Given an unlimited data and computation budget,
the minimum loss in the neural scaling plot and corresponding model can
be used. For example, the 300 million parameter ChemGPT model trained
on 300 million tokens minimizes the loss in Figure 4. Likewise, the PaiNN
model with capacity ≈ 1000 trained on 105 frames minimizes the loss in
Figure 5. This may be valuable for pre-trained models that are designed to
be reused and finetuned, where the training cost is amortized over many
downstream applications. However, for many scientific applications, greedily
optimizing for the minimum loss is not practical or even necessary. From the
neural scaling results, identifying regions with the steepest slope allows for
optimal and efficient allocation of resources. For example, for large chemical
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language models, the greatest performance improvements (Figure 4) are seen
for large data budgets when scaling up small models (105 parameters). For
small data budgets, more rapid performance improvements are seen when scal-
ing up medium-sized models (107 parameters). For NFFs, there are diminishing
returns with increasing dataset sizes for low capacity models, while high capac-
ity models show rapid performance improvements with increasing dataset size
(Figure 5). The benefits from scaling model and dataset sizes should there-
fore be balanced against the increased computational costs in order to find
the most computationally- and data-efficient opportunities for performance
improvement. Beyond optimizing resource allocation to achieve better model
performance, our results on large chemical models suggest potentially new
capabilities of these models, which we will explore next.

Large chemical language model outputs are tunable via prompt
engineering. There is a vast space of potential applications for a pre-trained
LLM for chemistry, including but not limited to downstream tasks like property
prediction [8] and distribution learning [30]. Here, to demonstrate potentially
unique capabilities of ChemGPT, we focus on two applications: 1) prompt
engineering and 2) representation learning. Prompt engineering is an emerg-
ing field in generative LLMs, wherein training a model is only the beginning of
the process, and the “quality” and diversity of outputs is tunable based on the
sampling strategy and sequences used to condition the generation. In contrast
to smaller, simpler generative models, the outputs of GPT-style models are
highly tunable. The goal here is not to exhaustively investigate prompt engi-
neering and representation learning, which have massive scope, but instead to
demonstrate interesting capabilities of ChemGPT and provoke new research
questions.

We consider choosing a molecule as the basis for generation (Figure 6a)
and picking a scaffold from the molecule, or otherwise fixing some part of
the molecule. This will be used as a conditioning sequence for generation,
and represents a potential use case for a generative LLM: pre-training and/or
fine-tuning the LLM on a particular region of chemical space and using its
generative capabilities to explore the chemical space around a known hit or
lead compound in a drug discovery campaign. Molecules are then generated
using the conditioning sequence with either top-k/nucleus sampling or beam
search. We may be interested in generating new samples that have similar
properties to our original molecule, or in generating samples that preserve a
scaffold or substructure but otherwise have significantly different properties.

We consider the distribution of molecular properties of samples from top-k
sampling and beam search with reference to an original training molecule. We
find that the property distributions of samples vary considerably with sampling
parameters, which introduce many degrees of freedom in the generation pro-
cess [43]. These include the number of beams, B, used in beam search, which
explores a graph of generation possibilities by choosing samples that have the
highest overall probability according to the model. Greedy search (not consid-
ered here) always selects the next token with the highest probability, hence
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beam search is guaranteed to find higher probability samples than a purely
greedy strategy. The softmax temperature, T , controls the sensitivity of sam-
pling to low probability tokens. Lowering T makes the distribution sharper,
decreasing the likelihood of low probability tokens. For chemical generation,
this results in less random, more repetitive samples. Conversely, increasing T
results in more random, less repetitive samples. In top-k sampling [44], the k
most likely next tokens are considered at each step of generation. This lim-
its the sampling to a small set of high likelihood tokens, while expanding the
diversity of sampling beyond greedy and beam search. In top-p (nucleus) sam-
pling, the smallest set of tokens with cumulative probability > p are chosen.
This dynamically changes the number of possible next tokens according to the
changing probability distributions. We combine top-k and top-p sampling in
our experiments, which avoids low probability tokens while providing more
randomness and “surprising” outputs than beam search [43]. We also vary the
number of generated samples, ns, and the prompt length, lmax (Figure 6b).

Training set molecule Conditioning sequence

SampleFix scaffold

a

b

Variable
-length 

prompts
Generation

𝐺(𝐵, 𝑇, 𝑘, 𝑝, 𝑛! , 𝑙"#$) Distribution 
of samples

c Model width 16 2048

Fig. 6 ChemGPT outputs are controllable via sampling strategy and prompt
engineering. (a) A scaffold or fragment from a molecule is fixed and used as a conditioning
sequence for ChemGPT generation. (b) ns samples are generated from a distribution of
prompts with varying sampling strategy parameters (B, T, k, p) and prompt lengths (lmax).
(c) Different model sizes and sampling strategies produce tunable distributions of samples.

To better understand the effects of sampling strategy, we repeat genera-
tion for ten different molecules randomly chosen from PubChem10M, and take
prompts of length lmax ∈ (5, 10, 20, l − 3) tokens for each molecule, where l is
the length of the original training molecule (Figure 6c). For the smallest and
largest pre-trained ChemGPT models, we then plot the distributions of the
percentages of samples that pass MOSES filters and the difference in molecular
weight of generated samples compared to the original molecules used for condi-
tioning (Figure 6c). The smaller model (green shading in Figure 6c) generally
outperforms the larger model (orange) in generating samples that pass filters,
for both top-k and beam search, except for k = 1000. However, the larger
model generates samples that are more uniformly distributed with respect to
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molecular weight. The k parameter in top-k sampling has a limited effect for
the large model, but tends to shift the samples to a lower pass filter rate for the
small model. Changes in the beam size can induce shifts from multi-modal to
unimodal distributions of samples. Overall, the property distributions of sam-
ples are highly dependent on the sampling strategy, sampling parameters, and
model size, suggesting that the complexity of ChemGPT introduces many new
and important degrees of freedom for generative modeling. Importantly, beam
search is typically employed in sampling from chemical generative models and
this restricts the diversity of outputs compared to top-k/nucleus sampling.

Query 
molecule

FingerprintsEmbeddingsd e

a b c

Query 
molecule

Fig. 7 ChemGPT embeddings can be used for unsupervised representation
learning, clustering, and similarity search. (a) Principal component analysis and (b)
t-SNE of ChemGPT embeddings for molecules in the FreeSolv dataset. Molecules exhibit
clustering in the embedding space with respect to molecular scaffold and (c) hydration free
energy, without finetuning on the dataset. (d) An example query molecule from the Enam-
ine HTS Collection. (e) Contour plot of properties (molecular weight, LogP, quantitative
estimate of druglikeness, and synthetic accessibility) of 100 nearest-neighbors identified from
ChemGPT embeddings (red) and fingerprints (blue). Property values for the query molecule
are shown by a black dot. Nearest neighbors identified from embeddings have closer mean
and median property values to the query molecule than nearest neighbors from fingerprints.

Large chemical language models are self-supervised represen-
tation learners. A particularly exciting prospective application of large,
pre-trained chemical models is to create a general representation learner that
operates across diverse chemistries [45–47]. To demonstrate the representation
learning capabilities of ChemGPT, we show the illustrative examples of clus-
tering and nearest-neighbor similarity search using unsupervised embeddings.
We choose a representative dataset from Therapeutic Data Commons [15] and
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MoleculeNet [14], the FreeSolv [48] dataset of 642 druglike molecules and their
hydration free energies in water.

We generate embeddings for the FreeSolv dataset from the hidden states
in the last layer of ChemGPT models pre-trained on PubChem10M, without
fine-tuning on FreeSolv. This is intended to simulate the usage of pre-trained
ChemGPT models in general representation learning settings on new, previ-
ously unseen chemical spaces. Of course, the model could be fine-tuned on a
target dataset to improve the quality of embeddings. We project the 1024-
dimensional embeddings down to two dimensions using principal component
analysis (PCA) (Figure 7a) and t-distributed stochastic neighbor embed-
ding (t-SNE) ((Figure 7b). For both dimensionality reduction techniques, the
embeddings cluster based on the molecular scaffolds. Additionally, the t-SNE
embeddings are clustered with respect to the target property, hydration free
energy (Figure 7c). The structure in the latent space suggests that the learned
embeddings from ChemGPT are chemically meaningful and useful for rea-
soning about chemical spaces outside of the pre-training set. We also show
(Figure A.6) unsupervised ChemGPT embeddings for the Tox21 [49] dataset,
which is a binary classification task from toxicity measurements for 7,831
small molecules on 12 different targets. These embeddings cluster active and
inactive compounds, again without finetuning on the dataset. The FreeSolv
and Tox21 tasks show the relevance of unsupervised ChemGPT embeddings
for both physicochemical and ADMETox tasks, where properties depend on
intrinsic qualities of the molecules.

Learned embeddings can also be used for a common cheminformatics task:
similarity search and retrieval. Given some query molecule (Figure 7d), the
goal is to find “chemically similar” molecules that are nevertheless different and
diverse with respect to the initial query. This workflow may be used to design
a library of chemical matter for high-throughput virtual screening or assays,
or to preserve desirable characteristics of a query molecule while “hopping”
to new molecular scaffolds or discarding undesirable moieties. The molecules
identified as similar depend sensitively on the similarity/distance metric used,
and the molecular representation. We propose a general representation learning
problem defined as returning a distribution of nearest neighbors that comprise
a smooth manifold in property space. That is, regardless of the representation
and distance metric, the objective is to identify molecules that are similar to
the query molecule in property space. This framing transforms the abstract
problem of defining “chemical similarity” into the more tractable, easily under-
stood problem of identifying molecules with similar properties. For simplicity,
we consider molecular weight (MW), partition coefficient (LogP), quantitative
estimate of druglikeness (QED), and synthetic accessbility (SA) [50], although
any accessible properties could be used.

To benchmark our similarity search performance, we compare to the tradi-
tional method of encoding molecules using Morgan fingerprints and computing
similarities using a Tanimoto distance. As an illustrative example, we show
a query molecule (Figure 7d) from the Enamine HTS Collection in property
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space and the property distributions of its 100 nearest neighbors computed
via ChemGPT embeddings (Figure 7e, red contour plots) and the fingerprint
method (Figure 7e, blue contour plots). Again, ChemGPT is not fine-tuned on
this dataset, the pre-trained model is able to generate “chemically meaning-
ful” embeddings for Enamine HTS, which is a standard chemical library for
high throughput screening. The ChemGPT embeddings are dense, real-valued,
high-dimensional vectors, so a combination of dimensionality reduction and
flexible choice of distance metric (L1, L2, cosine, etc.) yields a smooth and tun-
able distribution of nearest neighbors in property space. In this example, we
use PCA to reduce the embedding dimension from 1024 to 100 and compute
distances with a cosine similarity.

Although it is difficult to see by eye in the contour plots in Figure 7e, by
computing the statistics of the nearest neighbor property distributions we find
that the nearest neighbors identified from learned embeddings are closer to
the query in property space than those from non-learned fingerprints, using
the following equation,

∆p = ‖pNN − pquery‖. (9)

We compute the mean of the property values, pNN for properties p (LogP, syn-
thetic accessibility, molecular weight, and QED), of the 100 nearest neighbors
identified with embedding and fingerprint methods and calculate the differ-
ence (∆p) between the mean property value of the nearest neighbors and the
query molecule pquery. We report these values in Table A.2. In this example,
for all properties considered, the nearest neighbors from embeddings are closer
to the query molecule in property space. The same trend is observed if we
consider median rather than mean property values of nearest neighbors. For
some applications, this may be desirable, for others the goal may be to discover
nearest neighbors that are chemically similar, but with significantly different
properties, e.g., avoiding activity cliffs.

4 Discussion

In this paper, we developed and applied strategies for scaling large chemi-
cal language models and GNN interatomic potentials. To enable the efficient
scaling of deep chemical models under computational resource constraints, we
introduced Training Performance Estimation (TPE), a generalization of Train-
ing Speed Estimation that significantly reduces the computational costs of
hyperparameter optimization and model selection for both chemical models
trained on large datasets and on GNN interatomic potentials. The use of TPE
enabled large-scale experiments, training GPT-style chemical models with over
one billion non-embedding parameters on nearly ten million molecules. It also
made training tractable for invariant and equivariant GNNs with a wide range
of model capacities on up to 100 thousand 3D molecular geometries ( 4.5 mil-
lion force labels). We discovered empirical power law “neural scaling” behavior
that quantifies how converged model loss depends on the scale of model and
dataset size over many orders of magnitude. These results enable optimal
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allocation of computational and data budgets for maximally efficient model
performance improvements, and make scalable scientific deep learning more
accessible to a broader community of researchers. Finally, we showed that the
outputs of large chemical generative models are tunable via prompt engineer-
ing and sampling strategies, and that the model embeddings can be used for
unsupervised representation learning and similarity search.

A key motivation for this work was to begin to investigate scientific deep
learning at scale – using large models on massive datasets. Unlike areas such
as natural language processing (NLP) and computer vision (CV), where scale
has proven to be a key ingredient to recent breakthroughs, scientific domains
are built on physics-based priors that impose high levels of structure on data
generation processes. For this reason, it is unclear what, if any, benefits massive
scale will confer to scientific deep learning. And although there is significant
engineering effort required to train and deploy large-scale deep learning models,
the study of such models is of inherent scientific interest because these models
may display surprising, emergent characteristics that are not predictable by
extrapolating from small scales. There is an opportunity in scientific deep
learning to anticipate trends towards so-called foundational models, similar to
those seen in NLP and CV, to ensure that such important investigations are
not limited to a few extremely well-resourced research organizations.

Our work, specifically our findings with ChemGPT, suggests a “bittersweet
lesson” for scientific deep learning – although incorporating principled physical
priors and domain knowledge into scientific machine learning frameworks will
continue to play an important role in this field, achieving sheer massive scale
in model size and data diversity is likely to be a key component in some scien-
tific deep learning breakthroughs. This finding presents exciting opportunities
to further explore what techniques and lessons can be taken from traditional
deep learning application domains. The neural scaling results indicate that
traditional techniques for training large language models apply when scaling
models using string-based representations of molecules. The additional data-
and model-efficiency gained by careful incorporation of physical priors observed
in the neural force field experiments suggests non-trivial interactions with typ-
ical scaling techniques. The trend towards larger models introduces challenges
in any field, namely, increasing resource demands and environmental impact.
We provide strategies and examples for scalable chemical deep learning here,
but studies at massive scale remain inaccessible to most researchers. Likewise,
strategies for reducing the environmental impact and carbon footprint of large-
scale deep learning exist, but the engineering resources and hardware needed
to do so are concentrated in large organizations [51, 52]. However, a grow-
ing body of research suggests that large models accelerate the optimization
problem and finding of robust solutions, and that once trained, techniques like
model distillation, quantization, and dataset pruning are effective at reducing
model and dataset sizes while retaining performance.
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The work presented here invites many directions for future research. Our
goal is to enable neural scaling studies and investigate the potential bene-
fits of scaling for chemical deep learning. Future work will investigate the
complex relationships between pre-training performance improvements and
downstream tasks. Large, pre-trained models can be fine-tuned on any smaller
chemical space of interest to investigate the benefits of transfer learning and
potential for generalization. Similarly, further study of the representations
learned by large pre-trained models is warranted, including the proposal of
new benchmarks for evaluating the quality of learned representations beyond
downstream property prediction tasks. We were limited by computational and
engineering constraints, but much larger chemical models and pre-training
datasets clearly warrant investigation; this will require more advanced model
parallelism approaches. Finally, the effects of physics-based priors on scaling
behavior give a rich description of how the incorporation of physics, known
empirical relationships, and other forms of knowledge into machine learning
frameworks impact both learning quality and efficiency. Future work in this
area is well-poised to yield fundamental advances in scientific machine learning.

5 Methods

In this section, we report settings for the experiments performed in this paper.
All experiments described in this paper were conducted on NVIDIA Volta
V100 graphics processing units (GPUs) with 32 GB of memory per node and 2
GPUs per node. All models were implemented in PyTorch [53] and trained with
the Distributed Data Parallel (DDP) accelerator [54], the NVIDIA Collective
Communication Library (NCCL), PyTorch Lightning [55] and LitMatter [56]
for multi-GPU, multi-node training.

Large Language Models (LLMs). The ChemGPT model architecture
is based on the GPT-Neo [27, 28] transformer implementation in Hugging-
Face [57]. The model has 24 layers, with variable width, w, where w ∈
(16, 32, 64, 128, 256, 512, 1024, 2048) and w determines the model size. Model
sizes range from 77,600 to 1,208,455,168 non-embedding parameters. The
model is trained via stochastic gradient descent (SGD) with the AdamW [58]
optimizer, using a learning rate of 2 ∗ 10−5, a per-GPU batch size of 8, and
a constant learning rate schedule with 100 warmup steps for scaling experi-
ments. Models were trained for 10 epochs in a self-supervised manner, with a
cross-entropy loss for causal language modeling.

The training dataset for scaling experiments is PubChem10M [8], a set of
10 million SMILES strings. 5% of the data is randomly sampled and held out
as a fixed validation set of size 500,000 molecules. Variable training datasets
with sizes 10n, where n ∈ (2, 3, 4, 5, 6), were used. The largest training dataset
includes all molecules in PubChem10M, excluding the validation set. The max-
imum vocabulary size was 10,000 and the maximum sequence length was 512
tokens. SMILES strings were converted to SELFIES using version 1.0.4 of the
SELFIES library [29]. SELFIES were tokenized by splitting individual strings
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into minimally semantically meaningful tokens denoted by brackets, includ-
ing start-of-string, end-of-string, and padding tokens. Dataset sizes range from
51,200 to 304,656,384 tokens.

Graph Neural Networks (GNNs). We train GNNs to predict the forces
of molecular geometries. Force-only training (αE = 0 in Eq. 5) was used for
neural scaling experiments to improve convergence and avoid issues with sys-
tematic drift in predicted energies, which we identified during the course of
this work and plan to address in future work. We use the SchNet [59], PaiNN
[36], Allegro [10], and SpookyNet [37] models. Model implementations are from
the NeuralForceField repository [34, 60, 61] and the Allegro repository [10].
Model sizes (w in Equation 6) were varied between 16, 64, and 256, while the
number of layers/convolutions (d in Equation 6) was chosen to be 2, 3, or 4. A
5 Å nearest-neighbor cutoff was used. All other model hyperparameters were
set to default values from the original implementations. GNN models were
trained with SGD using the Adam [62] optimizer.

A learning rate scheduler reduced the learning rate by 0.5× after 30 epochs
without improvement in the validation loss, with a minimum learning rate of
10−7. Early stopping was applied after 50 epochs without improvement in the
validation loss, and training was capped at 1000 epochs. Initial learning rates
of 10−3, 10−4, and 10−5, and per-GPU batch sizes of 4, 8, 16, 32, and 64
were used during hyperparameter optimization experiments, while keeping the
network architecture hyperparameters fixed. Models were trained for 50 epochs
during hyperparameter optimization to approximate a full training budget,
with a limited percentage of the total training budget used to calculate TSE.

The training dataset was assembled from ANI-1x [42, 63], which contains
energies and forces from 5 million density functional theory calculations for
small molecules. A fixed validation dataset of 50,000 frames was held out
by random sampling. Different splits of training were taken with sizes 10n

where n ∈ (2, 3, 4, 5, 6). Training datasets for TPE were assembled by randomly
sampling 1,000 structures from molecular dynamics (MD) trajectories for each
of the 10 molecules available in the revised MD-17 [41] dataset, for a total
of 10,000 training samples. A validation dataset of equal size was constructed
from the remaining geometries. Revised MD-17 is an updated version of the
MD-17 [64] dataset, recomputed at the PBE/def2-SVP level of theory with
strict convergence criteria to remove noise found in the original MD-17 dataset.

6 Data availability

PubChem data for pre-training large language models is available through
DeepChem [65]. The Molecular Sets (MOSES) data is available through
GitHub [39]. The Enamine HTS Collection is available here. The ANI-1x data
for training neural force fields is available through Figshare [42]. The revised
MD-17 dataset was accessed here.

https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip
https://github.com/molecularsets/moses
https://enamine.net/compound-collections/screening-collection/hts-collection
https://figshare.com/articles/dataset/ANI-1x_Dataset_Release/10047041/1
https://figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/12672038
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7 Code availability

Code used to perform the experiments and Training Performance Estimation
(TPE) reported in this paper is available via GitHub in the LitMatter reposi-
tory [56]. Neural force field model code is available here and Allegro model code
is available here. The GPT-Neo model that ChemGPT is based on is avail-
able here. PubChem10M tokenizers using SELFIES versions 1.0.4 and 2.0.0
are available through the LitMatter repository and the Hugging Face Hub.
Because of the significant computational resources required to train large mod-
els and the value of those models, pre-trained model checkpoints for ChemGPT
are available via the Hugging Face Hub. Pre-trained model checkpoints for
PaiNN and Allegro are available through Figshare.

Supplementary information. Supplementary Figures A.1 - A.5.
Supplementary Table A.1.
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Fig. A.1 Calculating neural scaling power law for ChemGPT. Pre-training test
loss versus model size for a dataset of 304,656,384 tokens. The power law fit breaks down
for large model sizes, indicating a data-resolution limited regime. R2 = 0.98 for the fitted
region and the scaling exponent β = 0.17 ± 0.01.

Fig. A.2 Calculating neural scaling power law for ChemGPT. Pre-training test
loss versus model size for a dataset of 51,200,000 tokens. The power law fit breaks down for
large model sizes, indicating a data-resolution limited regime. R2 = 0.99 for the fitted region
and the scaling exponent β = 0.30 ± 0.01.
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Fig. A.3 Neural scaling of SchNet model performance (test loss) as a function of
model capacity and dataset size. SchNet is trained to predict atomic forces from density
functional theory calculations on small organic molecules from the ANI-1x dataset. Perfor-
mance improvements are seen for models with greater capacity and continuous improvements
are observed with increasing dataset size.

Fig. A.4 Neural scaling of Allegro model performance (test loss) as a function of
model capacity and dataset size. Allegro is trained to predict atomic forces from density
functional theory calculations on small organic molecules from the ANI-1x dataset. Perfor-
mance improvements are seen for models with greater capacity and continuous improvements
are observed with increasing dataset size. Due to GPU memory constraints, the capacity of
Allegro models is capped at 512.
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Fig. A.5 Calculating neural scaling power laws for neural force fields. Test loss
versus dataset size for PaiNN, Allegro, and SchNet models with fixed capacity, 64.

a b

Fig. A.6 Unsupervised ChemGPT embeddings cluster the Tox21 dataset. t-SNE
plots of ChemGTP embeddings for Tox21 showing clustering with respect to (a) molecular
scaffold and (b) activity.
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Table A.1 Power laws for neural force field scaling.

Model R2 Scaling exponent β

SchNet 0.95 0.17 ± 0.03
PaiNN 0.94 0.26 ± 0.05
Allegro 0.97 0.23 ± 0.03

Table A.2 Difference (smaller is better) between mean property values and query molecule
property values for nearest neighbors from ChemGPT embeddings and fingerprints.

Property ∆p embedding ∆p fingerprint

LogP 0.03 0.53
Synth. Access. 0.05 0.41

Molecular Weight 20.92 93.14
QED 0.00 0.04
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[34] Schwalbe-Koda, D., Tan, A.R., Gómez-Bombarelli, R.: Differentiable sam-
pling of molecular geometries with uncertainty-based adversarial attacks.
Nature communications 12(1), 1–12 (2021)
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Müller, K.-R.: Spookynet: Learning force fields with electronic degrees of
freedom and nonlocal effects. Nature communications 12(1), 1–14 (2021)

[38] Loukas, A.: What graph neural networks cannot learn: depth vs width.
arXiv preprint arXiv:1907.03199 (2019)

[39] Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S.,
Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V.,



Neural Scaling of Deep Chemical Models 31

Veselov, M., et al.: Molecular sets (moses): a benchmarking platform for
molecular generation models. Frontiers in pharmacology 11, 1931 (2020)

[40] McCandlish, S., Kaplan, J., Amodei, D., Team, O.D.: An Empirical Model
of Large-Batch Training. arXiv (2018). https://doi.org/10.48550/ARXIV.
1812.06162. https://arxiv.org/abs/1812.06162

[41] Christensen, A.S., von Lilienfeld, O.A.: On the role of gradients for
machine learning of molecular energies and forces. Machine Learning:
Science and Technology 1(4), 045018 (2020)

[42] Smith, J.S., Zubatyuk, R., Nebgen, B., Lubbers, N., Barros, K., Roitberg,
A.E., Isayev, O., Tretiak, S.: The ani-1ccx and ani-1x data sets, coupled-
cluster and density functional theory properties for molecules. Scientific
data 7(1), 1–10 (2020)

[43] von Platen, P.: How to generate text: using different decoding methods
for language generation with transformers. Hugging Face (2020)

[44] Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation.
arXiv preprint arXiv:1805.04833 (2018)

[45] Huang, B., Von Lilienfeld, O.A.: Communication: Understanding molecu-
lar representations in machine learning: The role of uniqueness and target
similarity. The Journal of Chemical Physics 145(16), 161102 (2016)

[46] Chuang, K.V., Gunsalus, L.M., Keiser, M.J.: Learning molecular repre-
sentations for medicinal chemistry: miniperspective. Journal of Medicinal
Chemistry 63(16), 8705–8722 (2020)

[47] Sabando, M.V., Ponzoni, I., Milios, E.E., Soto, A.J.: Using molecular
embeddings in qsar modeling: does it make a difference? Briefings in
bioinformatics 23(1), 365 (2022)

[48] Mobley, D.L., Guthrie, J.P.: Freesolv: a database of experimental and
calculated hydration free energies, with input files. Journal of computer-
aided molecular design 28(7), 711–720 (2014)

[49] Huang, R., Xia, M., Nguyen, D.-T., Zhao, T., Sakamuru, S., Zhao, J.,
Shahane, S.A., Rossoshek, A., Simeonov, A.: Tox21challenge to build
predictive models of nuclear receptor and stress response pathways as
mediated by exposure to environmental chemicals and drugs. Frontiers in
Environmental Science 3, 85 (2016)

[50] Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and fragment
contributions. Journal of cheminformatics 1(1), 1–11 (2009)

https://doi.org/10.48550/ARXIV.1812.06162
https://doi.org/10.48550/ARXIV.1812.06162
https://arxiv.org/abs/1812.06162


32 Neural Scaling of Deep Chemical Models

[51] Patterson, D.: The Carbon Footprint of Machine Learning
Training Will Plateau, Then Shrink. TechRxiv (2022). https:
//doi.org/10.36227/techrxiv.19139645.v1. https://www.techrxiv.org/
articles/preprint/The Carbon Footprint of Machine Learning Training
Will Plateau Then Shrink/19139645/1

[52] Frey, N.C., Li, B., McDonald, J., Zhao, D., Jones, M., Bestor, D., Tiwari,
D., Gadepally, V., Samsi, S.: Benchmarking Resource Usage for Effi-
cient Distributed Deep Learning. arXiv (2022). https://doi.org/10.48550/
ARXIV.2201.12423. https://arxiv.org/abs/2201.12423

[53] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style,
high-performance deep learning library. In: Wallach, H., Larochelle, H.,
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