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Abstract

Would you rather search for a point inside of a line or a line inside of a rectangle? This is a type of solution
degeneracy that often exists physics-based simulations and wetlab experiments, but constraining these
degeneracies is often unsupported or difficult-to-implement in many optimization packages, requiring
additional time and expertise. So, is the increase in efficiency worth the cost of implementation? We
demonstrate that the compactness of a search space (to what extent degenerate solutions and non-
solutions are removed) can have a significant effect on Bayesian optimization search efficiency via the Ax
platform. As our optimization task, we use a physics-based particle packing simulation with seven to nine
tunable parameters, depending on the search space compactness, that represent three truncated, discrete
log-normal distributions of particle sizes. This physics-based simulation exhibits three qualitatively
different degeneracy types: size-invariance, compositional-invariance, and permutation-invariance. The
degeneracies are reflected in the outcomes being identical when: 1. all particle sizes are multiplied
by a constant factor, 2. the fractional prevalences of the particle types sum to unity, and 3. sets of
log-normal distribution parameters are swapped with each other, respectively. This simulation provides
fertile ground for assessing the impact of multiple constraints on search efficiency, with a total of eight
search space types which ranges from none up to all three constraints imposed simultaneously. Contrary
to intuition, we find that, on average, the most compact search space performs worse than the least
compact search space ((0.692 ± 0.036) vs. (0.699 ± 0.016) , respectively) over 50 iterations due to the
interactions of the non-linear size-invariance degeneracy with other degeneracy types. The most efficient
search space in terms of both predicted and validated outcomes is the combination of the composition and
permutation constraints, resulting in a mean packing fraction of (0.728±0.010) over 50 iterations, where
randomly sampled volume fractions are typically no less than 0.6. We recommend that optimization
practitioners in the physical sciences carefully consider the impact of removing search space degeneracies
on search efficiency prior to running expensive optimization campaigns.
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1. Introduction

Materials informatics tasks are characterized by
small, sparse, noisy, multi-scale, heterogeneous,
and high-dimensional datasets [1]. The search
spaces associated with these tasks are often non-
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linearly correlated, discrete, and/or non-linearly
constrained. Some representative examples are
dopant concentration interactions, experimental in-
strument limitations, and adherence to chemical
parsimony (i.e. the unlikelihood of finding materi-
als with more than 5 or 6 elements present), respec-
tively. Due to small/expensive-to-sample datasets,
Bayesian optimization (BO) is often chosen for ma-
terials discovery and process optimization problems
[2–8] for its excellent search efficiency. BO is an
adaptive design technique that involves leveraging
prior belief about the solution to a problem and
updating the belief in the context of new infor-
mation. One of the greatest strengths of Bayesian
models via e.g. Gaussian processes is the elegant
trade-off between exploitation (high-performance)
and exploration (high-uncertainty) through acqui-
sition functions1.

BO has been used to create and adaptively re-
fine surrogate models for physics-based simulations
whether acting directly as the surrogate model
[2, 4, 5, 7] or tuning hyperparameters of a surro-
gate model [3, 10] among other applications such
as experimental discovery [6–8] and crystal struc-
ture prediction [11–14].

A non-exhaustive list of popular global optimiza-
tion schemes, in order of (typically) increasing effi-
ciency, is given : manual tuning, grid search, ran-
dom sampling, Sobol sampling, genetic algorithms,
and BO. For inexpensive evaluations (hundreds of
thousands of evaluations), random or Sobol sam-
pling is typically preferred. For moderately ex-
pensive evaluations (tens of thousands of evalua-
tions), genetic algorithms are typically preferred.
Finally, for expensive-to-evaluate functions (hun-
dreds to thousands of evaluations), BO is typically
preferred. Exact BO scales poorly with dataset
size, for which less efficient but more computation-
ally tractable genetic algorithms are used. Like-
wise, for its straightforward implementation and
low computational requirements, pseudo-random

1“Acquisition functions are mathematical techniques
that guide how the parameter space should be explored dur-
ing Bayesian optimization. They use the predicted mean
and predicted variance generated by the Gaussian process
model” [9].

sampling is preferred for large datasets. Grid-based
searches in high dimensional spaces tend to be inef-
ficient due to systematic sparse regions in the center
of hyperboxes that make up the high-dimensional
grid. Manual tuning by humans can often lead to
local optimization and inefficient searches.
Recently Liang et al. [15] benchmarked Bayesian

optimization techniques for several materials sci-
ence tasks. They raised awareness of the utility
of anisotropic kernels over isotropic kernels. They
found that certain algorithms may perform well
on certain tasks while performing poorly on oth-
ers, highlighting the need for a careful task-based
choice of models. In addition, they mentioned the
computational advantages of random forest models
relative to Gaussian processes despite being slightly
less efficient overall.
Similar to Liang et al. [15], Hickman et al. [16]

observed the effect of model choice and task on
single- and multi-objective search efficiency un-
der a single constraint. They performed tests
on analytical objective functions and emulators
(i.e. models) trained on experimental data and
demonstrate favorable performance of the Gryffin
and Dragonfly optimization packages under con-
strained conditions. Here, we focus on a single
model (Gaussian process expected improvement
(GPEI) via the Adaptive Experimentation plat-
form) and a single task (maximizing volume frac-
tion of physics-based particle packing simulations)
with up to three simultaneous constraints and in-
stead seek to determine the effect of search space
choices on efficiency. In this work, we pose the
question:

How does creating an irreducible repre-
sentation for an adaptive design search
space affect search efficiency for small
datasets?

Solid rocket fuel propellants consist of several
different types of particles (i.e. a formulation),
where the size mean and standard deviation gen-
erally follow a log-normal distribution and are con-
trolled by milling parameters and milling time, re-
spectively. In particular, longer milling times tend
towards lower standard deviations. High packing
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fractions are important when increased stability of
solid rocket fuels is desired. Physics-based simula-
tions are often used prior to experimental synthesis
due to the energetic nature of the formulation con-
stituents (in particular, ammonium perchlorate),
made soberingly apparent in the PEPCON disas-
ter in 1988, a chemical explosion that caused two
fatalities, hundreds of injuries, and ∼$100 million
worth of damage [17].

While necessary and useful, physics-based simu-
lations are often expensive. In addition to increas-
ing approximately with the square of the number
of particles, computational runtime for a converged
particle packing simulation can vary by orders of
magnitude (e.g. 20 CPU min to 20+ CPU hours)
as a function of frictional force computations which
in turn depend on surface contact area. In general,
an appropriate combination of small and large par-
ticles leads to additional surface contact area com-
pared to homogeneous particle sizes and high pack-
ing fractions. Incidentally, the simulations which
are most favorable in terms of high packing frac-
tions are also the most expensive in terms of com-
putational runtime. However, this is not mutually
exclusive - computationally expensive simulations
can also lead to undesired, low packing fractions.
These points suggest the need for efficient optimiza-
tion of the simulation search space.

In prior work [18], several iterations of adaptive
design (also referred to as sequential learning) con-
sisting of exploratory data analysis were followed
by a classification-based approach. For the lat-
ter, rather than perform regression and take can-
didates with the best numerical predictions, solu-
tions were classified based on their likelihood of
being “extraordinary” [19], meaning falling in a
top x% of all candidates in terms of performance.
This resulted in 13 330 packing simulations and
and a maximum packing fraction of 0.826. In this
work, we instead focus on small data and carry
out concurrency-limited2 BO to maximize packing
fraction using low-fidelity (noisy) packing simula-
tions which mimics common materials informatics

2Concurrency refers to multiple processes occurring si-
multaneously without explicitly depending on each other.

datasets and tasks. We emphasize that the pack-
ing fractions reported in [18] should not be com-
pared directly with the packing fractions reported
in this work. This is due to significant differences
in how the distributions were parameterized and
translated into ParPack simulation input files. See
Section S4 for discussion and figures related to the
differences. Another significant difference arises
from the use of far fewer number of particles in this
work (25 000 instead of 1.5 × 106). See Section S3
for the convergence behavior of volume fraction vs.
number of particles which shows an initial steep rise
in the mean volume fraction.

2. Methods

2.1. Adaptive Experimentation Platform and Ray-
Tune

While many excellent packages for BO exist, we
choose Meta’s (formerly Facebook) Adaptive Ex-
perimentation (Ax) platform for “its relative ease-
of-use, modularity, developer support, and model
sophistication” [10] and refer to this as Ax. In
prior work [10], a high-dimensional scheme named
sparse axis-aligned subspaces Bayesian optimiza-
tion (SAASBO) was used to optimize 23 hyper-
parameters within a design budget of 100 itera-
tions and demonstrated superior performance over
a more traditional (default) Bayesian optimization
approach. Here, we choose to use the default
Bayesian model, GPEI, instead of SAASBO for sev-
eral reason as follows:

1. Number of cores is limited in this study, and
SAASBO is computationally expensive; use of
concurrency results in trial evaluation and can-
didate generation often occurring simultane-
ously

2. There are fewer dimensions in this study
and SAASBO’s exceptional performance tends
to manifest with high-dimensional problems
where certain features are much less important
than others3

3Nonetheless, it would be interesting to see if SAASBO
is capable of quickly resolving the degenerate structure of
certain search spaces.
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3. Basic and preliminary results (not shown) sug-
gest that the performance between SAASBO
and GPEI may be on par with each other for
this problem; however, this could be verified
much more thoroughly

We refer to the GPEI implementation within the
Ax platform as GPEI.4

10 Sobol iterations precede 40 Bayesian opti-
mization iterations. All Sobol iterations were re-
quired to be completed before moving on to the
Bayesian optimization iterations. Alternatively,
setting the number of Sobol iterations to the de-
fault of twice the number of parameters and/or re-
ducing min_observed_trials (i.e. able to evalu-
ate second step trials before completing first step)
may have been appropriate choices which we do not
expect to significantly impact the findings in this
study.
In this work, we use a scheduler method for the

Bayesian optimization trials. Because trial run-
times can vary between a few CPU minutes to
over a CPU day as a function of the trial param-
eters, using a scheduler algorithm with multiple
CPUs is likely more efficient in terms of clock time5

than sequential optimization and batch optimiza-
tion. Sequential optimization is a straightforward
implementation where only one iteration runs at a
time, and candidate generation for the next itera-
tion does not occur until the results from the previ-
ous iteration are available. Batch optimization, by
contrast allows for multiple trials to run in parallel
and necessitates using conditioning6 or similar to
generate a batch of candidates. Batch optimization
is related to scheduler optimization in that multiple
trials can run simultaneously, but is better suited

4Generally, when referring to theory, we refer to the full
name or abbreviation, and when referring to the model as
implemented within Ax we use code formatting.

5Clock time is the real time between start and finish
rather than the total CPU time used (possibly across mul-
tiple devices).

6Because joint acquisition is not always tractable, con-
ditioning is often used such that later suggestions are con-
ditioned on the predicted outcomes of earlier suggestions
in the batch. See Appendix F.2 of Balandat et al. [20] for
two types of conditioning: sequential greedy approaches and
“fantasy” models. See also Wilson et al. [21].

for tasks where runtimes within a batch are approx-
imately similar. This is because all trials within
a batch have to complete before moving onto the
next batch iteration which can result in poor uti-
lization of the compute devices (e.g. CPU cores left
in an idle state). A scheduler mitigates this issue
by generating new candidates and assigning them
to “workers” (i.e. CPU cores) as soon as one is
available. During the generation step, all currently
available data (including recently completed trials)
is considered. The scheduler can be thought of as a
manager that dynamically assigns tasks of varying
difficulties to employees to maximize throughput.

More sophisticated scheduling algorithms also
exist, for which we refer the reader to the Ray-
Tune Trial Schedulers documentation. These types
of scheduling algorithms can be applied to any com-
bination of offline/online7 and computational/ex-
perimental tasks, especially when there are multi-
ple “workers” (e.g. CPUs, robots, experimental-
ists); however, the most straightforward and per-
haps most ubiquitous application of scheduler al-
gorithms is for online computational optimization
tasks (e.g. simulations).

2.2. Validation

Each optimization is repeated 5 times (each us-
ing a unique, fixed seed for the random number
generator) with the fixed design budget and setup
as described in Section 2.1. Leave-one-out cross-
validation is performed for each final optimization
dataset, and the best in-sample predictions8 are
repeated 50 times, for which the mean and stan-
dard deviation are calculated. This validation of
best in-sample predictions allows us to provide a
fair comparison of the effect of each representation
on search efficiency relative to each other; in other
words, this validation step is central to the findings
of this study.

7Offline vs. online adaptive design can be thought of
as whether or not a script needs to be restarted multiple
times or is closed-loop where all iterations can be run to
completion without exiting the script.

8In-sample predictions (meaning predictions for trials
that completed) are used rather than the raw observed data
due to noise in the latter.

4

https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html


See Figure S7 for details related to the conver-
gence behavior of the particle packing simulations
as a function of particle size for a specific high-cost
set of parameters.

2.3. Particle Packing Simulations

A proprietary Windows executable was used.
The driver of these is a Python class. While the
executable is not made available, the functions and
scripts provided at https://github.com/spark

s-baird/bayes-opt-particle-packing can be
adapted to other problems or used as a reference
for custom implementations.
Theoretical details of the particle packing simu-

lations are given in Davis and Carter [22], Webb
and Davis [23], for which a summary is provided
in the second paragraph of the Motivation section
in Hall et al. [18]. In short, these simulations in-
volve dropping particles sampled from a predefined
distribution of particle sizes inside of a cylinder at
randomized locations [18].
The datasets in Hall et al. [18] used a positive

linear relationship between mass fraction and par-
ticle size, which is opposite to what is described in
Fig. 2 of Hall et al. [18] due to an error in how the
distributions were processed in internal scripts. We
formalize the representation of particle size distri-
butions in this work as truncated log-normal dis-
tributions. We emphasize that there is little to no
correspondence between the parameters reported
in this work and that of Hall et al. [18] due to the
differences in distribution sampling. For a compar-
ison of Hall et al. [18] vs. this work, see Figure S1
and Figure S2, respectively. To avoid any ambigu-
ity, we define our parameters as scale and shape

(or s) as used within scipy.stats.lognormal via
e.g.:

lognorm.pdf(x, shape , scale=scale)

Infinite random sampling from the log-normal dis-
tribution as defined by the scale parameter results
in an empirical distribution whose median is equal
to scale.
We provide representative examples of the trun-

cated distributions sampled in this work in Fig-
ure S2, as well as log-normal distributions de-
rived from grid-sampled parameter combinations

Figures S3 and S4 based on the search bounds in
Table 1 to give a better sense of distributions sam-
pled in this work. Additionally, we demonstrate the
convergence behavior of volume fraction as a func-
tion of number of particles per simulation in Sec-
tion S3. There is a moderate run-to-run variation
for simulations using this distribution and 25 000
particles Figure S7.

2.4. Reducible and Irreducible Search Spaces

In this work, a reducible search space is a search
space that exhibits identical solutions for different
parameterizations that can be collapsed to a single
solution and a single parameterization (i.e. an ir-
reducible search space) through reparameterization
or imposition of constraints. Baird et al. [24] found
that mapping symmetrically related sets of param-
eters to an irreducible representation (i.e. a funda-
mental zone in crystallographic terms9) exhibited
distinct advantages related to accuracy and compu-
tational efficiency of distance calculations10 Similar
to the crystallographic representation, reducibility
in this work focuses on leveraging domain knowl-
edge about the relationship between input parame-
ters of an otherwise “black-box” objective function
to restrict the search space through reparameter-
ization. Examples are a simulation that exhibits
size invariance (e.g. unitless simulations) [25, 26]
(referred to as “size”), a set of parameters that is
represented as a composition or formulation (i.e.
Al2O3 ≡ 0.4Al + 0.6O where 0.4 + 0.6 = 1.0)
[27–38] (referred to as “comp”), or a set of pa-
rameters that exhibits permutation invariance (e.g.
Al2O3 ≡ O3Al2) [24, 28] (referred to as “order”).
A ubiquitous example exists in image processing,
where machine learning algorithms often rely on
data augmentation to account for rotational in-
variance [39] which is not addressed in this work.
When no additional parameter constraints other

9A fundamental zone in crystallography, which contains
only one parameter combination out of a set of symmetri-
cally related parameter combinations (e.g. crystal misorien-
tation and/or grain boundary plane normal directions)

10The symmetry degeneracy is separate from the inclu-
sion or exclusion of a degenerate dimension via rigid prin-
cipal component analysis transformation which did not sig-
nificantly impact model accuracy
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Table 1: Summary of 9 non-reparameterized simulation pa-
rameters and their bounds. x̃i, si, and pi correspond to
log-normal mean, log-normal standard deviation, and frac-
tional prevalence (i.e. composition) for each of the three
particles.

Name Min Max

x̃1 1 5
x̃2 1 5
x̃3 1 5
s1 0.1 1
s2 0.1 1
s3 0.1 1
p1 0 1
p2 0 1
p3 0 1

than lower and upper limits are used, we refer to
this as “Bounds-only”.
We note that the reparameterizations and impo-

sition of constraints in this work are separate from
(usually) lossy dimensionality reduction techniques
such as Uniform Manifold Approximation and Pro-
jection [40] or t-distributed stochastic neighbor em-
beddings [41] in that only redundant information is
lost11 and parameters retain domain-specific, inter-
pretable meaning.
The Ax SearchSpace objects corresponding to

each of the eight search spaces explored in this work
are given in Section S9.
A summary of the 9 original simulation param-

eters and the bounds used in this work are given
in Table 1. See Appendix A for additional de-
tails of the reparameterizations applied and con-
straints imposed in this work. A visual summary
of these constraints and their corresponding degen-
erate search spaces are given in Figure 1.

3. Results and Discussion

We present predicted and validated outcomes
Section 3.1 and interpretable model characteristics

11“Only redundant information is lost” assumes that the
constraints imposed are consistent with the actual behavior
of the objective function.

for the eight search spaces Section 3.2.

3.1. Effect of Search Space Irreducibility on Effi-
ciency

Consistent with the validation results from Fig-
ure 2, the comp/order constrained configuration
(Figure 3f) exhibits the best predicted (optimized)
volume fraction out of eight search spaces. Like-
wise, the predicted (Figure 2) and validated (Fig-
ure 3g) outcomes for the size/order constrained
configuration mirror each other as the worst out of
the eight search spaces. In other words, the best in-
sample predictions appear to match the validated
outcomes, despite an optimization budget of 50 it-
erations over 7-9 tunable parameters. This is a re-
assuring finding, especially if it applies to situations
where the validation is much more expensive or in-
feasible to perform, where someone must “trust”
the best in-sample predictions despite it using a
model trained on noisy data.
The authors think it likely that use of data aug-

mentation as described in Appendix A.3 would
result in better performance than the order con-
straint; difficulties and limitations of a data aug-
mentation approach are discussed in Appendix A.3.
Individual optimization results for each of the

seeded runs is given in Section S6.

3.2. Interpretable Model Characteristics

In this subsection, we probe some interpretable
characteristics of the GPEI model through parti-
cle size distribution visualizations (Section 3.2.1),
feature importances (Section 3.2.2), and 2D con-
tours for two of the compositional variables (Sec-
tion 3.2.3). Plots with additional features and de-
tails are given in Sections S4, S5 and S8, respec-
tively. Additionally, leave-one-out cross-validation
results are provided in Section S7.

3.2.1. Solutions visualized as summed distributions

Bounds-only exhibits a variety of summed dis-
tribution shapes across the seeded runs. Compo-
sition exhibits greater similarity with two primary
distributions, one small and one large, and mild
variation in the peak widths and heights. Size also
exhibits some homogeneity across the seeded runs,
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(a) r1 = x̃1
x̃3

, r2 = x̃2
x̃3

(b) Bound constraints only

(c) p1 + p2 ≤ 1.0 (d) p1 + p2 + p3 = 1.0 (e) Bound constraints only

(f) s1 < s2 < s3 (g) Bound constraints only

Figure 1: Irreducible and reducible search spaces for size, compositional, and permutation constraints.
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Figure 2: Packing fraction mean and standard deviation of
validated results using 50 repeat runs for each of the 8 search
space types, sorted by decreasing mean packing fraction.

with large bounds (and therefore maximum parti-
cle size ratios) and peaks that appear sharp due
to the widened x-axis bounds. Order is not very
homogeneous across seeded runs, exhibiting both
unimodal, bimodal, and trimodal summed distri-
butions. Comp/Size is likewise varied. Interest-
ingly, it seems to exhibit aspects from both the
Comp-only and Size-only solutions. There are a
mixture of sharp/broad peaks and small/large par-
ticle size bounds. Comp/Order is fairly homoge-
neous across seeded runs, often producing jagged
peaks in-between the smallest and largest distri-
butions due to summation of truncated distribu-
tions whose bounds overlap near peak locations.
Additionally, we note that Comp/Order had the
best predicted (Figure 3) and validated (Figure 2)
performance out of the eight search space types.
Size/Order is varied and exhibits a mix of char-
acteristics from the Size-only and Order-only solu-
tions: large particle-size bounds/sharp peaks and
peaks with similar heights12, respectively. We note
that Size/Order had the worst performance out of

12Size/Order shows peaks with similar heights as opposed
to the first-peak-low, second-peak-high trend.

the eight search spaces. Finally, Comp/Size/Order
(All) exhibits large bounds and is quite varied in
terms of shape, and the solutions exhibit similarity
with the Size/Order solutions.

In all cases involving Size, instances of much
higher upper bounds on the particle size are ob-
served (up to approx. 200), and in all cases not
involving Size, the particle size upper bound is re-
stricted to less than approx. 20. This seems sig-
nificant as the Size reparameterization in the pres-
ence of other constraints always had a deleterious
effect on the predicted and validated average per-
formance.

Distribution visualizations on a per-seed basis
with additional plot features and annotations are
given for seeds 10, 11, 12, 13, and 14 are given in
Section S4.

3.2.2. Feature Importances

Average feature importances13 across five seeded
runs are given in Figure 5. We note that each search
space is characterized by different sets of features,
ranging from seven to nine total features.

One of the characteristics that stands out is the
large standard deviations for many of the features.
In other words, separate optimization runs did not
necessarily assign the same features as being most
important regardless of the search space.

We would have expected that for the search
space with the best predicted and validated out-
comes (Composition reparameterization + order
constraint), the feature importances would have
tighter standard deviations than others; how-
ever, this does not appear to be the case. The
search space with the worst average performance
(size reparameterization and order constraint) ex-
hibits fairly comparable standard deviations for the
search spaces, albeit for different parameters.

Individual feature importances based on the fit-
ted, inverse lengthscales of the anisotropic Gaus-
sian kernels for each of the seeded runs are given in
Section S5.

13Feature importances are based on based on the inverse
lengthscales of an anisotropic Gaussian kernel.
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(a) Bound constraints only

(b) Composition reparameterization (c) Size reparameterization (d) Order constraint

(e) Composition and size reparame-
terizations

(f) Composition reparameterization
and order constraint

(g) Size reparameterization and or-
der constraint

(h) Composition and size reparam-
eterizations and order constraint

Figure 3: Best objective vs. iteration for eight search spaces. By default, Ax uses the the best in-sample predictions
rather than the noisy measured values unless a reasonable fit is not obtained.
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Figure 4: Summed distributions (black) and each of the component distributions (red, blue, and optionally green) for
mass fraction vs. particle size for the eight search spaces (rows) repeated for five seeded runs (columns).
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(a) Bound constraints only

(b) Composition reparameteriza-
tion

(c) Size reparameterization (d) Order constraint

(e) Composition and size repa-
rameterizations

(f) Composition reparameteriza-
tion and order constraint

(g) Size reparameterization and
order constraint

(h) Composition and size repa-
rameterizations and order con-
straint

Figure 5: Average feature importances for the eight search spaces across five seeded optimization runs with standard
deviations as error bars.
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3.2.3. 2D Contours through Parameter Space

2D contour plots of comp2 (y-axis) vs. comp1 (x-
axis) for each of the eight search spaces (rows) and
each of the five seeded optimization runs are given
in Figure 4.
We observe qualitative differences between the

various search spaces. Of the eight search spaces,
only Comp/Order appears to have solutions for
comp1 and comp2 that very close to each other
across each of the optimization runs. Interestingly,
the Comp-only and Order-only constraints do not
exhibit this homogeneity of search solution, indi-
cating that each of these constraints has a syner-
gistic effect on the ability to “compact” the search
space. This is further corroborated by the fact that
Comp/Order is the highest performing search space
both in terms of predicted and validated outcomes.
The other seven search spaces exhibit a local op-

timum in differing locations, and in some cases mul-
tiple local optima.
2D contours through parameter space with ad-

ditional features such as estimated standard devia-
tion error for seeds 10, 11, 12, 13, and 14 are given
in Section S8.

4. Future Work

A number of questions may be interesting to ex-
plore in future work:

• What is the effect of irreducibility for high-
dimensional optimization (i.e. 20+ parame-
ters)?

• To what extent can multi-fidelity optimization
reduce total search cost?

• Do the results generalize to optimization of
model accuracy (i.e. without regard to high-
performance)? (e.g. via Negative Integrated
Posterior Variance acquisition function14)

• Do the results generalize to wetlab experi-
ments (as opposed to physics-based simula-
tion)?

14For Negative Integrated Posterior Variance acquisition
function usage in Ax, see https://github.com/facebook/

Ax/issues/930

• How do these findings compare to other opti-
mization algorithms (e.g. genetic algorithms,
random forest based BO [42])?

• Do larger datasets follow the same trend?

• Is there a significant difference in search effi-
ciency when using a predefined list of candi-
dates (i.e. supply candidates sampled from an
irreducible search space)?

• How does search space reducibility scale to
multi-objective problems?

• Could replacing the Bayesian model with
SAASBO help in quickly resolving the degen-
erate structure of reducible search spaces?

• Will applying a (e.g. log) transform to the
scale parameters when using the size repa-
rameterization improve the optimization re-
sults?

• Could using a heteroskedastic noise assump-
tion improve the performance of the size-
reparameterized search space?

5. Conclusion

Contrary to intuition, the most compact search
space is not always the most efficient from a
Bayesian optimization perspective. In particular,
the application of a constraint that introduces a
non-linear transform tends to have a deleterious
effect on average search efficiency, but only when
in the presence of the other constraints. In other
words, removing search space degeneracy does not
always equate to more efficient optimization. The
performance was worse than the least compact
search space in all three cases where the non-linear
transform was combined with at least one other
constraint. Consistent with expectation, there were
compacted search spaces that exhibited better per-
formance than the least compact space. We show
that careful consideration and application of lin-
ear and order constraints dramatically increases the
search efficiency relative to less-constrained search
spaces for a physics-based simulation with seven
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Figure 6: 2D contour plots of comp2 (y-axis) vs. comp1 (x-axis) for each of the eight search spaces (rows) and each of the
five seeded optimization runs.
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to nine tunable parameters depending on the com-
pactness of the search space. A linear equality
constraint and an order constraint acted synergis-
tically to produce the best predicted and validated
outcomes. This was also manifest in visualiza-
tions of the solutions across repeated optimization
runs and 2D contour characteristics of a subspace
of the full search spaces. Average feature impor-
tances were characterized by large standard devi-
ations for all search spaces, making it difficult to
interpret. We caution optimization practitioners
to carefully assess the influence of linear and non-
linear constraints or reparameterizations on their
search spaces, especially when expensive physics-
based simulations or wetlab experiments are in-
volved. Pairing efficient search spaces with state-
of-the-art optimization algorithms has the poten-
tial to dramatically improve optimization success
relative to more standard approaches.

Appendix A Reparameterizations and
Constraints

A.1 Size Invariance

An example of a scaling or size invariant objec-
tive function is given in Eq. (1):

fvolFrac( X̃, S, P)=fvolFrac(aX̃, S, P), a>0 (1)

where X̃, S, P , a, and fvolFrac(·) represent vector of
log-normal medians (scale parameters), vector of
log-normal shape parameters, vector of fractional
prevalence (i.e. composition) for each particle, a
positive, real-valued constant, and volume fraction
function/simulation, respectively.
Reparameterizations for the log-normal mean are

given in Eq. (2):

rx̃,i =
x̃i

x̃n

∀ i ∈ {1,n-1} (2)

where x̃i and n represent log-normal median of the
i-th particle (scale parameter) and number of par-
ticles, respectively.
Log-normal standard deviations are used as-is.
When size invariance and the order constraint are

applied simultaneously, only the first two standard
deviations are included in the order constraint.

A.2 Compositional Constraint

The linear equality compositional constraint is
given in Eq. (3):

n∑
i=1

xi=1 (3)

where xi and n represent fractional prevalence of
the i-th particle and number of particles, respec-
tively.

However, linear equality constraints are not di-
rectly supported by most optimization packages.
This can be reparameterized, albeit with some dis-
tortion of the original search space, as a linear in-
equality constraint as Eq. (4):

n−1∑
i=1

pi≤1 (4)

where pi and n represent fractional prevalence of
the i-th particle and number of particles, respec-
tively.

This is subject to the additional constraint that
Eq. (5):

pn=1-
n−1∑
i=1

pi (5)

where pn, pi, and n represent fractional prevalence
of the n-th particle, fractional prevalence of the i-th
particle, and number of particles, respectively.

A.3 Permutation Invariance

An example of permutation invariance is given in
Eq. (6):(

fvolFrac [x̃1, x̃2, x̃3, s1, s2, s3, p1, p2, p3]=
fvolFrac [x̃2, x̃1, x̃3, s2, s1, s3, p2, p1, p3]

)
(6)

where x̃, s, p, and fvolFrac[·] represent log-normal
median (scale parameter), log-normal shape pa-
rameter, fractional prevalence, and volume fraction
function/simulation, respectively.

One option to address the degeneracy here is to
impose an order constraint Eq. (7):

si ≤ si+1 ∀ i ∈ {i,n-1} (7)

14



where si and n represent log-normal shape param-
eter of the i-th particle and number of particles,
respectively.

An alternative, though not particularly amenable
to BO (at least when data scaling is an issue) and
in general intractable when the number of per-
mutations is large, is to perform data augmenta-
tion in the original search space by including the
repeat permutation data at “no additional cost”.
Additionally, we did not choose to perform data
augmentation due to the difficulty of simultane-
ously implementing all three reparameterizations/-
constraints within an AxSearch first in, first out
scheduler framework. While possible using much
lower level and custom implementations, there is
an additional concern related to the simultaneous
implementation of a size reparameterization, data
augmentation, and bound constraints; in order for
the bound constraints on the reparameterized mean
and standard deviation parameters to encompass
all possible values, the bounds must be extended
to include extreme ratios for each reparameterized
value (e.g. [1.0

5.0
, 5.0
1.0

] rather than [1.0
1.0

, 5.0
1.0

] in the case
where x̃3 = 1.0). Thus, it becomes difficult to de-
convolve the direct effect of the data augmentation
with the indirect effect on the size reparameteriza-
tion bounds.

By contrast, when using an order constraint to-
gether with the size reparameterization, bound in-
flation can be avoided by applying the order con-
straint to only the first two standard deviations
rather than all three. As mentioned, the practi-
cal implementation of data augmentation for this
work’s optimization task is not straightforward and
is of limited use in terms of combinatorial explosion
when many variables are involved as well as data
scaling limitations. This results in a high-cost sce-
nario for possibly murky results and applicability to
a more limited range of tasks (i.e. small data, few
variables in the permutation constraint). Thus, we
choose to focus on order constraints in this work.
However, the effect of using data augmentation vs.
order constraints on search space efficiency in com-
bination with other constraints may be an interest-
ing topic for future study.

Glossary

BO Bayesian optimization 2, 3, 12, 15

GPEI Gaussian process expected improvement 2–
4

SAASBO sparse axis-aligned subspaces Bayesian
optimization 3, 4, 12
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