
Extension of Natural Reaction Orbital Approach to 

Multiconfigurational Wavefunctions 

 

Shuichi Ebisawa1, Takuro Tsutsumi2.3, and Tetsuya Taketsugu2,4 * 

 

1Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, 

Japan  

2Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan 

3L-Station, Creative Research Institution (CRI), Hokkaido University, Sapporo 060-0812, Japan 

4Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, 

Sapporo 001-0021, Japan 

 

ABSTRACT 

Recently, we proposed a new orbital analysis method, natural reaction orbital (NRO), which 

automatically extracts orbital pairs that characterize electron transfer in reaction processes by singular 

value decomposition (SVD) of the first-order orbital response matrix to the nuclear coordinate 

displacements (Phys. Chem. Chem. Phys. 24, 3532 (2022)). NRO analysis along the intrinsic reaction 

coordinate (IRC) for several typical chemical reactions demonstrated that electron transfer occurs 

mainly in the vicinity of transition states and in regions where the energy profile along the IRC shows 

shoulder features, allowing the reaction mechanism to be explained in terms of electron motion based 

on orbital pairs that represent electron transfer. However, its application has been limited to single 

configuration theories such as Hartree-Fock theory and density functional theory (DFT). In this work, 

the concept of NRO is extended to multiconfigurational wavefunctions and formulated as the 

multiconfiguration NRO (MC-NRO). The MC-NRO method is applicable to various types of 



electronic structure theories, including multiconfigurational theory and linear response theory, and is 

expected to be a practical tool for extracting the qualitative essence of a broad range of chemical 

reactions, including covalent bond dissociation and chemical reactions in electronically excited states. 

In this paper, we calculate the IRC for five basic chemical reaction processes at the level of the 

complete active space self-consistent field (CASSCF) theory and discuss the electron transfer by 

performing MC-NRO analysis along each IRC. Finally, issues and future prospects of the MC-NRO 

method are discussed. 
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I. INTRODUCTION 

As is well known, molecular orbitals (MOs)1,2 are very useful in understanding the reactivity of 

chemical reactions. Fukui’s frontier orbital theory3,4 and the Woodward-Hoffmann rule5-9 are the most 

representative works that reveal the essence of chemical reactivity in terms of MOs. These two theories 

have been widely accepted and applied to various systems involving reactions in electronically excited 

states. Although frontier orbital theory and the Woodward-Hoffmann rule were established more than 

half a century ago, the concept of MO is by no means old. In recent years, properties of MOs, such as 

orbital energies, have been used as descriptors in cutting-edge data science approaches.10,11 Molecular 

orbitals are still a powerful tool for extracting the essence of chemical phenomena, a concept with 

such a long history that it still underlies chemists' thinking today. However, it is not clear whether the 

properties of MOs are fully exploited in the analysis of reaction mechanisms.  

In standard reaction mechanism analysis, the interaction of MOs possibly involved in a 

chemical reaction is traced along reaction coordinates.8 Therefore, MOs and reaction coordinates that 

characterize a reaction are necessary to perform reaction mechanism analysis. Nowadays, with the 

development of computational chemistry, it is easy to obtain MOs for molecular systems, and various 

sophisticated methodologies12-17 have made it possible to calculate typical reaction pathways, such as 

intrinsic reaction coordinates (IRCs).18 Thus, the basic tools necessary for MO-based reaction 

mechanism analysis are already available. However, it must be remembered that the definition of MO 

is not unique, and due to its arbitrariness, it is necessary to select an appropriate definition for the 

purpose of analysis. This arbitrariness of MO comes from the invariance of the wavefunction to orbital 

rotations. For example, the Hartree-Fock wavefunction is invariant to transformations that rotate 

occupied and virtual orbitals separately.19 This situation could be compared to a choice of coordinate 

axes. It is very common to choose a coordinate axis that is convenient for describing the system to be 

analyzed, e.g., applying classical multidimensional scaling methods20,21 or principal component 



analysis22 to chemical reaction analysis. Such a choice of characteristic coordinate axes is allowed 

because the rotation of the coordinate axes never changes the nature of the data. Rotation of the 

coordinate axes only changes the way the data is represented and labeled. Thus, choosing the 

appropriate coordinate axes often highlight the essence of the data without changing the nature of the 

system. Given this invariance, it is no more beneficial to insist on the definition of MO than it is to 

insist on a particular coordinate. It is also pointed out that there is not an optimal definition of MO for 

any given analysis.23 For example, even the well-known frontier orbitals of the canonical molecular 

orbital (CMO), the diagonal basis of the Fock matrix, do not correlate well with the polarizability, 

contrary to conventional understanding.11 Since the analysis of MOs is meaningful if the MOs 

appropriately characterize the subject of analysis, it is essential to choose an appropriate definition of 

MOs for the purpose of analysis. 

In order to understand and characterize the various chemical properties of many-body 

wavefunctions, a great number of orbital definitions have been introduced: natural orbital (NO),24 

localized orbital (LO),25 interacting frontier orbitals (IFOs),26 natural bond orbital (NBO),27 natural 

localized molecular orbitals (NLMOs),28 intrinsic bond orbitals (IBOs),29 valence virtual orbitals 

(VVOs)30, principal interacting orbitals (PIOs)31 and energy natural orbitals (ENOs).32 All of these 

methods are useful for characterizing the static nature of many-body wavefunctions at a single 

geometrical structure, but by definition, there are no molecular orbitals that directly characterize 

changes in electron density along a reaction pathway. Considering that arrows, a common technique 

for describing reaction mechanisms in organic chemistry, schematically show the electron flow in 

(elementary) chemical reactions, it seems quite natural to design MOs for reaction mechanism analysis 

and characterize electron density changes along reaction coordinates. However, if MOs that are not 

suitable for the analysis of electron density changes are used, the contribution to electron density 

changes may be distributed among many MOs, making orbital-based reaction mechanism analysis 



difficult. 

Recently, we proposed a new type of molecular orbital designed for chemical reaction 

analysis, the Natural Reaction Orbital (NRO).33,34 The NRO is obtained by applying singular value 

decomposition (SVD), first applied to orbital transformations by Amos and Hall,35 to the first-order 

orbital response to nuclear coordinate perturbations given by the coupled-perturbed self-consistent 

filed (CPSCF) equation.36-38 The orbitals obtained by applying SVD to the CPSCF with respect to 

charge fluctuations are known as intrinsic soft molecular orbitals (ISMOs).39 ISMO is the optimal 

basis for characterizing electron density changes due to partial charge fluctuations. Similarly, NRO 

can be considered as the optimal basis for characterizing electron density changes due to changes in 

molecular geometry. Indeed, NRO could successfully characterize various types of chemical reactions 

without having to track orbitals along the reaction pathway. Moreover, NRO can automatically extract 

representative orbitals of a given chemical reaction based on the magnitude of the singular values of 

occupied-virtual NRO pairs, which measures the mixing rate of the NRO pairs. Interestingly, the 

product of NRO pairs can indicate the electron density change due to the mixing of the pairs. Thus, 

NRO can not only identify representative orbitals, but also describe the changes induced by 

representative orbitals without manual work based on in-depth knowledge of chemistry. This is the 

main reason why NRO is suitable for reaction analysis.  

 Although NRO was successfully applied to typical reactions in the ground state, the 

applicability of the NRO method was limited to electronic structure theory based on a single-

determinant configuration. Accordingly, chemical reactions involving explicit bond dissociation and 

formation processes that require multiconfigurational wavefunctions could not be analyzed by NRO. 

Thus, there is a need for another practical method of orbital analysis that can be applied to 

multiconfigurational theory40,41 and linear response theory as well.42-44 

 In this study, we extend the NRO to a multiconfigurational theory, called multiconfiguration 



NRO (MC-NRO); MC-NRO is not equivalent to NRO, but it is possible to automatically extract 

representative orbitals of a given reaction even in electronically excited states at a moderate 

computational cost.  

 Section II describes the formulation of the MC-NRO. Section III then presents five 

application examples and discussion. In the respective examples, it is shown that the MC-NRO 

successfully characterizes the reaction. A discussion of the symmetry of the MC-NRO is also included 

in Sections II and III.  

  



II. MULTICONFIGURATION NATURAL REACTION ORBITAL 

A. Natural reaction orbital for Hartree-Fock theory 

First, a brief description of the NRO formulation for the Hartree-Fock (HF) method is given. The 

detailed formulation is given in Ref 33. Let Φ denote the HF wavefunction for a given geometry and 

the first-order response of the HF wavefunction to nuclear coordinate displacements, Φ(ଵ), is given 

by38 

หΦ(ଵ)ൿ = ෍ 𝑈௔௜
(ଵ)

𝑎௔
ற𝑎௜|Φ⟩

௔∈୴୧୰
௜∈୭ୡୡ

−
1
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෍ 𝑆௜௜
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|Φ⟩,   (1) 

where the matrix 𝑈௔௜
(ଵ) is defined by 

𝑈௔௜
(ଵ)

≔ ෍ 𝑐ఓ௔𝑆ఓఔ𝑐ఔ௜
(ଵ)

ఓఔ

.   (2) 

The subscripts 𝜇 and 𝜈 are used for the atomic orbital (AO) basis. 𝑆ఓఔ is the overlap matrix, 𝑐ఓ௔ 

is the a-th virtual canonical orbital coefficient, and 𝑐ఔ௜
(ଵ)  is the first-order response to the nuclear 

coordinate displacement of the i-th occupied canonical orbital. The operators 𝑎௜ and 𝑎௔
ற in Eq. (1) 

are the annihilation and creation operators for i-th occupied and a-th virtual canonical orbitals, 

respectively. 𝑆௜௜
(ଵ) in Eq. (1) is defined as  

𝑆௜௜
(ଵ)

≔ ෍ 𝑐ఓ௜𝑆ఓఔ
(ଵ)

𝑐ఔ௜

ఓఔ

,   (3) 

where 𝑆ఓఔ
(ଵ) is the first-order response of the overlap matrix. The second term in Eq. (1) comes from 

the orthonormalization condition of the occupied orbitals and is not considered essential for 

understanding chemical reactivity. Then, we will use only the virtual-occupied block of the first-order 

response  

ൻΦ(ଵ)ห𝑎௔
ற𝑎௜หΦൿ = 𝑈௔௜

(ଵ)
   (4) 

to characterize the response of the HF wavefunction to the nuclear coordinate displacement. The first-

order response matrix 𝑈௔௜
(ଵ) is obtained by solving the CPSCF equations.  



A suitable molecular orbital basis for characterizing the first-order response matrix in Eq. 

(4) is given by SVD. For a given 𝑈௔௜
(ଵ), a couple of unitary transformations can be found: 

 𝐔୚୓
(ଵ)

= 𝐋𝚲𝐑ற   (5) 

where 𝐔୚୓
(ଵ) is defined by 

𝐔୚୓
(ଵ)

≔ ෍ 𝑈௔௜
(ଵ)

𝒄௔ ⊗ 𝒄௜

௔∈୴୧୰
௜∈୭ୡୡ

.   (6) 

𝐋  and 𝐑  are unitary matrices of size 𝑁୴୧୰ × 𝑁୴୧୰  and 𝑁୭ୡୡ × 𝑁୭ୡୡ , respectively. 𝑁୭ୡୡ  and 𝑁୴୧୰ 

are the number of occupied and virtual orbitals. 𝚲 is a rectangular matrix of size 𝑁୴୧୰ × 𝑁୭ୡୡ with 

non-negative singular values ൫𝜆ଵ, … , 𝜆୫୧୬(ே౥ౙౙ,ே౬౟౨)൯ in the diagonal elements. In the SVD process, 

occupied and virtual orbitals are transformed separately: 

ቊ
൫𝒏ଵ, … , 𝒏ே౥ౙౙ

൯ = ൫𝒄ଵ, … , 𝒄ே౥ౙౙ
൯𝐑

൫𝒏ଵ
ᇱ , … , 𝒏ே౬౟౨

ᇱ ൯ = ൫𝒄ே౥ౙౙାଵ, … , 𝒄ே౥ౙౙାே౬౟౨
൯𝐋

.   (7) 

Using the generated occupied and virtual basis, ൫𝒏ଵ, … , 𝒏ே౥ౙౙ
൯  and ൫𝒏ଵ

ᇱ , … , 𝒏ே౬౟౨

ᇱ ൯ , 𝐔୚୓
(ଵ)  can be 

written as  

𝐔୚୓
(ଵ)

= ෍ 𝜆௜𝒏௜
ᇱ ⊗ 𝒏௜

௜∈୫୧୬(ே౥ౙౙ,ே౬౟౨)

.   (8) 

Here, it will be clear that the occupied and virtual basis with the same subscripts form a pair and share 

a common singular value 𝜆௜. There is no coupling term between the basis with different subscripts. 

Thus, the SVD basis of 𝐔୚୓
(ଵ) can simplify the relationship between virtual and occupied orbitals for 

a given nuclear coordinate displacement. In other words, the SVD basis is the best basis for simplifying 

response density matrices. The NRO is the SVD basis pair given by Eq. (7) with non-zero singular 

values.  

 

B. Straightforward generalization of natural reaction orbital to multiconfigurational theory 

The generalization of NRO to multiconfigurational theory is simple in the formula. Let Ψ  be an 

arbitrary multiconfigurational wavefunction. The first-order response density matrix for nuclear 



coordinate displacements 

ൻΨ(ଵ)ห𝑎௣
ற𝑎௤หΨൿ   (9) 

is used to characterize the change in the wavefunction. Here, the subscripts p and q are used for all 

molecular orbital basis. Evaluating the matrix in Eq. (9) requires derivatives of the configuration 

interaction coefficients with respect to the nuclear coordinates. The computational cost for this term 

would be quite large, and it is not easy to adopt Eq. (9) as is. Therefore, it is necessary to introduce a 

more practical formulation that is different from the straightforward generalization.  

 

C. Definition for CASSCF 

In this subsection, we will define the molecular orbitals that characterize the electronic density change 

along a given reaction coordinate in the framework of the complete active space self-consistent field 

(CASSCF) theory. First, it is necessary to clarify how the electronic density change will be represented 

in this study. The AO density matrix 𝐃୅୓ is positive semi-definite. Thus, there exists one positive 

semi-definite square root of 𝐃୅୓,45,46 denoted as 𝐃୅୓
ଵ ଶ⁄ , which satisfies the following condition 

𝐃୅୓ = 𝐃୅୓
ଵ ଶ⁄

𝐃୅୓
ଵ ଶ⁄

.   (10) 

In general, the trace of the AO density matrix does not give the total number of electrons, 𝑛୲୭୲ୟ୪, which 

is given by 

𝑛୲୭୲ୟ୪ = tr(𝐃୅୓𝐒)   (11) 

where 𝐒 is the overlap matrix. Since the overlap matrix is also positive semi-definite, we can define 

its square root, 𝐒ଵ ଶ⁄ . Then, the trace of the Hermitian matrix gives the total number of electrons. 

𝐃෩ ≔ 𝐒ଵ ଶ⁄ 𝐃୅୓𝐒ଵ ଶ⁄ = 𝐒ଵ ଶ⁄ 𝐃୅୓
ଵ ଶ⁄

𝐃୅୓
ଵ ଶ⁄

𝐒ଵ ଶ⁄    (12) 

Since the total number of electrons does not change due to geometric changes, the trace of the matrix 

𝐃෩  is constant: 

𝑑

𝑑𝜏
tr൫𝐃෩൯ = 0   (13) 



where 𝜏 is an arbitrary reaction coordinate. Eq. (13) implies that conservation of the total number of 

electrons holds for a given nuclear coordinate change. The derivative of 𝐃෩   along the reaction 

coordinate is given by 

𝑑

𝑑𝜏
𝐃෩ =

𝑑

𝑑𝜏
ቀ𝐒ଵ ଶ⁄ 𝐃୅୓

ଵ ଶ⁄
ቁ𝐃୅୓

ଵ ଶ⁄
𝐒ଵ ଶ⁄ + 𝐒ଵ ଶ⁄ 𝐃୅୓

ଵ ଶ⁄ 𝑑

𝑑𝜏
ቀ𝐃୅୓

ଵ ଶ⁄
𝐒ଵ ଶ⁄ ቁ.   (14) 

Apparently, the derivative of 𝐃෩   includes the derivative of 𝐒ଵ ଶ⁄  . Essentially, the derivative of the 

overlap matrix should not be interpreted as MO mixing, but simply as AO translation. Then, the 

derivative of 𝐒ଵ ଶ⁄  would seem unnecessary for evaluating MO mixing. However, the derivative of 

𝐒ଵ ଶ⁄  is necessary to satisfy Eq. (13). To solve this problem, the derivative terms of 𝐒ଵ ଶ⁄  is replaced 

as follows:  

𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒ଵ ଶ⁄ →

1

𝑁୧୬ୟୡ୲୧୴ୣ
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𝑑
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+
1

𝑁ୟୡ୲୧୴ୣ
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ற 𝐒ଵ ଶ⁄
𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂ୟୡ୲୧୴ୣ൰ 𝐈ୟୡ୲୧୴ୣ

+
1

𝑁ୱୣୡ୭୬ୢୟ୰୷
tr ൬𝐂ୱୣୡ୭୬ୢୟ୰୷

ற 𝐒ଵ ଶ⁄
𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂ୱୣୡ୭୬ୢୟ୰୷൰ 𝐈ୱୣୡ୭୬ୢୟ୰୷ ,   (15) 

where 𝐂୧୬ୟୡ୲୧୴ୣ , 𝐂ୟୡ୲୧୴ୣ , and 𝐂ୱୣୡ୭୬ୢୟ୰୷  are the MO coefficients and 𝐈୧୬ୟୡ୲୧୴ୣ, 𝐈ୟୡ୲୧୴ୣ , and 

𝐈ୱୣୡ୭୬ୢୟ୰୷ are the identity matrices for inactive (doubly occupied), active, and secondary (unoccupied) 

spaces.41 𝑁୧୬ୟୡ୲୧୴ୣ , 𝑁ୟୡ୲୧୴ୣ  and 𝑁ୱୣୡ୭୬ୢୟ୰୷  are the number of MOs in each space. Finally, we 

evaluate the density change due to nuclear coordinate displacement as follows, 

𝐗େ୅ୗୗେ୊ ≔ 𝐂ற𝐒 ൬
𝑑

𝑑𝜏
𝐃୅୓

ଵ ଶ⁄
൰ 𝐃୅୓

ଵ ଶ⁄
𝐒𝐂 + 𝐘େ୅ୗୗେ୊   (16) 

and its Hermitian conjugate (𝐂 is the entire MO coefficient matrix), and  

𝐘େ୅ୗୗେ୊ ≔
1

𝑁୧୬ୟୡ୲୧୴ୣ
tr ൬𝐂୧୬ୟୡ୲୧୴ୣ
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𝑑
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𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂୧୬ୟୡ୲୧୴ୣ൰ 𝐈୧୬ୟୡ୲୧୴ୣ

+
1

𝑁ୟୡ୲୧୴ୣ
tr ൬𝐂ୟୡ୲୧୴ୣ

ற 𝐒ଵ ଶ⁄
𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂ୟୡ୲୧୴ୣ൰ 𝐈ୟୡ୲୧୴ୣ

+
1

𝑁ୱୣୡ୭୬ୢୟ୰୷
tr ൬𝐂ୱୣୡ୭୬ୢୟ୰୷

ற 𝐒ଵ ଶ⁄
𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂ୱୣୡ୭୬ୢୟ୰୷൰ 𝐈ୱୣୡ୭୬ୢୟ୰୷.   (17) 



A more compact description of the matrix in Eq. (16) can be found in SI. In fact, the derivative can be 

approximated by numerical differentiation, e.g. 𝑑𝐃୅୓
ଵ ଶ⁄

𝑑𝜏⁄  ~(2Δ𝜏)ିଵ ቄ𝐃୅୓
ଵ ଶ⁄ (Δ𝜏) − 𝐃୅୓

ଵ ଶ⁄ (−Δ𝜏)ቅ 

where Δ𝜏 is the stepsize of the numerical differentiation. In this work, all derivatives in Eqs. (16) and 

(17) are evaluated numerically.  

The MC-NRO for CASSCF is defined as the SVD basis for the (1) secondary-active, (2) 

secondary-inactive, (3) active-active, and (4) active-inactive blocks of 𝐗େ୅ୗୗେ୊. To separate 𝐗େ୅ୗୗେ୊ 

into blocks, the MO used to define the active space, e.g. CMO or NO, may be useful. Each SVD basis 

characterizes the density change of each block. For example, the SVD basis of a secondary-active 

block characterizes the electron transfer from the active space to the secondary space. In particular, 

the SVD basis for the off-diagonal blocks of the secondary-active, secondary-inactive, and active-

inactive blocks is interpreted as the optimal basis to characterize the orbital mixing between the two 

spaces. On the other hand, the SVD basis for the active-active block includes the contribution to the 

electron density change of the change in the CI coefficient as well as the change in the MO coefficient. 

Therefore, the contribution of the diagonal block cannot necessarily be interpreted as pure MO mixing. 

This point will be discussed in detail in the next section. The above definition can be applied to state-

averaged (SA) CASSCF47 as well as state-specific (SS) CASSCF. In the case of SA-CASSCF, the 

density matrix of each root can be used to calculate the MC-NRO. However, it is necessary to carefully 

check whether the orbitals optimized by the SA-CASSCF method provide a balanced description of 

the multi-state potential energy surfaces.48 

 The reason for separate SVD, or orbital rotation, for the four blocks of the 𝐗େ୅ୗୗେ୊ matrix 

needs to be explained. If the separation were not done, MOs defined in distinguished spaces, such as 

MOs in secondary space and MOs in active space, could be mixed due to unitary transformations in 

SVD process. However, the CASSCF wavefunction is not invariant to the mixing of MOs in 

distinguished spaces.41,49 Thus, SVD without separation changes the wavefunction and destroys the 



physical nature of the system. From the viewpoint of analysis, the loss of nature of the system does 

not seem desirable. In other words, when performing SVD, the separation should be performed in such 

a way that the orbital invariance of the CASSCF wavefunction is not lost.  

 

D. Definition for other theories 

In this subsection, we present a general procedure of computing MC-NRO for other electronic 

structure theories. First, the MO is separated into subsets so that within each subset the wavefunction 

is invariant to arbitrary unitary transformations. This type of separation is already known in basic 

theory.49 For example, in single reference configuration interaction (SRCI) theory, the wavefunction 

is invariant to separate rotations within the occupied orbital space and within the virtual orbital space. 

Thus, in SRCI theory, MOs are separated into two subsets: occupied orbital space and virtual orbital 

space. However, applying the frozen core/virtual approximation50 requires the MO to be separated into 

four subsets: occupied space outside the window (frozen core), occupied space inside the window, 

virtual space inside the window, and virtual space outside the window (frozen virtual or deleted virtual). 

This separation is the same in time-dependent Hartree-Fock (TDHF),42 time-dependent Kohn-Sham 

(TDKS),43,44 and single reference coupled-cluster (CC) theory.51-53  

 Second, the matrix 𝐗 given by 

𝐗 ≔ 𝐂ற𝐒 ൬
𝑑

𝑑𝜏
𝐃୅୓

ଵ ଶ⁄
൰ 𝐃୅୓

ଵ ଶ⁄
𝐒𝐂 + 𝐘   (18) 

𝐘 ≔ ෍
1

𝑁ୱ
tr ൬𝐂ୱ

ற𝐒ଵ ଶ⁄
𝑑

𝑑𝜏
𝐒ଵ ଶ⁄ 𝐃୅୓𝐒𝐂ୱ൰ 𝐈ୱ

ୱ

.   (19) 

is separated into blocks based on the space separation described above. The subscript s denotes a 

subset, e.g. the occupied orbital space and the virtual orbital space in SRCI theory. Next, SVD is 

performed for each block separately, except for trivial blocks. For example, 𝐗 is separated into four 

blocks: virtual-virtual, virtual-occupied, occupied-virtual, and occupied-occupied for SRCI theory 



without the frozen core/virtual approximation. SVD is then performed separately for each block. When 

the frozen core/virtual approximation is applied, orbital mixing between doubly occupied MOs and 

between empty MOs is rather trivial, so SVD of the diagonal blocks outside the window is not 

necessary.  

 It might seem cumbersome to depend on electronic structure theory to separate and define 

MC-NRO. However, orbital rotation is originally allowed as long as it does not violate the orbital 

invariance of the wavefunction. Therefore, it is rather natural that the definition of orbital rotation 

depends on electronic structure theory, since orbital invariance varies from theory to theory. 

 

E. Properties of MC-NRO 

The MC-NRO belongs to the irreducible representation of the point group of the molecular structure. 

This is confirmed as follows. Let 𝐗ᇱ be the block of 𝐗 for which SVD is performed. Let 𝐮 and 𝐯 

be the right and left singular vectors of the matrix 𝐗ᇱ satisfying the following equations, 

൜
𝐗ᇱ𝐮 = 𝜆𝐯

𝐗ᇱற
𝐯 = 𝜆𝐮

   (20) 

where 𝜆  is a singular value. In general, 𝐮 , 𝐯 , and the matrix 𝐗ᇱ  can be decomposed into the 

components of the irreducible representation as follows: 

𝐗ᇱ = ෍ 𝐗ᇱ
୻୻ᇲ

୻,୻ᇲ

   (21) 

𝐮 = ෍ 𝐮୻

୻

   (22) 

𝐯 = ෍ 𝐯୻

୻

   (23) 

where the subscripts Γ  and Γᇱ  denote irreducible representations. The sum is taken over all 

irreducible representations of symmetry. Using Eqs. (21)-(23), Eq. (20) is rewritten as 



⎩
⎪
⎨

⎪
⎧෍ 𝐗ᇱ

୻୻ᇲ𝐮୻ᇲ

୻,୻ᇲ

= 𝜆 ෍ 𝐯୻

୻

෍ 𝐗ᇱ
୻୻ᇲ
ற

𝐯୻ᇲ

୻,୻ᇲ

= 𝜆 ෍ 𝐮୻

୻

.   (24) 

Since any vectors of different irreducible representations are orthogonal to each other, the following 

equations must hold individually:  

⎩
⎪
⎨

⎪
⎧෍ 𝐗ᇱ

୻୻ᇲ𝐮୻ᇲ

୻ᇲ

= 𝜆𝐯୻

෍ 𝐗ᇱ
୻୻ᇲ
ற

𝐯୻ᇲ

୻ᇲ

= 𝜆𝐮୻

   (∀Γ).   (25) 

If 𝐮୻  and 𝐯୻  are non-zero for more than one Γ , this contradicts the assumption that 𝜆  is not 

degenerate. Thus, if a given singular value is not degenerate, the corresponding singular vector belongs 

to the irreducible representation. Conversely, if a given singular value is degenerate, the corresponding 

singular vector does not necessarily belong to the irreducible representation. However, even in the 

presence of degeneracy, those singular vectors can be made by solving Eq. (25) instead of Eq. (20). 

 Next, we explain the density change expressed in the MC-NRO basis. The right and left 

MC-NROs are given by 

ቊ
൫𝜙ଵ

ୱୖ, … , 𝜙ே౩

ୱୖ൯ = ൫𝜓ଵ
ୱ, … , 𝜓ே౩

ୱ ൯𝐑ற

൫𝜙ଵ
୲୐, … , 𝜙ே౪

୲୐൯ = ൫𝜓ଵ
୲ , … , 𝜓ே౪

୲ ൯𝐋
 ,    (26) 

where ൫𝜓ଵ
ୱ, … , 𝜓ே౩

ୱ ൯  and ൫𝜓ଵ
୲ , … , 𝜓ே౪

୲ ൯  are the MOs in subsets s  (e.g. active space) and t  (e.g. 

secondary space), respectively, and 𝑁ୱ and 𝑁୲ are the number of MOs in the respective spaces. The 

matrices 𝐑 and 𝐋 are the right and left singular vectors of the t-s block of the matrix 𝐗. The right 

and left singular vectors of 𝐗 are included as rows and columns of 𝐑 and 𝐋. Then,  

𝜆௜൫𝜙௜
୲୐∗𝜙௜

ୱୖ + 𝜙௜
୲୐𝜙௜

ୱୖ∗൯ = 2𝜆௜𝜙௜
୲୐𝜙௜

ୱୖ   (𝑖 = 1, … , min(𝑁ୱ, 𝑁୲))   (27) 

gives the component of the density change induced by the displacement of the nuclear coordinates. 

Here, the orbitals are assumed to be real. The contribution of the derivative of the overlap matrix to 

the density change is evaluated in its trace (see Eq. (15)). The singular value of each MC-NRO pair 



represents the extent to which the pair contributes to the density change. Usually, only a small number 

of MC-NRO pairs have large singular values, and the density changes can only be characterized by 

such pairs. The relative phase of all MC-NRO pairs is uniquely determined for a given nuclear 

displacement direction.33 Reversing the displacement direction inverts the relative phase of all MC-

NRO pairs.  

It should be noted that the singular values are computed by numerically differentiating the 

density matrix and are therefore not very numerically stable. Although the shape of the dominant MC-

NRO is not so unstable, singular values can be unstable in cases such as CASSCF. To extract the 

qualitative essence of a chemical reaction, the MC-NRO method using numerical differentiation is 

effective. 

In general, the value Δ௜ defined by the following equation can have a non-zero value if the 

subsets s and t are identical. 

Δ௜ ≔ 𝜆௜൫ൻ𝜙௜
୲୐ห𝜙௜

ୱୖൿ + ൻ𝜙௜
ୱୖห𝜙௜

୲୐ൿ൯   (28) 

where ൻ𝜙௜
୲୐ห𝜙௜

ୱୖൿ is the inner product of 𝜙௜
୲୐ and 𝜙௜

ୱୖ. Conversely, Δ௜ is always zero when the two 

subsets are different. Regardless of whether the two subspaces are identical or not, the following 

equation holds:  

෍ Δ௜

௜

= 0   (29) 

Actually, Δ௜ can be considered as the change of occupation number in 𝜙௜
ୱୖ due to the change of CI 

coefficients. This point will be discussed in detail in the next section.  

 Finally, we explain the advantages of MC-NRO in terms of orbital invariance. As mentioned 

in subsections C and D, the conversion from MO to MC-NRO keeps the wavefunction invariant by 

definition. The fact that MC-NRO does not violate orbital invariance is important not only from a 

theoretical viewpoint, but also from a practical one.  

 For simplicity, we assume a mixing of occupied and virtual MOs in the HF wavefunction: 



൤
𝜓ଵ

ᇱ

𝜓ଶ
ᇱ ൨ =

1

√2
ቂ

1 1
−1 1

ቃ ൤
𝜓୭ୡୡ

𝜓୴୧୰
൨.   (30) 

The expectation value of a given observable 𝐴 of the rotated MOs is given by 

𝐴ଵଵ = ⟨𝜓ଵ
ᇱ |𝐴|𝜓ଵ

ᇱ ⟩ =
1

2
(⟨𝜓୭ୡୡ|𝐴|𝜓୭ୡୡ⟩ + ⟨𝜓୭ୡୡ|𝐴|𝜓୴୧୰⟩ + ⟨𝜓୴୧୰|𝐴|𝜓୭ୡୡ⟩ + ⟨𝜓୴୧୰|𝐴|𝜓୴୧୰⟩), (31) 

𝐴ଶଶ = ⟨𝜓ଶ
ᇱ |𝐴|𝜓ଶ

ᇱ ⟩ =
1

2
(⟨𝜓୭ୡୡ|𝐴|𝜓୭ୡୡ⟩ − ⟨𝜓୭ୡୡ|𝐴|𝜓୴୧୰⟩ − ⟨𝜓୴୧୰|𝐴|𝜓୭ୡୡ⟩ + ⟨𝜓୴୧୰|𝐴|𝜓୴୧୰⟩).        (32) 

Both of the two expectation values include the contribution of the virtual orbital. This is not desirable 

for discussing the nature of the wavefunction in terms of MO. Of course, the HF wavefunction does 

not include virtual orbitals. Therefore, any observable that does not cause electron excitation can be 

characterized without the contribution of virtual orbitals. However, MOs generated by the 

transformation given in Eq. (30), which breaks the orbital invariance of the HF wavefunction, do 

contain a virtual MO contribution. In general, the expectation value of the observables computed using 

such MOs will necessarily include contributions from virtual MOs and from outside the variational 

manifold. Therefore, violation of orbital invariance can lead to misleading results that include non-

substantial contributions. To avoid such misleading results, the definition of MOs should not violate 

orbital invariance for no particular reason. Since MC-NRO, by definition, does not violate orbital 

invariance, the expectation value of a given observable of an individual MC-NRO can be analyzed 

without suffering from insubstantial contribution. This should be of great importance for reliable 

discussions based on molecular orbitals. 

  



III. RESULTS AND DISCUSSION 

Here, the MC-NRO analysis is applied to five reaction examples: covalent bond formation of H2, triple 

bond formation of N2, Diels-Alder reaction of ethylene and 1,3-butadiene, [1,5]-sigmatropic 

rearrangement of 1,3-pentadiene, and intramolecular hydrogen transfer of malonaldehyde in S1 state. 

We will demonstrate how the new approach can be used to understand chemical reaction processes in 

terms of electron transfer and discuss future challenges. All calculations were performed in Gaussian 
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A. Hydrogen molecule 

As a simple example, the MC-NRO analysis of the covalent bond formation of H2 is demonstrated. It 

is well known that the dissociated state of H…H cannot be described by a single determinant 

wavefunction, e.g. the Slater determinant given by the Hartree-Fock theory.55,56 Thus, this process 

needs to be studied with a multiconfigurational wavefunction. The potential energy curve for the 

singlet ground state (black curve) of H2 at CASSCF(2,2)/aug-cc-pVQZ57,58 is shown in Fig. 1. The 

sum of squares of the singular values of MC-NRO, which indicate the degree of electron density 

change, are shown for two blocks: active-active and secondary-active blocks. The density change in 

active space is larger in two regions: (a) R ~ 2.10 Å and (b) R < 1.20 Å (R is the bond length of the 

hydrogen molecule).  



 

FIG. 1. Potential energy curve of the singlet ground state of the hydrogen molecule (black curve) and 

the sum of squares of the singular values of the MC-NROs for the two blocks of active-active (red 

curve) and secondary-active (blue curve) (shown as ∑ 𝜆௜
ଶ

௜ ). The electronic structure is computed at 

the CASSCF(2,2)/aug-cc-pVQZ level. 

 

The dominant MC-NRO pairs and the corresponding density changes in the two regions are 

shown in Fig 2. The direction of nuclear displacements is in the direction of bond formation. The 

dominant MC-NRO pairs in region (a) are the anti-bonding orbital (σ*) pair with the opposite sign 

and the bonding orbital (σ) pair with the same sign. Since the product of the right and left MC-NROs 

gives an electron density change in the direction of molecular deformation, the electron density of the 

anti-bonding σ* orbital pair decreases and that of the bonding σ orbital pair increases as the bond 

length R decreases. These density changes clearly correspond to the formation of H-H covalent bond. 

 



 

 

 

 

FIG. 2. Active-active MC-NRO pairs for H-H covalent bond formation at (a) R = 2.10 Å and (b) R = 

0.77 Å. 𝜙௜
ୖ and 𝜙௜

୐ denote the i-th right and left MC-NROs, and the numbers in parentheses indicate 

the occupation number. The product of each MC-NRO pair is also shown, with the yellow/cyan colors 

indicating increasing/decreasing electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) indicates the singular value 

of the i-th MC-NRO pair. The contribution of the MC-NRO pair to the density change of active-active 

block, defined as 100 × 𝜆௜
ଶ ∑ 𝜆௝

ଶ
௝ൗ , is also shown for each singular value. The isovalues of MC-NRO 

and density change are 0.0250 and 0.00625, respectively. 



The opposite-phase interference of the σ* orbital and in-phase interference of the σ orbital 

are interpreted as follows. In the dissociation limit, the two electron wavefunction of H2 for the singlet 

ground state is given by a linear combination of two Slater determinants:59 

Ψோ→ஶ(1,2) =
1

2
ቤ
𝜒ୌఽ

ଵୱ (1)𝛼(1) 𝜒ୌా

ଵୱ (1)𝛽(1)

𝜒ୌఽ

ଵୱ (2)𝛼(2) 𝜒ୌా

ଵୱ (2)𝛽(2)
ቤ +

1

2
ቤ
𝜒ୌా

ଵୱ (1)𝛼(1) 𝜒ୌఽ

ଵୱ (1)𝛽(1)

𝜒ୌా

ଵୱ (2)𝛼(2) 𝜒ୌఽ

ଵୱ (2)𝛽(2)
ቤ 

=
1

2
൛𝜒ୌఽ

ଵୱ (1)𝜒ୌా

ଵୱ (2) + 𝜒ୌా

ଵୱ (1)𝜒ୌఽ

ଵୱ (2)ൟ{𝛼(1)𝛽(2) − 𝛽(1)𝛼(2)}   (33) 

where 𝜒ୌఽ

ଵୱ  and 𝜒ୌా

ଵୱ  are the normalized 1s orbitals of the two hydrogen atoms HA and HB, and  and 

 are spin functions. By rotating the orbitals, 

ቂ
𝜎
𝜎∗ቃ =

1

√2
ቂ

1 1
−1 1

ቃ ቈ
𝜒ୌఽ

ଵୱ

𝜒ୌా

ଵୱ ቉,   (34) 

the wavefunction is rewritten as 

Ψோ→ஶ(1,2) =
1

2
ฬ
𝜎(1)𝛼(1) 𝜎(1)𝛽(1)

𝜎(2)𝛼(2) 𝜎(2)𝛽(2)
ฬ −

1

2
ฬ
𝜎∗(1)𝛼(1) 𝜎∗(1)𝛽(1)

𝜎∗(2)𝛼(2) 𝜎∗(2)𝛽(2)
ฬ.  (35) 

Around the equilibrium bond length, the HF wavefunction given by a single Slater determinant is 

known to give a good approximation: 

Ψோ౛౧
(1,2) ~ 

1

√2
ฬ
𝜎(1)𝛼(1) 𝜎(1)𝛽(1)

𝜎(2)𝛼(2) 𝜎(2)𝛽(2)
ฬ (36) 

Using the CI coefficients, 𝐶ଵ and 𝐶ଶ, the wavefunction with the minimal basis can be rewritten as 

Ψ(1,2) = 𝐶ଵ ฬ
𝜎(1)𝛼(1) 𝜎(1)𝛽(1)

𝜎(2)𝛼(2) 𝜎(2)𝛽(2)
ฬ + 𝐶ଶ ฬ

𝜎∗(1)𝛼(1) 𝜎∗(1)𝛽(1)

𝜎∗(2)𝛼(2) 𝜎∗(2)𝛽(2)
ฬ.  (37) 

Then, |𝐶ଵ|ଶ increases toward the equilibrium structure while |𝐶ଶ|ଶ decreases. In the bond formation 

process where the symmetry of the system is preserved, σ and σ* belong to different irreducible 

representations and do not mix with each other. Therefore, the electron density change in this process 

is not due to orbital mixing, but to a change in the CI coefficient. Nevertheless, the density change can 

be described by the MO norm change. Also, the change in the weight of the configuration can be 

described by an increase or decrease in the norm of σ/σ*, rather than an increase or decrease in 

|𝐶ଵ|ଶ/|𝐶ଶ|ଶ. Thus, the opposite-phase interference of the σ* orbital and the in-phase interference of 



the σ orbital correspond to a decrease in the weight of the doubly excited-state configuration and an 

increase in the ground-state configuration, respectively. This result indicates that MC-NRO provides 

a way to express the change in electron density due to CI coefficient change in terms of MO.  

The dominant MC-NRO pair in region (b) shows an opposite density change, a 

decrease/increase in σ/σ*, possibly working to mitigate the repulsion between electrons. However, this 

behavior may be an artifact due to the small active space. This will be discussed in more detail later.  

The dominant secondary-active MC-NRO pair in the region (b), 𝜙ଵ
ୖ and 𝜙ଵ

୐, are bonding σ 

orbitals, one composed of 1s orbitals and the other of 2s orbitals (Fig. 3). These two σ orbitals are in-

phase near the H-H bond axis, but are out-phase in the outer region. The product of the MC-NRO pair 

gives a density change, which means that the MC-NRO pair condenses the electron density around 

the H-H bond axis and reduces the nuclear repulsion.  



 

 

FIG. 3. Secondary-active MC-NRO pairs with H-H covalent bond formation at R = 0.77 Å. 𝜙௜
ୖ and 

𝜙௜
୐ represent the i-th right and left MC-NRO, and the numbers in parentheses indicate the occupation 

number. The product of each MC-NRO pair is also shown, with the yellow/cyan color indicating 

increasing/decreasing electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) represents the singular value of the i-

th MC-NRO pair. Also shown below each singular value is the contribution of the MC-NRO pair to 

the overall density change. The isovalues of MC-NRO and density change are 0.0250 and 0.00625, 

respectively. 

 

In region (b), there is a remarkable density change due to missing of the secondary-active 

MC-NRO, indicating that the active space is not closed in the H-H bond formation process. Ideally, 

the active space of CASSCF should be set large enough to describe any dominant changes during the 

chemical reaction. From this viewpoint, a large orbital mixing between the active space and inactive 



or secondary spaces is undesirable. In this study, preliminary CASSCF calculations were performed 

to check the convergence of the CASSCF calculations, and converged results were obtained with 

CASSCF(2,10)/aug-cc-pVQZ. The orbitals of this active space are shown in SI. Figure 4 shows the 

result with CASSCF(2,10)/aug-cc-pVQZ. Compared to Fig. 1, it can be seen that the mixing of the 

active and secondary space orbitals is significantly reduced. 

 

 

FIG. 4. Potential energy curve of the singlet ground state of hydrogen molecule (black curve) and the 

sum of squares of the singular values of MC-NROs for the two blocks of active-active (red curve) and 

secondary-active (blue curve) (denoted by ∑ 𝜆௜
ଶ

௜  ) as a function of H…H distance. The electronic 

structure is calculated at the CASSCF(2,10)/aug-cc-pVQZ level. 

 

Figure 5 shows the dominant MC-NRO pairs. In region (a), the dominant MC-NRO pair is 

almost the same as in Fig. 2 (a), while in region (b), the dominant MC-NRO pairs are different from 



those shown in Fig. 2 (b), but rather similar to the first MC-NRO pair in Fig. 3. This indicates that the 

first left MC-NRO 𝜙ଵ
୐ shown in Fig. 3 is included in the expanded active space. Thus, the expanded 

active space can be considered to be of more closed throughout the reaction process. Indeed, Fig. 6 

suggests an improvement in the active space from the energy viewpoint as well. Figure 6 shows that 

the energy difference between the CASSCF(2,2) and CASSCF(2,10) results increases in the direction 

of bond formation. This feature may be explained in terms of radial correlations. The significance of 

radial correlations for the electron affinity of carbon, oxygen, and fluorine was reported by Botch and 

Dunnig.60 Subsequently, Walch et al. studied the effect of radial correlation on the height of the 

reaction barrier in the reaction X + H2 → XH + H (X=O, F).61,62 In Ref. 61, an orbital basis with 

additional radial nodes was found to be important in describing the tight-diffuse correlation of anion-

like oxygen atom around the transition state (TS) region. In the present homonuclear reaction H + H 

→ H2, the reactants, two hydrogen atoms with an isolated electron each, do not have radial tight-

diffuse correlations, but the product, hydrogen molecule, does, and the radial tight-diffuse correlations 

increase. In fact, in the MC-NRO on the left in Fig. 5(b), there are extra radial nodes with non-zero 

occupancy, indicating the presence of tight-diffuse correlations.  



 

 

FIG. 5. The active-active MC-NRO pairs in the H-H covalent bond formation process: (a) R = 2.08 

Å; (b) R = 0.77 Å. 𝜙௜
ୖ  and 𝜙௜

୐  represent the i-th right and left MC-NROs and the numbers in 

parentheses indicate the occupation number. The product of each MC-NRO pair is also shown, with 

the yellow/cyan color representing the increase/decrease in electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) 

denotes the singular value of the i-th MC-NRO pair. Also shown below each singular value is the 

contribution of the MC-NRO pair to the overall density change. The isovalues of MC-NRO and 

density change are 0.0250 and 0.00625, respectively. 



 

FIG. 6. Energy difference between CASSCF(2,2) and CASSCF(2,10) results. 

 

Through the analysis of hydrogen molecule formation with different active spaces, it was 

shown that MC-NRO basis properly characterizes the density change along the covalent bond 

formation. Also, it should be reemphasized that the sum of square of singular values of MC-NROs can 

provide a kind of criterion to validate the quality of active space in the viewpoint of electron density 

change along the reaction pathway. Actually, the expanded active space was improved both in terms 

of density change and energy. Since the sum of square of singular values of MC-NROs is equal to 

square of the Frobenius norm of the matrices decomposed by SVD, validation of active space itself 

does not necessarily require the computation of MC-NROs. Thus, it will be sufficient for chemical 

reaction analysis to perform MC-NRO analysis only for the validated active space.  

 

 



B. Nitrogen molecule 

As a second example, MC-NRO analysis was applied to the triple bond formation of N2. The potential 

energy curve for the singlet ground state (black curve) of N2 at CASSCF(6,6)/cc-pVTZ56 is shown in 

Fig. 7. The active space consists of six 2p orbitals of two nitrogen atoms. The sum of squares of the 

singular values, indicating the degree of electronic density change, is also shown for the four blocks: 

active-active, secondary-active, active-inactive, and secondary-inactive blocks. While the active-

active contribution is dominant at the early stages of bond formation, the secondary-active and active-

inactive contributions are non-negligible near the equilibrium bond length. Thus, the active space 

consisting only of 2p orbitals seems to be unsatisfactory near equilibrium. However, it would be 

meaningful to investigate the cause of such poor behavior. Therefore, we first show an active-active 

MC-NROs that undergoes a bond formation process. Next, we show the secondary-active and active-

inactive MC-NROs near equilibrium. 

  



 

 

FIG. 7. Potential energy curve of the singlet ground state of the nitrogen molecule (black curve) and 

the sum of squares of the singular values of MC-NROs (denoted by ∑ 𝜆௜
ଶ

௜ ) for the four blocks, active-

active (red curve), secondary-active (blue curve), active-inactive (yellow curve), and secondary-

inactive (green) blocks, as a function of N…N distance. The electronic structure is calculated at the 

CASSCF(6,6)/cc-pVTZ level. 

 

Figure 8 shows the active-active MC-NROs at three geometries. Figure 8 (a) clearly shows 

the formation of a σ bond, 𝜙ଵ
ୖ𝜙ଵ

୐ , and two π bonds, 𝜙ସ
ୖ𝜙ସ

୐  and 𝜙ହ
ୖ𝜙ହ

୐ . Figure 8 (c) shows an 

increase/decrease in the density of anti-bonding/bonding orbitals, which may be considered as a 

relaxation of electron repulsion. However, this density change behavior may be an artifact due to the 

poor active space.  

 







 



FIG. 8. The active-active MC-NRO pairs for the N-N triple bond formation for (a) R = 2.000 Å, (b) R 

= 1.500 Å and (c) R = 1.120 Å. 𝜙௜
ୖ and 𝜙௜

୐ represent the i-th right and left MC-NROs, and the 

numbers in parentheses indicate the occupation numbers. The product of each MC-NRO pair is also 

shown, with the yellow/cyan color representing the increase/decrease in electron density. 

𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) denotes the singular value of the i-th MC-NRO pair. Also shown below each 

singular value is the contribution of the MC-NRO pair to the overall density change. The isovalues of 

MC-NRO and density change are 0.020 and 0.004, respectively. 

 

 Figure 9 shows the secondary-active and active-inactive MC-NROs at R = 1.120 Å. The 

secondary MC-NROs with large singular values work to concentrate the electron density around the 

bonding region, as in the case of hydrogen molecule. This result indicates that AOs with higher 

principal quantum number than valence AOs work to concentrate the electron density around the 

nucleus and relax nuclear repulsion through the formation of covalent bonds. Therefore, it is ideal that 

AOs with one higher principal quantum number than the valence AOs relevant for bond formation 

should also be included in the active space. Inactive MC-NROs with large singular values are the σ* 

and σ orbitals, which consist of 2s orbitals. The importance of these two orbitals may be understood 

in terms of sp hybridization. In summary, the active-inactive contribution is attributed to the use of a 

non-full-valence active space without 2s AOs, and the secondary-active contribution is attributed to 

the lack of an AO with one higher principal quantum number than the valence AO, which is important 

for density concentration around nuclei. Thus, the MC-NRO method can indicate which MOs should 

be added to the active space based on density changes along the reaction path. Although it is not easy 

to add all dominant MC-NROs to the active space due to computational costs, the MC-NRO method 

provides suggestions for improving the quality of the active space. 

 



 



 

 

FIG. 9. The (a) secondary-active and (b) active-inactive MC-NRO pairs for N-N triple bond formation 

at R = 1.120 Å. 𝜙௜
ୖ  and 𝜙௜

୐  represent the i-th right and left MC-NROs, and the numbers in 

parentheses indicate the occupation number. The product of each MC-NRO pair is also shown, with 

the yellow/cyan color representing the increase/decrease in electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) 

denotes the singular value of the i-th MC-NRO pair. Also shown below each singular value is the 

contribution of the MC-NRO pair to the overall density change. The isovalues of MC-NRO and 

density change are 0.020 and 0.004, respectively. 

 

C. Diels-Alder reaction 

As a more practical example, the Diels-Alder reaction, which can be reproduced by a single-

determinant wavefunction, was analyzed by the MC-NRO method. The purpose of this application is 

to confirm that the MC-NRO analysis is consistent with the conventional understanding of a well-

studied reaction. The energy variation along the intrinsic reaction coordinate (IRC) for the Diels-Alder 

reaction of ethylene and 1,3-butadiene in the singlet ground state (black curve) calculated at the 



CASSCF(8,7)/cc-pVTZ level is shown in Fig. 10. The Cs symmetry is preserved along the IRC in this 

system. The sum of squares of the singular values, which indicate the degree of electron density change, 

are also shown for the four blocks: active-active, secondary-active, active-inactive, and secondary-

inactive blocks. It can be seen that the active-active contribution is dominant throughout the IRC. Thus, 

the active space appears to be large enough to characterize density changes along the IRC. The peak 

position of the sum of squares of the singular values indicates that the electron density changes 

dramatically at the TS.  

  



 

 

FIG. 10. Change of potential energy along the IRC of the Diels-Alder reaction of ethylene with 1,3-

butadiene (black curve), as well as change of the sum of squares of singular values of MC-NRO for 

the active-active (red curve), secondary-active (blue curve), active-inactive (yellow curve), and 

secondary-inactive (green) blocks (∑ 𝜆௜
ଶ

௜ ). Electronic structures are calculated at the CASSCF(8,7)/cc-

pVTZ level. The geometries of reactants, TS, and products are shown with the reaction coordinates.   

 

The MC-NROs at TS are shown in Fig. 11. The first MC-NRO pair characterizes electron 

transfer from the C1-C2 and C3-C4 π bonds of 1,3-butadiene to the π* orbital of ethylene. The second 

MC-NRO pair, on the other hand, characterizes electron transfer from the π bond of ethylene to the 



1,3-butadiene. This result is consistent with our previous study that analyzed the Diels-Alder reaction 

with NRO at the HF/6-31G(d,p) level.33 This result is also consistent with the conventional 

understanding of reaction mechanism based on frontier orbital theory,63 in which the mutual electron 

transfer from the highest occupied MO (HOMO) of 1,3-butadiene/ethylene to the lowest unoccupied 

MO (LUMO) of ethylene/1,3-butadiene drives the Diels-Alder reaction. The density changes shown 

by MC-NRO clearly characterize the mutual electron transfer. It is also noteworthy that MC-NRO 

belongs to the irreducible representation of Cs symmetry, and therefore, chemical reactions can also 

be analyzed in terms of symmetry based on MC-NRO. 

  



 

 

 

FIG. 11. Active-active MC-NRO pairs for the Diels-Alder reaction at TS. 𝜙௜
ୖ and 𝜙௜

୐ represent the 

i-th right and left MC-NROs, and the numbers in parentheses indicate the occupation number. The 

product of each MC-NRO pair is also shown, with the yellow/cyan color representing the 

increase/decrease in electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ)  denotes the singular value of the i-th 

MC-NRO pair. Also shown below each singular value is the contribution of the MC-NRO pair to the 

overall density change. The isovalues of MC-NRO and density change are 0.020 and 0.004, 

respectively. The black arrows indicate the motion of the normal vibrational mode with an imaginary 

frequency from TS toward the product. 

 

  



D. Sigmatropic rearrangement 

So far, we have examined examples where symmetry is preserved along the IRC. In the [1,5]-

sigmatropic rearrangement of 1,3-pentadiene, the TS has Cs symmetry and falls to C1 symmetry as it 

proceeds along the IRC. For this reaction, we performed IRC calculations at the CASSCF(6,6)/cc-

pVTZ level and performed MC-NRO analysis. Figure 12 shows changes of potential energy and the 

sum of squares of singular values indicating the degree of electronic density change for four blocks 

along the IRC. It can be seen that the active space is not large enough to describe the density change 

because the contribution of the secondary-active and active-inactive blocks is not negligible around 

the TS.  

 



FIG. 12. Changes of potential energy along the IRC of the [1,5]-sigmatropic rearrangement of 1,3-

pentadiene (black curve), as well as change of the sum of squares of singular values of MC-NROs, 

denoted by ∑ 𝜆௜
ଶ

௜ , for the four blocks: active-active (red curve), secondary-active (blue curve), active-

inactive (yellow curve), and secondary-inactive (green). Electronic structures are calculated at the 

CASSCF(6,6)/cc-pVTZ level. Geometric structures with reaction coordinates for TS and product 

(reactant) are shown. 

 

Considering the above result, the active space was refined by adding one dominant 

secondary MC-NRO and one dominant inactive MC-NRO to the active space at the TS, and the TS 

geometry was reoptimized with the improved active space. Figure 13 shows the change in energy and 

sum of squares of singular values along the IRC at the CASSCF(8,8)/cc-pVTZ level. It can be seen 

that the quality of the active space can be improved by adding a dominant MC-NRO outside the 

original active space. Figure 14 shows the energy difference between the CASSCF(6,6) and 

CASSCF(8,8) results. Note that the IRC is obtained in each active space. The energy difference is 

relatively large near TS, where MO mixing between active and non-active spaces is observed in Fig. 

12. This result suggests that the expansion of the active space with MC-NRO basis effectively 

improves the quality of the active space. However, this does not necessarily mean that the addition of 

dominant non-active MC-NRO to the active space always produces good results, since the addition of 

the MC-NRO may cause problems such as the failure of CASSCF to convergence.  

  



 

 

FIG.13. Changes of potential energy along the IRC of the [1,5]-sigmatropic rearrangement of 1,3-

pentadiene (black curve), as well as change of the sum of squares of singular values of MC-NROs, 

denoted by ∑ 𝜆௜
ଶ

௜  for four blocks, active-active (red curve), secondary-active (blue curve), active-

inactive (yellow curve), and secondary-inactive (green). Electronic structures are calculated at the 

CASSCF(8,8)/cc-pVTZ level. Geometry and reaction coordinates of TS and product (reactant) are 

shown. 

 



 

FIG. 14. Energy difference between CASSCF(6,6) and CASSCF(8,8) results for the [1,5]-sigmatropic 

rearrangement of 1,3-pentadiene along the IRC. 

 

The dominant MC-NROs at TS optimized with extended active space are shown in Fig. 15. 

The first MC-NRO pair shows a C-H σ bond rearrangement with a density increase/decrease in the 

formed/dissociated C-H bond region. A rearrangement of the π bond from C2-C3 to C3-C4 is also 

observed. The second MC-NRO pair describes a π bond rearrangement from C1-C2 to C4-C5. These 

representative orbitals for reaction, automatically extracted by the MC-NRO method, are consistent 

with the representative orbitals in the conventional correlation diagram.64 Thus, the two MC-NRO 

pairs successfully characterize concerted bonding rearrangements in the [1,5]-sigmatropic 

rearrangement of 1,3-pentadiene. It was also confirmed that the MC-NRO method works without 

special problems even when there is symmetry reduction on leaving the TS.  



 

FIG. 15. Active-active MC-NRO pairs for the [1,5]-sigmatropic rearrangement at TS. 𝜙௜
ୖ and 𝜙௜

୐ 

represent the i-th right and left MC-NROs, and the numbers in parentheses indicate the occupation 

number. The product of each MC-NRO pair is also shown, with the yellow/cyan color representing 

the increase/decrease in electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ) denotes the singular values of the i-

th MC-NRO pair. Also shown below each singular value is the contribution of the MC-NRO pair to 

the overall density change. The isovalues of MC-NRO and density change are 0.020 and 0.004, 

respectively. The black arrows indicate the normal mode of imaginary frequency directed from TS to 

the product. 

 

E. Intramolecular hydrogen transfer of malonaldehyde in the excited state 

 As a final example, the MC-NRO method is applied to the intramolecular hydrogen transfer 

of malonaldehyde in the S1 state.65-69 Excited state reactions are the most important target of MC-NRO 

analysis, since a multiconfigurational wavefunction is required to describe excited states. The S1 state 

of malonaldehyde is characterized by a one-electron n-π* excitation.65-69 Figure 16 shows the natural 



orbitals related to the excitation to the S1 state obtained with the S1-optimized geometry at the 

CASSCF(12,9)/cc-pVTZ level. The natural orbitals indicate excitation from the in-plane lone pair of 

the oxygen atom (hole) to the out-of-plane π* orbital (particle). Figure 17 shows changes of the 

potential energy and the sum of squares of the singular values along the IRC. The active-active 

contribution is dominant throughout the IRC, so the active space is large enough to characterize 

density changes. 

 

 

FIG. 16. Natural orbitals of malonaldehyde associated with electronic excitation from S0 to S1. The 

geometry is optimized in the S1 state. Numbers in parentheses indicate the occupation number of each 

natural orbital. 



 

FIG. 17. Change of potential energy along the IRC of the hydrogen transfer reaction of malonaldehyde 

in the S1 state (black curve), as well as change of the sum of squares of singular values of MC-NROs 

for the four blocks: active-active (red curve), secondary-active (blue curve), active-inactive (yellow 

curve), and secondary-inactive (green). The electronic structure is calculated at the CASSCF(12,9)/cc-

pVTZ level. The geometry of TS and product (reactant) are shown with reaction coordinates. 

 

Figure 18 shows the MC-NROs at TS. The first and second MC-NRO pairs show that the 

electron is moving in the same direction as the proton migration. This is consistent with the behavior 

of the hole shown in Fig. 16. As the proton moves from the left oxygen to the right oxygen, the hole 



center moves from the right oxygen to the left oxygen. Therefore, the electron density moves in the 

opposite direction of the hole migration, i.e. in the same direction as the proton migration. Since the 

electron move with the proton, this reaction should be characterized as hydrogen transfer rather than 

proton transfer. This is contrary to migration in the ground state, where the electron moves in the 

opposite direction of proton migration.33 The π density change exhibited by the fourth and fifth MC-

NRO pairs is smaller than the density change exhibited by the first and second MC-NRO pairs. This 

is consistent with the behavior of the particles shown in Fig. 16. The particles are delocalized 

throughout the molecular plane, and the shape of the particles is hardly changed by hydrogen transfer. 

Therefore, the change in π density is relatively small. As described above, the MC-NRO method can 

systematically extract representative orbitals for reaction in electronically excited state. Although there 

are useful orbitals that characterize the nature of excited states, such as natural transition orbitals 

(NTOs),70 natural difference orbitals (NDOs),71 and natural orbitals, the ability to systematically 

extract representative orbitals for reaction is a feature of MC-NRO. Thus, MC-NRO is expected to be 

a powerful tool for studying electron mobility in reactions in electronically excited states. 



 



FIG. 18. Active-active MC-NRO pairs for hydrogen transfer of malonaldehyde at TS in the S1 state. 

𝜙௜
ୖ and 𝜙௜

୐ denote the i-th right and left MC-NROs, and the numbers in parentheses indicate the 

occupation number. The product of each MC-NRO pair is also shown, with the yellow/cyan colors 

representing the increase/decrease in electron density. 𝜆௜  (amuିଵ ଶ⁄  bohrିଵ)  denotes the singular 

value of the i-th MC-NRO pair. Also shown below each singular value is the contribution of the MC-

NRO pair to the overall density change. The isovalues of MC-NRO and density change are 0.020 and 

0.004, respectively. The black arrows indicate the normal mode of imaginary frequency from TS 

toward the product. 

  



IV. CONCLUSION 

In this paper, we extend our recently proposed natural reaction orbital (NRO) to multiconfigurational 

wavefunction and propose the multiconfiguration natural reaction orbital (MC-NRO), which can 

reveal the reaction mechanism along the reaction path in terms of electron transfer. In the NRO and 

MC-NRO methods, pairs of representative orbitals with common singular values are generated by 

applying SVD to a matrix that characterizes the electron density change due to the displacement of 

nuclear coordinates. The importance in the reaction of the electron transfer represented by each 

representative orbital pair can be evaluated by the magnitude of the singular value. By taking the 

product of each representative orbital pair, the change in electron density for a given nuclear coordinate 

displacement can be visualized. Since the MC-NRO method by definition does not violate orbital 

invariance, the properties of each MC-NRO other than density change can be analyzed without 

suffering from contributions from outside the variational manifold. In addition, MC-NRO belongs to 

an irreducible representation of the point group of the molecular structure. The MC-NRO method is 

based on multiconfigurational wavefunction theory and is expected to be a practical tool for extracting 

the qualitative essence of a wider range of chemical reactions, such as covalent bond dissociation and 

chemical reactions in electronically excited states. 

The most important advantage of the MC-NRO method is its ability to automatically extract 

representative orbitals for a given chemical reaction without requiring in-depth knowledge of the 

chemical reaction. In particular, the systematic identification of representative orbitals for a given 

reaction in the electronically excited state is very useful for studying reactions in excited states that 

are more complex than those in the ground state. It is also shown that the MC-NRO method can be 

used to verify the descriptive performance of the active space of the CASSCF wavefunction in reaction 

processes. Using the MC-NRO method, not only the change in electron density due to orbital mixing 

but also the change in CI coefficients can be characterized in terms of MOs. Visualization of complex 



CI coefficients by MOs is very useful for analyzing electron mobility and is expected to enhance our 

understanding of various chemical phenomena in electronically excited states. 
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Explanation for the matrix of Eq. (16) 

A compact explanation for the matrix of Eq. (16) is presented below. This might be helpful for one to 

grasp the concept of MC-NRO. Firstly, let us introduce the density-weighted orbital (DWO) basis: 

𝜒̅ఓ ≔ ෍ 𝜒ఐ𝐷ఐ఑
ଵ ଶ⁄

𝑆఑ఓ
ଵ ଶ⁄

ఐ఑

   (S1) 

where 𝜒ఐ is the orthonormalized basis. The trace of the overlap matrix of DWOs is equal to the total 

electron number. Then, the first-order response of the DWOs with respect to nuclear displacements is 

defined by 

ർ𝜒̅ఓቚ𝜒̅ఔ
(ଵ)

඀ = ෍ 𝑆ఐఓ
ଵ ଶ⁄

𝐷ఒఐ
ଵ ଶ⁄ 𝑑

𝑑𝜏
ቀ𝐷ఒ఑

ଵ ଶ⁄
𝑆఑ఔ

ଵ ଶ⁄
ቁ

ఐ఑ఒ

   (S2) 

where 𝜏 denotes arbitrary reaction coordinates. This is what appears in Eq. (14). Thus, basically, the 

matrix given in Eq. (16) is considered as the first-order response of the DWOs with respect to nuclear 

displacements. The following part is rather a technical part. As mentioned in section II, the derivative 

of the overlap matrix should not be interpreted as MO mixing. However, the derivative of the overlap 

matrix is necessary not to change the total electron number. Thus, the derivative of the overlap matrix 

is replaced by Eq. (15). Owing to this simple replacement, the total electron number is not changed, 

and undesired MO mixing contribution caused by the overlap derivative is eliminated. 

 

 

Active space of hydrogen molecule (CASSCF(2,10)/aug-cc-pVQZ) 

 
 

Figure S1. Natural orbitals in the active space of hydrogen molecule at CASSCF(2,10)/aug-cc-pVQZ 

level. The internuclear distance is 2.49 Å. All the active orbitals have σ or σ* symmetry. The 

occupation number of each active orbital is also shown. 

 

 


