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SUMMARY 

Next-generation sequencing doubles genomic databases every 2.5 years. The accumulation of sequence 

data provides a unique opportunity to identify interesting biocatalysts directly in the databases without 

tedious and time-consuming engineering. Herein, we present a pipeline integrating sequence and 

structural bioinformatics with microfluidic enzymology for bioprospecting of efficient and robust 

haloalkane dehalogenases. The bioinformatic part identified 2,905 putative dehalogenases and 

prioritized a “small-but-smart” set of 45 genes, yielding 40 active enzymes, 24 of which were 

biochemically characterized by microfluidic enzymology techniques. Combining microfluidics with 

modern global data analysis provided precious mechanistic insights related to the high catalytic 

efficiency of selected enzymes. Overall, we have doubled the dehalogenation “toolbox” characterized 

over three decades, yielding biocatalysts that surpass the efficiency of currently available wild-type and 

engineered enzymes. This pipeline is generally applicable to other enzyme families and can accelerate 

the identification of efficient biocatalysts for industrial use. 

Keywords: enzyme mining; enzyme diversity; biocatalysts; microfluidics; bioinformatics; global data 

analysis, haloalkane dehalogenases 
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INTRODUCTION 

Nature relies heavily on enzymes, which enable virtually every biosynthetic and biodegradation 

process in all life forms. Humanity recognized the power of enzymes and harnessed them in a wide 

range of industrial sectors, such as food-, textile-, agro-, chemical- or pharma-industry.1 Despite the 

successful application of a range of enzymes, their properties often do not match the application 

requirements for high catalytic efficacy. For decades, scientists have asked themselves how to find better 

biocatalysts. Shall we explore the natural sequence space (discover new enzymes), or rather the artificial 

diversity (improve existing enzymes)?2 

Thanks to the genomic revolution, the avalanche of protein sequences filling the genomic databases at 

an unprecedented pace represents an outstanding achievement, but it also brings new challenges to its 

effective exploration and practical utilization. So far, only a negligible fraction of genes deposited in 

databases have been experimentally characterized. Moreover, incorrect automatic annotations are quite 

frequent and tend to percolate, leading to error accumulation.3,4 Thus, without advanced bioinformatics 

expertise, relying only on database annotations, many efforts dedicated to discovering new biocatalysts 

do not succeed, even after large investments and the application of high-throughput screening 

campaigns.5 This can lead to underestimating the potential of natural diversity hidden in sequence 

databases. 

In parallel, the success of many protein engineering studies arises from applying modern directed 

evolution strategies, combined with in silico identification of hot spots and followed by an experimental 

screening of smaller “smart” libraries.6 Similarly, applying advanced bioinformatic methods for “smart” 

prioritization of a smaller list of candidates towards a “focused” experimental characterization represents 

a promising strategy for identifying suitable biocatalysts from the rich sequence information accessible 

in databases.7 A critical requirement is the availability of bioinformatic tools, especially for non-expert 

users, enabling wide and effective exploration of the natural diversity hidden in sequence databases for 

scientific and industrial communities.8 

Herein, we present a pipeline integrating advanced sequence and structural bioinformatics with 

microfluidic enzymology for bioprospecting of efficient and robust biocatalysts. We doubled the number 

of experimentally characterized members of a model enzyme family in a single run of this workflow. 

At the same time, the obtained enzymes catalytically surpass the previously known variants, whether 

discovered or engineered. The experimental pipeline relies heavily on two in-house microfluidic 

platforms, MicroPEX and KinMAP, where the latter is introduced in this study. By subjecting the 

multidimensional data from KinMAP to modern global data analysis, unique mechanistic insights were 

obtained for the enzymes with the highest overall activity. 

A model enzyme family, haloalkane dehalogenases (HLDs), were used as the case study. Three 

decades of intensive research on HLDs has made them benchmark enzymes for studying the structure-
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function relationships of the >100,000 members of the α/β-hydrolase fold superfamily9 and the 

development of novel concepts in the field of protein engineering.10 Thanks to the long-term, extensive 

research on HLDs, we were also able to conceptually compare the variants obtained by the advanced 

database mining with enzymes previously isolated by classical enzymological approaches,11 and variants 

systematically constructed for more than 20 years by various protein engineering strategies. These 

strategies include optimizing12 and introducing de novo access tunnels,13 active site remodeling,14,15 

engineering dynamical protein loops,16 targeting mutations which enhance thermostability,17–19 or 

resurrecting HLDs by ancestral sequence reconstruction.20 We believe the current study presents an 

interesting conceptual view of current approaches used in biocatalysts development, which should not 

underestimate the potential of structural and functional diversity found in nature. 

RESULTS 

The bioprospecting of efficient and robust biocatalysts from sequence databases was performed as 

follows. First, we applied an automated in silico workflow (Fig. 1) to identify putative family members 

and select promising candidates. Next, we experimentally characterized the prioritized hits from the in 

silico screening by employing small-scale expression, followed by in-depth microfluidic 

characterization (Fig. 2).  

I. Automated in silico workflow 

The in silico bioprospecting workflow is composed of three steps: (i) database search and sequence 

processing using a previously developed sequence bioinformatics pipeline (available as the web tool 

EnzymeMiner21), (ii) structure prediction and its systematic analysis using various computational tools 

within a newly developed structural bioinformatics pipeline, and (iii) prioritization of hits from both 

sequence and structural bioinformatics pipelines and selection of a “small-but-smart” set of proteins for 

experimental characterization (Fig. 1).  

Database search. We reran the in silico screening with the same four input sequences as previously22 

using the current version of the NCBI nr database and a recently developed tool for automated database 

mining.21 The previously used workflow has been significantly expanded by: (i) application of EFI-

EST23 and Cytoscape24 for calculation and visualization of the sequence similarity network, (ii) 

extraction of the biotic relationships and disease annotations of the source organisms from the BioProject 

database,25 and (iii) the quantitative assessment of the quality of all homology models by MolProbity.26 

Sequence database searches using four known HLDs as query sequences generated 24,594 hits sharing 

minimal sequence similarity to at least one of the query sequences. The putative HLD sequences 

containing the target HLD domain were automatically recognized using global pairwise sequence 

identities and average-link hierarchical clustering. Artificial protein sequences annotated by the terms 

"artificial", "synthetic construct", "vector", "vaccinia virus", "plasmid", "HaloTag", or "replicon", were 

excluded.  
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Clustering, alignment, and filtering. The remaining 2,905 protein sequences were clustered into 

four subfamilies: HLD-I (915), HLD-II (1058), HLD-III (910), and HLD-IV (22), based on the sequence 

identity and the composition of their catalytic pentads.27 Despite having identical catalytic pentads, 

HLD-III and HLD-IV were clustered separately based on differences in their sequences. Incomplete and 

degenerated sequences were filtered out by constructing multiple sequence alignments of individual 

subfamilies. Sequence-similarity networks were constructed to visualize relationships among putative 

HLD sequences (Fig. 3). The most apparent defining features were clustered in the distinct HLD 

subfamilies, implying that the sequence-similarity networks might provide a framework for identifying 

HLDs of similar structural and functional properties and surveying regions of sequence space with high 

diversity. To diversify HLD sequence space, redundant sequences with ≥ 90% sequence identity to the 

set of 22 characterized dehalogenase sequences (Table S1) were filtered out. 

Structure prediction, active site analysis, transport path analysis, and substrate binding. The 

remaining 2,578 putative HLD sequences were subjected to an annotation step consisting of information 

retrieval from biological databases and structure predictions. The annotation step revealed that the 

identified HLDs span a broad range of sequence and host diversity, including bacterial, archaeal, and 

eukaryotic proteins. The overall accuracy of annotation, judged by assignment to the HLD family, was 

63% but varied significantly among each of the HLD subfamilies. Most sequences in HLD-I (73%) and 

HLD-II (86%) subfamilies were annotated correctly. In contrast, the portion of correctly annotated 

sequences was reduced to 31% for HLD-III and 56% for HLD-IV (Table S2). Most members from the 

putative HLD-IV subfamily were annotated as HLDs, despite their low sequence identity to the 

experimentally characterized HLDs or other subfamily members. The annotation revealed four putative 

dehalogenases from psychrophilic organisms, 35 novel proteins from moderate halophilic organisms, 

and four proteins with known tertiary structures. Reliable homology models could be constructed for 

most subfamily HLD-I and HLD-II members, but only a limited number of HLD-III members and none 

of the HLD-IV members. The predicted volumes of catalytic pockets ranged from 50 Å3 to 3,950 Å3 

(Fig. S1). Putative transport pathways were analyzed by predicting access tunnels connecting a buried 

active site with a protein surface. The molecular docking simulations were employed to probe potential 

binding modes of representative halogenated compounds (Table S3). 

Prioritization and selection of targets. Rational selection of hits for experimental characterization 

was carried out to maximize the functional diversity of the studied protein family. The dataset of 2,578 

putative HLDs was summarized in 17 datasheets focused on different annotations or computed 

properties. Hits represented by homology models with MolProbity scores > 3.0 were removed from the 

datasheets summarizing the annotations based on the predicted homology structure, i.e., active site 

volume and tunnel properties. A few sequences were selected from each datasheet to make the selection 

as diverse as possible (Supplemental dataset, Table S4). The sequences with a higher predicted 
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solubility and higher-quality homology models were prioritized. Simultaneously, we tried to balance the 

number of sequences from each haloalkane dehalogenase subfamily (HLD-I, HLD-II, and HLD-III). 

The only exception was the HLD-IV subfamily, which contains multi-domain protein sequences derived 

from eukaryotic organisms. We avoided sequences with additional Pfam domains, as they were 

previously poorly expressible in bacterial host systems.22 A “small-but-smart” set of 45 diverse 

sequences was selected as experimental characterization targets (Table S5, Table S6).  

II. Small-scale protein expression 

This representative set of 45 HLD genes was subjected to a small-scale expression in Escherichia coli 

in 96-deep well square plates and screening of HLD activity in whole cells (Fig. 3) using the halide 

oxidation (HOX) assay.28 Overall, 40 out of 45 genes (89%) could be overexpressed. Although 30 out 

of 45 genes (67%) yielded soluble proteins (Fig. S3a), only 24 of them (53%) showed sufficient 

expression and solubility for downstream biochemical characterization (Fig. S4). Comparison of the in 

silico prediction of soluble expression with experimental data showed a poor correlation (Pearson’s 

correlation coefficient 0.263) and only 66.7% prediction accuracy. Specifically, the in silico solubility 

predictions resulted in 22 true positives, 8 true negatives, 4 false negatives, and 11 false positives 

(Table S7). A further thorough analysis of solubility profiles revealed that most of the proteins 

belonging to HLD-I (73%) and HLD-II (71%) sub-families were expressed in a soluble form, while a 

less than half of HLD-III (40%) proteins were soluble. We then probed the expressibility of all 45 HLD 

genes using a reconstituted cell-free transcription and translation system (PURExpress, NEB). Overall, 

41 of 45 genes (91%) were overexpressed, and 29 proteins (64%) were obtained in soluble form 

(Fig. S3b). Application of the cell-free PURExpress system did not result in the desired improvement 

of solubility for the “difficult-to-produce” HLDs suggesting that in vivo toxicity has little effect on the 

production of these proteins. In addition, the number of active variants detectable in whole cells (40 out 

of 45) is higher than that of finally purified proteins (24 out of 45), indicating problems with protein 

stability/solubility related to the purification process (Fig. 3, Table S8). The activity analysis in whole 

cells showed that the success rate of target activity prediction is at least 90%. 

 

III. Microfluidic enzymology 

The experimental pipeline (Fig. 2) comprised commercial microfluidic instruments and two custom-

made microfluidic platforms. Combining these modern technologies led to an efficient yet in-depth 

biochemical characterization of the selected 24 HLDs (Table 1). The results of individual 

characterization steps provided key parameters for the experimental design of the subsequent step within 

the workflow (Fig. 2). First, thermostability measurements helped estimate the temperature ranges for 

each temperature profile. Second, temperature profiles provided the optimum temperature for the 

subsequent substrate specificity characterization. Finally, based on the overall catalytic activity from 
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substrate specificity measurements, the best variants were characterized in terms of steady-state kinetics 

and reaction thermodynamics, providing further mechanistic insights. 

Thermostability. After protein purification, the thermostability of the novel HLDs was analyzed in 

a high-throughput manner by monitoring changes in extrinsic (SYPRO orange dye) and intrinsic 

(tryptophan) fluorescence during thermal denaturation experiments, using the thermal shift assay (TSA) 

and microscale differential scanning fluorimetry (DSF), respectively. The thermostability measurements 

provided the temperature at which protein denaturation starts (onset temperature, Tonset) and the midpoint 

of the denaturation curve (apparent melting temperature, Tm
app), where the latter was used for 

comparison of individual thermostability methods. The results of the microscale methods showed an 

excellent agreement (R2 0.79 and 0.93 for TSA and capillary DSF, respectively) with conventional 

circular dichroism (CD) spectroscopy (Table S9, Fig. S5). The apparent melting temperature (Tm
app) 

values (Table S9) primarily reflect the mesophilic origins of the novel HLDs (40-60 °C). Exceptions 

are the DsmA and DppsA, which exhibited Tm
app values at 35.7 and 38.1 °C, respectively, correlating 

with their psychrophilic origin. It is worth noting that the most stable protein identified was DspoA, with 

a Tm
app value of 60 °C. 

Temperature Profiling. Temperature profiling was performed using the first custom-made 

microfluidic profile explorer (MicroPEX), utilizing pH-based fluorescence assay in droplets, as 

described previously.29
 The new dehalogenases obtained in this study showed activity over a wide 

temperature range (Fig. 4B, Fig. S6, Table S10). DmaA was especially unique, as it retained more than 

65% dehalogenase activity at 5 °C. This dehalogenase performed equally well at this low temperature 

compared to benchmark dehalogenases at their temperature optima (30-45 °C).30 A positive correlation 

was observed between the temperature of the highest observed activity (Tmax) and Tonset obtained from 

thermal denaturation experiments (Fig. S7).  

Substrate Specificity Profiling. Substrate specificity profiling towards 27 representative substrates 

was conducted using the same analytical assay as temperature profiling on MicroPEX (Table S11). This 

structurally diverse set of substrates reflects the application of HLDs, including environmentally 

important compounds (Table S12). The raw data of specific activities (Table S13) showed that HLDs 

exhibited better activities with the following order of preference: brominated > iodinated ≫ chlorinated. 

Analysis of the substrate preferences showed that the optimal substrates of the newly discovered HLDs 

have linear alkyl chains of 2-4 carbon atoms (Fig. S8a) and that the majority of the HLDs can convert 

this type of substrate with the highest efficiency (Fig. S8b). Based on these observations, we suggest a 

set of “universal” substrates: 1-bromobutane (#18), 1-iodopropane (#28), 1-iodobutane (#29), 1,2-

dibromoethane (#47) and 1,3-dibromopropane (#48). The substrate specificity profiling also identified 

a set of “recalcitrant” substrates: 1,2-dichloroethane (#37), 1,2-dichloropropane (#67), 1,2,3-

trichloropropane (#80), the analog of warfare-agent yperite bis(2-chloroethyl)ether (#111), and 
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chlorocyclohexane (#115), which is in good agreement with previous studies.30,31 It is worth noting that 

two-thirds of the newly discovered enzymes possess broad substrate specificity and convert > 80% of 

the substrates tested (Table S14). Interestingly, two new enzymes, DstA and DthA, showed a previously 

undescribed narrow specificity. Specifically, DstA effectively converted one specific substrate, 1-

bromohexane (#20), with five-fold higher activity than any other substrate. Similarly, DthA exhibited 

considerable debromination activity for only two substrates, 1,2-dibromoethane (#47) and 1-bromo-2-

chloroethane (#137). 

Principal Component Analysis (PCA). First, we conducted PCA analysis using the untransformed 

specificity data of 8 benchmarks29 and 24 newly identified HLDs. This analysis aimed to compare the 

enzymes according to their score with the first principal component (t1), thus quantifying their global 

activity against the set of substrate activities (Fig. 4D). Surprisingly, 11 of the 24 newly characterized 

HLDs showed significantly higher global activity than the known benchmark HLDs. This result was 

validated using conventional activity measurements with an overall well-converted substrate, 1,3-

dibromopropane (Fig. S9). Six out of these 11 highly active enzymes exhibited outstanding overall 

activity, and therefore, they were chosen to characterize their steady-state kinetics and reaction 

thermodynamics using Kinetic Microfluidic Autonomous Platform (KinMAP) (Fig. 4D). The second 

PCA was performed with log-transformed and weighted activity data allowing a direct comparison of 

the specific profiles of individual enzymes unbiased by the different levels of their global activity 

(Fig. S10). The benchmark HLDs (DbjA, LinB, DmbA, DhlA, and DhaA) were clustered in agreement 

with the previously reported substrate specificity groups of HLDs.31 In this analysis, two of the newly 

discovered variants, DstA and DthA, were separated from other enzymes due to their unusually narrow 

substrate specificity. 

Hierarchical Clustering. The log-transformed specificity data were subjected to hierarchical 

clustering to identify similarity in preferred substrates or selectivity of enzymes; both were plotted as a 

double dendrogram heatmap (Fig. 4C). Our analysis clustered the substrates into three main groups. The 

first group (yellow in Fig. 4C) comprises frequently converted substrates, mostly iodinated compounds 

with a chain length of 3-4 carbon atoms. The second group (green in Fig. 4C) includes moderately and 

poorly convertible (mainly chlorinated) substrates. The third group (brown in Fig. 4C) contains only 

three structurally similar substrates preferred over other tested substrates by most enzymes. Clustering 

of the specificity profiles divided analyzed HLD variants into two major groups. The first group (purple 

in Fig. 4C) consists of highly active and broad-specificity enzymes, including the benchmark enzymes 

DhlA, DhaA, DbjA, LinB, and DmbA, capable of converting the majority of the substrates. The second 

group of enzymes (orange in Fig. 4C) is almost entirely composed of newly identified enzymes (except 

for DatA), which preferentially convert the more frequently converted substrates (the first and the third 

group of substrates - yellow and brown in Fig. 4C, respectively) over the second group of substrates 
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(green in Fig. 4C). The enzymes forming the second group are barely active with 1,2-dibromopropane 

(#72), 4-bromobutyronitrile (#141), and 1,2,3-tribromopropane (#154), unlike enzymes from the first 

group. The third group (teal in Fig. 4C) contains four enzymes possessing the narrow substrate 

specificity profiles, e.g., DrbA towards 1,2-dibromo-3-chloropropane (#155) or DsmA towards 3-

chloro-2-methylpropene (#209). 

Steady-State Kinetics and Reaction Thermodynamics. Inspired by technology for kinetic analysis 

of nanoparticle synthesis,32 we developed a microfluidic device for kinetic and thermodynamic analysis 

enzyme reaction called the Kinetic Microfluidic Autonomous Platform (KinMAP) (Fig. 5A, see details 

in Supplemental experimental procedures 1.5, Table S16, Fig. S12-S16). KinMAP operates 

autonomously thanks to the software MAPit, integrating control over all hardware units and providing 

fully automated calibration, data acquisition, and signal processing for a wide range of conditions with 

minimal user involvement (Supplemental experimental procedures 1.5, Fig. S15-S16). 

KinMAP was used to determine steady-state kinetics and reaction thermodynamics parameters for 

selected highly active enzymes (DspoA, DexA, DeaA, DprxA, DphxA, and DhxA) (Fig. 4D). 

Multidimensional data, including concentration and temperature dependence of the reaction, were 

collected by monitoring the conversion progress at six different substrate concentrations (0-1 mM 1,3-

dibromopropane), and each of them at six different temperatures from 25 to 50 °C in 5-degree 

increments (Fig. 5B). The global numerical fitting of such a complex dataset provided estimates for the 

kinetic constants, namely specificity constant (kcat/Km), turnover number (kcat), the equilibrium constant 

for enzyme-product complex dissociation (KP), and the corresponding thermodynamic parameters 

(Fig. 5C, Fig. S11, Table S15). Following new standards for collecting and fitting steady-state kinetic 

data,33 we estimated kcat/Km directly instead of Km. Unlike Km, which has no mechanistic meaning, kcat/Km 

can be interpreted as the apparent second-order rate constant for substrate binding and quantifies enzyme 

specificity, efficiency, and proficiency. Moreover, there are smaller errors in the fitting process to derive 

kcat/Km directly rather than calculating the ratio of kcat and Km derived independently (see details in 

Supplemental experimental procedures 1.6). 

All six selected enzymes showed one of the highest turnover numbers (13 to 80 s-1) ever observed 

within the HLD family compared to previously isolated wild-type and engineered variants (Fig. 6). The 

highest previously reported turnover number for a dehalogenase, kcat of 57 s-1, was determined for 

LinB86 in converting 1,2-dibromoethane (#47) (Fig. S8). This four-point mutant with an introduced de 

novo access tunnel was obtained by several cycles of computer modeling and rational engineering.13 

Three new biocatalysts identified in this study (DprxA, DhxA, and DexA) exhibited higher kcat (80, 74, 

and 64 s-1, respectively) than LinB86 (Fig. 5C, upper left), which makes them the fastest HLDs ever 

reported. 
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Despite the high kcat of LinB86, its specificity constant was relatively low (kcat/Km = 24 mM-1.s-1). On 

the contrary, LinB wild type in the reaction with 1,3-dibromopropane (Fig. S8) exhibited a high 

specificity constant (kcat/Km = 165 mM-1.s-1) yet a lower kcat = 6.6 s-1.34 A rare example of an HLD 

exhibiting high values of both kcat and kcat/Km was the engineered variant DmxA Q/N.35 This single-point 

mutant, engineered from DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17, 

shows kcat of 31 s-1 and kcat/Km = 244 mM-1.s-1 with 1,3-dibromopropane. Such a rather rare combination 

of high kcat and kcat/Km values was observed for three newly identified enzymes (Fig. 5C), namely 

DprxA, DhxA, and DphxA. Remarkably, DphxA with kcat of 54 s-1 and kcat/Km = 290 mM-1.s-1 shows the 

best combination of turnover number and catalytic efficiency ever reported (Fig. 6C).  

The temperature dependences analyzed for the catalytic rate (kcat) indicated that the free energy of 

activation is predominantly determined by a positive enthalpy, or a combination of both entropy and 

enthalpy, in the case of DprxA and DhxA. Interestingly, DspoA, DexA, and DphxA showed a favorable 

entropic contribution in lowering the activation energy of the catalytic turnover (Fig. 5C). The 

temperature dependences of kcat/Km indicated that the efficiency of substrate binding is similarly 

influenced predominantly by enthalpy (DeaA, DprxA, and DhxA) or a combination of positive enthalpy 

and unfavorable loss of entropy (DspoA and DhxA). The other two interesting cases are DexA, with its 

specificity constant dominated by unfavorable entropy, and DeaA, with a favorable positive entropy 

compensating activation enthalpy and reducing the overall free energy of activation (Fig. 5C). The 

mechanistic information derived from the differences in the thermodynamic profiles provides an 

excellent starting point for rational design36 and further analysis using machine learning.37  

IV. Additional biochemical characteristics 

Enantioselectivity. Enantioselectivity was assessed by determining the kinetic resolution of rac-2-

bromopentane and rac-ethyl 2-bromopropionate, representing two distinct groups of chiral substrates 

(β-brominated alkanes and esters, respectively). Individual HLDs showed variable enantioselectivity in 

the reaction with the racemic substrate 2-bromopentane. More specifically, high enantioselectivity was 

identified for DeaA and DthA, exhibiting E-values of > 200 and 156, respectively (Fig. S17). Most of 

the novel HLDs preferred the (R)- over the (S)-enantiomer of 2-bromopentane. Interestingly, the 

enzymes DmmarA, DspoA, DphxA, and DhxA showed the opposite enantiopreference. To date, only 

two HLD family enzymes (DsvA and eHLD-B) have been reported to possess such unique 

enantiopreference.38,39 High enantioselectivity (E-value > 200) towards the second representative 

substrate, ethyl 2-bromopropionate, was observed in the case of DprxA, DthA, and DhxA (Fig. S18). 

Secondary and Quaternary Structure. We also analyzed the secondary and quaternary structure 

using far-UV-CD spectroscopy and size-exclusion chromatography. All HLDs exhibited CD spectra 

with one positive peak at 195 nm and two negative minima at 208 and 222 nm, characteristic of proteins 

with an α/β-hydrolase fold (Fig. S19).40 Newly identified HLDs were mostly monomeric, similar to the 
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previously characterized HLD members (Table S17). Exceptions were DmmarA, which exists as a 

dimer, and DprxA, which exists as a mixture of monomer, dimer, and higher oligomeric states 

(Fig. S20). Interestingly, native PAGE revealed that DstA was sensitive to the oxidation/reduction 

potential of the environment and formed dimers only under oxidative conditions (Fig. S21). 

DISCUSSION 

The biotechnology field employing enzymes as catalysts represents a billion-dollar industry, putting 

constant pressure on speeding up the identification and characterization of novel biocatalysts.41 The 

avalanche of newly available sequences from next-generation sequencing represents an enormous 

potential but, at the same time, a significant challenge for the practical aspects of efficient search and 

throughput for experimental functional characterization. The application of genome mining can provide 

a potential solution to managing a large quantity of complex sequence data effectively.42 Currently, it is 

not feasible to characterize all sequences being deposited in sequence databases. Instead, in silico 

screening and prioritizing a narrower selection of targeted sequences based on advanced bioinformatic 

analyses, followed by microfluidic high-throughput characterization, appears to be an attractive 

approach. 

We have used such a strategy to identify novel variants of the model enzyme family – haloalkane 

dehalogenases, which have been thoroughly investigated for more than thirty years. Our results show 

that only 63% of the identified putative HLDs were labeled correctly as dehalogenase enzymes in 

genomic databases. While miss-annotations were rare, many proteins annotated as “α/β-hydrolase” or 

“hypothetical protein” would have been missed by a simple text-based search. Proteins from the α/β-

hydrolase fold superfamily are well-known for their catalytic promiscuity and tendency to catalyze 

diverse reactions using the same catalytic machinery.43,44 Substrates are currently not known for 35% of 

enzymes annotated as α/β-hydrolases, and thus their functions remain unclear.45 The current mining 

approach identified more than 2,578 putative HLDs. The number of hits increased nearly five times 

compared to the previous in silico screening.22 The current screening approach missed only 97 sequences 

out of the original set and identified 2,145 new sequences. 

The sequence mining analysis presented in this study is available as a user-friendly web tool, 

EnzymeMiner, making at least part of our in silico pipeline widely accessible to the scientific and 

industrial communities.21 Although other computational tools help automatically analyze, filter, and 

visualize large sets of identified hits,23,24 EnzymeMiner remains, to the best of our knowledge, the only 

available web tool for automated selection of promising candidates from the genomic databases. In 

addition to the prediction of tertiary structures that can be achieved using AlphaFold2,46 analysis of 

cavities and access tunnels and modeling of enzyme-substrate complexes will be implemented in the 

future. The structural bioinformatics part of this study, including homology modeling followed by 
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molecular docking of halogenated substrates, has been proven to be a powerful approach to identifying 

enzymes with high catalytic activities: 11 of 24 characterized HLDs showed higher activity levels than 

those reported previously (Fig. 4D).31 Particularly, molecular docking of halogenated substrates turned 

out to be a promising selection criterion (Table S3, Table S5). All five enzymes (DeaA, DhxA, DphxA, 

DprxA, and DspxA) showing overall high dehalogenase activity were selected based on the positive 

docking of the warfare-agent yperite47 (Fig. 4D, Table S3). 

The major limitation of in silico analysis is the prediction of protein solubility. Despite applying the 

recent solubility prediction tool SoluProt,48 our comprehensive expression analysis of the whole set of 

45 selected putative HLDs revealed a 67% success rate in terms of soluble proteins, which is a slight 

improvement in comparison with the previously achieved 60%.22 Protein production in E. coli can be 

improved by optimizing genetic constructs or expression conditions. However, the related combinatorial 

variation or a switch to other expression hosts such as yeasts or Bacillus species is impractical for such 

a large set of proteins. Therefore, the production of soluble proteins remains a hit-or-miss affair and 

currently represents the most significant bottleneck toward the functional characterization of novel 

proteins. Improving the in silico solubility prediction is paramount for the increased success rate of 

protein characterization pipelines.10,37 Nevertheless, 90% of the selected candidates were active 

dehalogenases (Fig 3), some limited to working in whole cells due to sub-optimal in vitro solubility. 

An essential component of our experimental workflow is the application of time- and biological 

material-efficient microfluidic methods. First, the Microfluidic Profile Explorer (MicroPEX) was used 

to characterize HLD variants in terms of temperature profiles and substrate specificity.29 Although state-

of-the-art microfluidic systems can characterize >1,000 enzymes in a run,49 they are limited to water-

soluble substrates since the hydrophobic substrates tend to leak to the oil phase.50 MicroPEX overcomes 

this limitation by microdialysis and oil-water partitioning29 and thus enables determination of activities 

also towards hydrophobic substrates, such as haloalkanes. In comparison with conventional methods for 

HLD activity characterization, MicroPEX provides up to 1,000-fold lower protein consumption and 

100-fold higher throughput.29 

Second, the Kinetic Microfluidic Autonomous Platform (KinMAP) enables the measurement of 

temperature-dependent steady-state kinetics and extraction of the energetic and entropic contributions. 

This combination of kinetic and thermodynamic analysis was applied to characterize six HLD variants 

superior to currently available enzymes. These experiments revealed thermodynamic parameters driving 

their catalytic activity. Such valuable mechanistic information is rarely collected for multiple catalysts 

during protein discovery campaigns due to the time-consuming experiments, requirements of large 

amounts of purified proteins, and complex data analysis. Enzymes possessing a differential mix of 

enthalpy and entropy contributions to the catalytic activity provide unique starting points for laboratory 

evolution, targeting active sites,14,15 access tunnels12, or dynamical protein loops.16 Accordingly, 
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developing an automated droplet-based microfluidic device will open up new opportunities for optimal 

data collection employing back-loops and machine learning algorithms.37 We are currently working on 

expanding the range of KinMAP automation to include adaptive dynamic ranges of substrate and 

enzyme concentrations during the scan to increase the precision of the kinetic parameter estimations. 

Overall, this study doubled the “toolbox” of HLD biocatalysts available for various biotechnological 

applications by combining advanced bioinformatics with microfluidics. Several discovered enzymes 

exhibited the highest turnover numbers and catalytic efficiencies ever reported for HLDs. Moreover, 

unique substrate specificity and unusual enantioselectivity combined with a wide range of operational 

temperatures make these enzymes industrially relevant. We believe that further development of 

bioinformatic algorithms and microfluidic enzymology technologies will facilitate database mining for 

a variety of novel enzymes. Such advances will provide a deeper understanding of sequence-function 

relationships and contribute to developing a new generation of tools in protein engineering and data-

driven prediction of enzyme function.51 

EXPERIMENTAL PROCEDURES 

Resource availability 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

contact, Zbynek Prokop (zbynek@chemi.muni.cz). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

Supplemental data set with summarized bioinformatic results for the selected enzymes is provided 

in the Supplemental Information. Other datasets supporting the current study have not been deposited 

in a public repository but are available from the corresponding author on request.  

In silico bioprospecting 

The automated in silico bioprospecting was based on a protocol described previously.22 Briefly, 

representative HLD sequences, including three experimentally characterized HLDs [LinB (NCBI 

accession number BAA03443), DhlA (P22643), and DrbA (NP_869327)] and a putative HLD from 

Aspergillus niger (EHA28085, residues 90-432) were used as queries for two iterations of PSI-BLAST52 

v2.6.0 searches against the NCBI nr database (version 2017/02) with E-value thresholds of 10−20. A 

multiple sequence alignment of all putative full-length HLD sequences was constructed by Clustal 

Omega v1.2.0.53 Sequence similarity networks (SSN) of putative HLDs were calculated and visualized 

by EFI-EST23 and Cytoscape v3.6.1,24 respectively and further subjected to the EFI-GNT54 analysis to 

obtain genome neighborhood diagrams. Information about the source organisms of all putative HLDs 
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was collected from the NCBI Taxonomy and BioProject databases (version 2017/02).25 The homology 

modeling was performed using MODELLER v9.18.55 The quality of the generated homology models 

was assessed by MolProbity v4.3.1.26 Pockets in each homology model were calculated and measured 

using the CASTp program56 with a probe radius of 1.4 Å. The CAVER v3.02 program57 was then used 

to calculate tunnels in the ensemble of all homology models. The probability of soluble expression in E. 

coli of each protein was predicted based on the revised Wilkinson-Harrison solubility model.58 The 

molecular docking simulations with selected halogenated substrates were conducted using AutoDock 

Vina59 with default settings. 

Gene synthesis and DNA manipulation 

Codon-optimized genes encoding 45 selected HLDs were designed and commercially synthesized 

(BaseClear B.V., The Netherlands). The synthetic genes were subcloned individually into the expression 

vector pET-24a(+) between the NdeI and XhoI restriction sites. For plasmid propagation, competent E. 

coli DH5α cells were transformed with individual constructs using a heat-shock method. The correct 

insertions of target HLD genes into recombinant plasmids were verified by restriction analysis of the re-

isolated plasmids (Fig. S2) and DNA sequencing. 

Small-scale protein expression and purification 

E. coli cell transformation with plasmid DNA, cultivation in 96-deep well plates, harvesting, SDS-

PAGE analysis, and high-throughput affinity purification using the MagneHis Protein Purification 

System (Promega, USA) are described in detail in Supplemental experimental procedures 1.1. 

Dehalogenase whole-cell activity screening 

The reactions were 200 µL in volume and contained 50 mM PBO buffer (40 mM K2HPO4, 10 mM 

KH2PO4, pH 7.5 with 1 mM orthovanadate), 10 mM H2O2, 5 U.mL-1 Curvularia inaequalis 

chloroperoxidase, 10 µL of whole cells with OD600 approximately 5, 12.5 µM aminophenyl fluorescein 

and 10 mM of a halogenated substrate. The reactions in the HOX assay23 were started by adding whole 

cells. The measurement was conducted overnight in a plate reader (30 °C) by measuring fluorescence at 

525 nm (488 nm excitation). 

Cell-free protein synthesis 

The cell-free protein synthesis (CFPS) of 45 selected HLDs was performed using the PURExpress kit 

(NEB, USA) according to the manufacturer’s instructions.60 The recommended 250 ng of DNA template 

per reaction was used. The CFPS reactions were incubated at 37 °C for 2.5 h. To maintain precise 

reaction conditions, a thermocycler was used for temperature control. The total fractions of HLDs were 

detected by SDS-PAGE stained by Coomassie Brilliant Blue R-250 and silver staining (SilverQuest, 

Fermentas, USA). Subsequently, the total fractions of HLDs were centrifuged at 10,000 g at 4 °C for 
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1 h. The rest of the sample was dialyzed using Slide-A-Lyzer MINI Dialysis Devices (ThermoFisher 

Scientific, Germany) into the PBO buffer used for the screening of HLD activity using the HOX assay.23 

Large-scale protein expression and purification 

Selected mutant enzymes were expressed in E. coli BL21(DE3). Cultivation, harvesting, purification 

by affinity chromatography, SDS-PAGE analysis, and protein concentration determination are described 

in detail in Supplemental experimental procedures 1.2. 

Thermostability 

Thermal unfolding was analyzed independently by four methods: (i) microcuvette DSF (UNcle, 

Unchained labs), (ii) capillary DSF (Prometheus NT.48, NanoTemper Technologies, GmbH), 

(iii) thermal shift assay (using SYPRO Orange Protein Gel Stain (Thermo Fisher Scientific) in a 

StepOnePlus Real-Time PCR System (Thermo Fisher Scientific)), and (iv) circular dichroism 

spectroscopy as a well-established technique (using a Chirascan CD Spectrometer (Applied 

Photophysics, UK). All methods are described in detail in Supplemental experimental procedures 

1.3. 

Temperature profiles and substrate specificity profiles 

Both temperature and substrate specificity profiles were measured using the previously described 

droplet-based microfluidic profile explorer (MicroPEX),29 enabling the characterization of specific 

enzyme activity within droplets for typically 6-10 variants in one run. The temperature profiles were 

measured towards either 1,2-dibromoethane or 1-bromohexane in 5-degree increments in the range of 

5 °C to 55 °C. The temperatures for individual enzymes were chosen based on their Tm and Tonset values 

(determined by microscale DSF) so that the activities at 7-9 temperatures were measured for each 

enzyme. The substrate specificity of individual enzyme variants was measured towards 27 representative 

halogenated substrates, previously chosen to validate the microfluidic device.29 Each enzyme was 

assayed at the temperature closest to its Tmax value (0-10 °C below Tmax). A detailed protocol of the 

microfluidic method was provided previously,2 and a brief description is available in Supplemental 

experimental procedures 1.4. 

Principal component analysis and hierarchical clustering 

The matrix containing the activity data of 24 newly identified HLDs and eight previously characterized 

HLDs towards 27 halogenated substrates (all measured on MicroPEX) was analyzed by principal 

component analysis (PCA) in MATLAB (MathWorks, USA) to uncover the relationships among 

individual HLDs (objects) based on their activities towards the set of halogenated substrates (variables). 

Two PCA models were constructed to visualize systematic trends in the dataset. The first one was done 

on the raw data, which ordered the enzymes according to their total activity. The second PCA was 

carried out on the log-transformed data. Each specific activity needed to be incremented by 1 to avoid 
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the logarithm of zero values. The resulting values were then divided by the sum of the values for a 

particular enzyme. These transformed data were used to calculate principal components, and the 

components explaining the highest variability in the data were then plotted to identify substrate 

specificity groups. Additionally, the hierarchical clustering analysis was performed on the log-

transformed data using MATLAB (MathWorks, USA). 

Conventional dehalogenase activity measurement 

The specific activity of all 24 newly identified HLDs was validated by the conventional method of 

Iwasaki et al.61 Dehalogenation reactions were performed at temperatures close to the optimal 

temperature of each enzyme (Table S10) in 25-mL Reacti Flasks closed by Mininert Valves. The 

reaction mixture was composed of 10 mL of glycine buffer (pH 8.6) and 10 μL of the substrate (1,3-

dibromopropane). By adding 0.2 mL of enzyme solution to the mixture, the reaction was initiated. The 

reaction progress was monitored by periodically withdrawing 1 mL samples from the reaction mixture. 

Finally, the reaction was stopped by adding 0.1 mL of 35% nitric acid. The reagents with mercuric 

thiocyanate and ferric ammonium sulfate, employed for detection of halides, were subsequently added 

to the collected samples, and absorbance of the final mixture was measured spectrophotometrically at 

460 nm using microplate reader SUNRISE (Tecan, Austria). Dehalogenase activities were quantified as 

the rate of product formation with time. 

Steady-state kinetics and reaction thermodynamics 

A newly introduced droplet-based Microfluidic Autonomous Platform for kinetic analysis (KinMAP), 

adopted from a previous technology for nanoparticle synthesis,32 determined the steady-state kinetics 

and reaction thermodynamics parameters for a selected set of enzymes. The pH-based fluorescence 

assay to determine HLD kinetics and substrate delivery via a substrate partition between oil and aqueous 

phase (Fig. S12) was the same as in the MicroPEX operation described above.29 Within one run, the 

steady-state kinetics of a single enzyme variant was measured with 1,3-dibromopropane in the 

temperature range of 25-50 °C in 5-degree increments. The HLD enzymatic rate was determined for 

each temperature and six substrate concentrations. The device and method is described in detail in 

Supplemental experimental procedures 1.5, including Fig. S12-S16 and Table S16. 

Global numerical integration of rate equations 

The datasets consisting of temperature and concentration dependence of reaction rates were fit globally 

based on numerical integration of rate equations using KinTek Explorer software 10 (KinTek 

Corporation, USA),
62 which includes the capability to fit temperature-dependent rate constants.63 A 

detailed description of the data fitting is provided in Supplemental experimental procedures 1.6. 
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Enantioselectivity 

Kinetic resolution experiments were performed at 20 °C. The reaction mixtures consisted of 1 mL 

glycine buffer (100 mM, pH 8.6) and 1 μL of a racemic mixture of 2-bromopentane or ethyl 2-

bromopropionate. The glycine buffer was selected to maintain sufficient buffering capacity in the mildly 

alkaline pH range corresponding with the pH profiles for most characterized HLDs. A detailed 

description is provided by Vanacek et al.8 The kinetic resolution data were fitted globally using KinTek 

Explorer software (KinTek Corporation, USA), in detail described in Supplemental experimental 

procedures 1.7.  

Secondary Structure 

Circular dichroism (CD) spectra were recorded at room temperature using a Chirascan CD 

Spectrometer (Applied Photophysics, UK) equipped with a Peltier thermostat (Applied Photophysics, 

UK). Data were collected from 185 nm to 260 nm, at 100 nm.min-1, with 1 s response time and 1 nm 

bandwidth, using a 0.1 cm quartz cuvette containing the enzymes. Each spectrum shown is the average 

of five individual scans and corrected for the buffer absorbance. Collected CD data were expressed in 

terms of the mean residue ellipticity (ΘMRE). Secondary structure determination and analysis were 

carried out on measured ellipticity from 190 nm to 250 nm using the BeStSel online tool with default 

settings.64 

Quaternary Structure 

The quaternary protein structures were investigated using analytical gel filtration chromatography 

using a Superdex 200 10/300 GL column (GE Healthcare Life Sciences). The ÄKTA FPLC system (GE 

Healthcare Life Sciences) was initially equilibrated with a mobile phase composed of 50 mM potassium 

phosphate buffer and 150 mM NaCl (pH 7.5). NaCl was supplemented to minimize secondary 

interactions of the sample components with the resin following the supplier's instructions. The protein 

sample (100 μL at 1 mg.mL-1) was injected onto the column and separated at a constant flow rate of 

0.5 mL.min-1 using the mobile phase described above. The void volume was determined by loading blue 

dextran (100 μl at 1 mg.mL-1). Two gel filtration calibration mixtures were applied for molecular weight 

determination (GE Healthcare Life Sciences). Mixture A of standard proteins contained aldolase 

(158,000 Da), ovalbumin (44,000 Da), ribonuclease A (13,700 Da), and aprotinin (6,500 Da). Mixture 

B of standard proteins contained ferritin (440,000 Da), conalbumin (75,000 Da), carbonic anhydrase 

(29,000 Da), and ribonuclease A (13,700 Da). 

Native PAGE 

The separation of DstA was investigated by native PAGE. 10 µL of protein sample (0.5 mg.ml-1 to 

1.5 mg.ml-1) was mixed with 30 µL of 4x loading buffer (3.5 ml 100% glycerol, 2.5 ml 1M Tris-HCl 

pH 6.8, 4 mg Bromophenol Blue and 4 ml water) and 13 µL of the mix was loaded to the native gel. 



18 

 

Electrophoresis was performed in Tris-glycine electrophoretic buffer at 110V and 4 °C. According to 

the supplier's protocol, the protein bands of polyacrylamide gels were stained by InstantBlue Protein 

Stain and checked by GS-800 Calibrated Densitometer (Bio-RAD, USA). 
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TABLES AND FIGURES 

Table 1. Summary of biochemical properties of HLDs.  

 

Enzyme 
Yield 

(mg. L-1) 

Specific 

activity* 

(nmol.s-1.mg-1) 

Tonset  

(°C) 

Tm
app  

(°C) 

Tmax 

(°C) 

E value 

2-bromopentane 
ethyl 2-bromo-

propionate 

DstA 70 2.5±0.1 30.9±0.2 43.4±0.1 30 1.27±0.01 2.59±0.04 

DfxA 10 2.9±0.2 30.5±0.6 40.6±0.5 35 n.a. n.a. 

DlaA 40 3.9±0.1 35.6±1.2 48.1±0.6 30 n.a. n.a. 

DaxA 120 1.1±0.2 42.9±0.2 48.7±0.1 35 16.4±0.3 n.a. 

DsmA 120 86.1±0.4 27.6±0.1 35.7±0.1 25 1.60±0.01 81±1 

DmmarA 20 5.9±0.1 32.3±0.1 42.1±0.2 30 6.33±0.04 1.22±0.01 

DathA 60 5.7±0.2 38.1±0.6 46.4±0.1 35 27.3±0.4 45 ± 1 

DmaA 30 211.1±4.7 32.5±0.1 40.2±0.3 35 2.13±0.01 49.8±0.4 

DspoA 80 860.7±16.8 50.8±0.2 58.7±0.6 50 9.755±0.083 128±1 

DexA 120 572.7±10.1 43.4±1.1 47.5±0.4 45 5.46±0.04 152±2 

DppsA 100 29.0±0.1 24.7±0.2 38.1±0.2 35 3.32±0.03 84±1 

DeaA 70 405.0±7.6 45.3±0.1 52.2±0.2 45  >200 113 ± 2 

DmgaA 100 6.1±0.1 38.2±1.6 44.7±0.9 40 n.a. n.a. 

DprxA 150 630.1±14.3 44.3±1.7 51.8±0.3 45 3.23±0.02 >200 

DrgA 20 1.8±0.2 36.8±0.4 44.2±0.4 35 n.a. n.a. 

DmbaA 10 132.5±1.7 36.8±0.3 46.6±0.2 45  5.54±0.04 22.2±0.2 

DthA 90 31.3±0.7 40.4±0.3 49.9±0.9 35 155.9±0.7 >200 

DphxA 30 595.7±7.0 47.0±0.6 55.4±0.2 35 1.82±0.01 26.0±0.2 

DthB 20 121.8±4.4 44.8±0.6 53.4±0.4 45 2.98±0.02 15.9±0.1 

DnbA 90 6.5±0.2 37.3±0.1 47.8±0.4 40 14.1±0.3 n.a. 

DhxA 120 610.8±0.9 44.1±0.4 53.1±0.3 35 1.574±0.011 >200 

DspxA 30 81.9±0.1 44.2±0.3 53.3±0.2 35 42.1±0.5 156±3 

DchA 20 143.3±5.2 47.0±0.1 55.2±0.8 40 2.52±0.02 27.7±0.3 

Dcta 10 5.0±0.1 31.6±0.1 39.8±0.6 35 n.a. 187±2 

 
*Specific activity towards 1,3-dibromopropane was determined in 1 mM HEPES buffer at pH 8.2 and a 

temperature close to the optimal temperature (Table S10); Tonset – unfolding onset temperature by capillary 

DSF; Tm
app – apparent melting temperature by capillary DSF; Tmax – maximum HLD activity; n.a. – no activity
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Figure 1 Bioinformatics workflow enabling selection of “small-but-smart” set of enzymes for 

thorough experimental characterization. The sequence bioinformatics pipeline (green) has been 

previously implemented as a web-based software tool EnzymeMiner.21 Automated sequence analysis 

has been complemented by a structural bioinformatics pipeline (blue), providing additional high-quality 

annotations for prioritization and selection of a “small-but-smart” set of proteins (yellow) for 

experimental characterization. The individual steps are illustrated in the middle panel and labeled. The 

numbers of hits achieved in every step are highlighted on the right side. The symbols located in the 

upper right corner distinguish the steps utilizing database or software tools.  
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Figure 2 Experimental workflow for efficient and thorough characterization of well-expressed 

enzymes. The left side captures individual characterization steps with the microfluidic techniques in 

brackets. The key parameters of each characterization necessary for the experimental design of the 

following step (key symbol) are at the bottom of each frame. The right side describes the characteristics 

of each technique with respect to sample requirements per enzyme in μg, time requirements per run in 

hours, and the possible number of enzymes measured in parallel. The timescale for characterization of 

the 24 discovered dehalogenases (steps 1-3) and 6 selected enzymes (step 4) is shown in hours of 

measurement on the very right.  
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Figure 3 Sequence similarity network for HLDs categorized by their expression, solubility, and 

activity. The putative HLDs are clustered into four subfamilies: HLD-I, HLD-II, HLD-III, and HLD-

IV. The sequences were first clustered at 50% identity to reduce the number of nodes and edges. The 

sequences with higher identity are consolidated into a single node. Edge lengths indicate sequence 

similarity between representative sequences of the connected nodes. Sequence similarity networks of 

putative HLDs were calculated and visualized by EFI-EST23 and Cytoscape v3.6.124. The results from 

expression, solubility and activity analysis are shown in the doughnut graphs (upper left). Enzymes were 

assigned to five distinct groups of enzymes based on their expressibility, solubility, and activity, 

indicated by different colors in doughnut graphs and the sequence similarity network. A set of 24 well-

soluble and active enzymes (green) was subjected to systematic biochemical characterization. Four 

weakly expressed genes (black) and twelve over-expressed genes providing proteins with low solubility 

(yellow) were tested positive with at least one of the five halogenated substrates in the whole-cell activity 

screening assay (Table S8). Four over-expressed genes providing insoluble proteins (blue) and one 

weakly-expressed gene (red) led to proteins that did not exhibit any activity in our tests. 
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Figure 4 Temperature profiles and substrate specificity by droplet-based microfluidics. 

(A) Photograph and scheme of the droplet-based microfluidic profile explorer (MicroPEX) to determine 

temperature profiles and substrate specificity. Depicted are the main parts of the device, including the 

droplet generator (1), incubation chamber for substrate delivery under temperature control (2), detection 

cell (3), microfluidic pump (4), fluorescence excitation laser (5), and a photodetector (6). 

(B) Temperature profiles. The heat map represents the relative activity of individual enzymes. 

C, Multivariate analysis of substrate specificity. A double-dendrogram heat map of log-transformed data 

depicts the similarity of enzyme activity (vertical axis) and conversion of halogenated substrates 

(horizontal axis). Major groups of enzymes and substrates are highlighted with the same color. 

(D) Multivariate analysis of catalytic activity. The score plot t1 compares the enzymes in terms of their 

overall activity with 27 substrates and explains 85.1% of the data variance. The light red frame highlights 

new enzymes with an outstanding catalytic activity, which were characterized by steady-state kinetics 

and reaction thermodynamics (Fig. 5). The previously characterized HLDs are colored grey in C and D. 

The heat maps (B, C) and bars (D) are color-coded by enzymatic activity from low activity (blue) to 

medium activity (yellow) and high activity (red). 
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Figure 5 Mechanistic analysis by droplet-based microfluidics and global numerical integration. 

(A) The droplet-based Kinetic Microfluidic Autonomous Platform (KinMAP) enables kinetic and 

thermodynamic measurements. A photograph (top) illustrates the reaction droplets traveling through the 

incubation zone with temperature control. The schematic of the device (bottom) depicts syringe pumps 

for aqueous solutions of reactants (1) and oil phase (2), droplet generator (3), reaction zone with 

temperature control (4), motorized stage (5), excitation light source (6), dichroic mirror (7) and 

detection of emitted light (8). (B) Example of the kinetic and thermodynamic data collected for DspoA 

by monitoring the enzymatic conversion under different substrate concentrations (0-1 mM 1,3-

dibromopropane) at different temperatures (25-50 °C) in 1 mM HEPES buffer (pH 8.2). Each data point 

represents an average of 20 repetitions; the solid lines represent the best global fit. The data for all 

selected enzymes, parameter estimates, and statistics are summarized in Fig. S11 and Table S15. (C) 

The kinetic parameters (top figures), turnover number (kcat), and specificity constant (kcat/Km) were 

obtained by global fitting complex kinetic and thermodynamic data (values at reference temperature 

310.15 K, 37 °C). The error bars represent standard errors. Grey columns represent previously reported 

values for the reaction of wild-type DmxA and its engineered single-point mutant DmxA Q/N, both with 

1,3-dibromopropane (100 mM glycine buffer, pH 8.6, 37 °C).35 The contributions of activation enthalpy 

(ΔH‡) and entropy (-T.ΔS‡) to the Gibbs free energy of activation (ΔG‡) derived from the temperature 

dependence of catalytic turnover (kcat) and specificity constant (kcat/Km) for the reference temperature 

310.15 K (bottom figures). The green arrows show favorable entropy values lowering the activation 

barrier. 
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Figure 6 Functional characteristics of the HLD family members. (A) Five strategies were used to 

obtain catalytically efficient HLDs: Functional cloning (purple), protein engineering (blue), database 

mining (green), basic bioinformatics & enzymology (orange), and advanced bioinformatics & 

μEnzymology (red, present study). (B) Box chart comparing turnover numbers for enzyme variants 

obtained by respective strategies with data points to the right of the boxes. The box shows median (line), 

mean (small square), quartiles, minima, and maxima. The 25% best data points are highlighted in color, 

while the remaining data points are grey. Selected best variants are labeled. (C) The dependence of 

catalytic efficiency on turnover numbers provides the complex catalytic evaluation of enzymes. (D) The 

dependence of turnover numbers on the melting temperature of each variant provides activity-stability 

relationships. The data were collected from published research. The kinetic data gathered here were 

measured with the best substrates for HLDs, 1,2-dibromoethane and 1,3-dibromopropane at 37 °C or 

lower temperatures. Plot D does not contain all the data points from B and C since thermostability data 

are unavailable for some variants. 


