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ABSTRACT

We present a model-agnostic method that gives structure-activity explanations of black-box models.
Machine learning models are now common for molecular property prediction and chemical design.
They typically are black boxes – having no explanation for predictions. Our method uses surrogate
models to attribute predictions to chemical descriptors and molecular substructures, independent of
the black box model inputs. Our approach provides explanations consistent with chemical reasoning,
like connecting existence of a functional group or molecular polarity.

1 Introduction

Understanding the link between chemical or biological activity and molecular structure is central to aspects of drug
discovery and medicinal chemistry. [1] Quantitative structure–activity relationship (QSAR) modeling aims to model
the variations in biological or pharmacokinetic properties caused by a variation in structural properties. As a re-
sult, QSAR modeling has been applied across disciplines to comprehend, rationalize and predict biological activity
and physicochemical properties of molecules. [2–4] Some specific use cases include chemical property prediction, [5]

computer-aided drug design, [6] and lead optimization. [7]

In recent years, deep learning (DL) methods have gained popularity for QSAR modeling. [8–11] While these methods
may be highly accurate in their predictions, most DL models are black box functions that provide little explanation
or scientific insight for their predictions. [12–17] For many of the chemistry and biochemistry applications, especially in
healthcare and drug discovery, predictions from DL models may be used to make high-stakes decisions. [18–20] Thus,
it is crucial that prediction accuracy comes from learning relevant relationships between data features rather than
from picking up potential biases in the data, also known as the so-called Clever Hans effect. [21] For example, Chuang
and Keiser [22] found spurious correlations in a black box model used to predict C-N cross-coupling reaction yields.
Understanding what the model is learning and what factors impact model predictions assists in avoiding the Clever
Hans effect by detecting model bias and in determining whether to trust the predictions while making decisions.

Explainable artificial intelligence (XAI) has emerged as a field to better comprehend what DL models learn and to
gain scientific insight into model predictions. [23,24] Two broad approaches are typically used for model interpretability
— intrinsic interpretability and post-hoc approaches. [25] Intrinsic interpretability comes from using models that are
considered inherently interpretable or self-explaining. These models are generally simple, and model weights can be
used to draw relationships between model outputs and input features. Examples of interpretable models are linear
models, decision trees, k-nearest neighbors. However, as the complexity of models increases, they typically become
less interpretable. Post-hoc methods are instead applied as an extra step after model training to explain predictions.

Interpretability methods and model interpretations may be categorized in multiple ways. [14,25] One categorization
is based on whether the method is model-specific or model-agnostic. Model-specific methods are applicable only
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to certain models for which they are devised. Self-explaining methods are always model-specific. Model-agnostic
methods can be applied to any deep learning model, generally in a post-hoc fashion.

The scope of model interpretation can either be global or local. Global interpretations focus on general model decisions
and provide insight into how the model learns. Miller [26] defines such interpretability as “the degree to which an
observer can understand the cause of a decision.” Global interpretations provide a generic understanding of the model,
while local explanations capture input-output relationships that may not be apparent from global trends. By Miller’s
definition, an explanation is “a presentation of information intended for humans that gives the context and cause for
an outcome.”

Here, we focus on developing a post-hoc model-agnostic local explanation method. The desire for post-hoc is because
self-explaining models cannot compete with deep learning and other black box methods in accuracy. The motivation
for local explanations is both because of their better agreement with the model being explained and because of the
well-known activity cliffs in structure–activity relationships (SAR). [27–29] An activity cliff is the often observed effect
of SARs breaking down as a model leaves one region of chemical space. Since our desire in this work is explanations
rooted in SARs, we focus on local explanations to avoid activity cliffs.

Commonly used local explanation approaches include counterfactual analysis, feature importance, training data im-
portance, and surrogate models. [30] Polishchuk [31] and Rodrı́guez-Pérez and Bajorath [32] provide a good review on
application of these approaches in chemical property prediction and QSAR modeling. Humer et al. [33] compare visu-
alization based XAI methods to get per atom attributions in their interpretability visualization tool called cheminfor-
matics model explorer (CIME). Jiménez-Luna et al. [24] discuss various XAI methods, as applicable to drug discovery.

Counterfactual analysis are instance-based approaches that rely on creating counter examples for molecules of interest.
Counterfactuals of a prediction are similar molecules with a different outcome. [34,35] Figure 1a shows an example of
counterfactuals. Although counterfactuals are intuitive and provide insight into chemical predictions, these explana-
tions are not complete since they cannot quantify the effect of a structural change on the prediction. An expert needs
to examine multiple counterfactual molecules to deduce a SAR. Contrastive explanations are a similar approach, ex-
cept the counterexamples give information of pertinent or missing features that influence predictions positively and
negatively. [36–38] An example is seen in Figure 1b where pertinent negative features for triphenylphosphine oxide are
shown. Contrastive explanations, like counterfactuals, provide chemical intuition but do not provide a quantitative
description.

Feature importance or feature attribution methods assign a numerical score to each input feature to indicate how
important it is for the prediction. Figure 1c(i) shows a visualization technique called similarity maps that use fingerprint
similarity to compare chemical structures and highlight atomic contributions to DL predictions. Rasmussen et al. [42]

recently developed benchmarks for visualization-based feature attribution methods. Gradient-based feature attribution
techniques and layerwise relevance propagation (LRP) are most frequently used to explain predictions by assigning
feature importance. [39,41,43,44] McCloskey et al. [39] use integrated gradients for substructure attribution to understand
protein-ligand binding, see Figure 1b(ii). Jiménez-Luna et al. [41] proposed a graph architecture to get attribution
scores for molecular features using integrated gradients, shown in Figure 1e. Payne et al. [45] use an attention-based
transformer model to get per atom contributions. Feature attributions can provide valuable model insight, but they
are only partial explanations because it is difficult to act on them (know how to modify structure to get a different
outcome) and connect to an underlying structure–activity relationship [46].

Surrogate models have been widely used to explain model predictions. Locally interpretable model-agnostic expla-
nations (LIME) uses a surrogate interpretable model to approximate the black box function and provides per-instance
explanations by perturbing the input features of that instance. [47] They have been seen in chemistry too. For example,
Whitmore et al. [48] show a model-specific application of LIME to interpret research octane number predictions coming
from a random forest classifier. A related, popular approach is SHapley Additive exPlanations (SHAP) [49]. SHAP is a
kernel-based approach that gives features contributions using Shapley value explanations. The concept of Shapley val-
ues originated in game theory to fairly distribute gains and costs among players depending on their contributions. [50]

Rodrı́guez-Pérez and Bajorath [51] showed how SHAP can be used to generate local explanations for compound ac-
tivity predictions. Wojtuch et al. [40] used SHAP to understand metabolic activity of compounds using Molecules are
described using Molecular ACCess System (MACCS) fingerprints. Figure 1d is an example of feature importances
extracted using SHAP. Although accurate and consistent, SHAP ignores feature dependence, can be computationally
expensive because of the combinatorial scaling of coalitions, and result in feature attributions, thereby having the same
drawbacks of unactionability and difficulty in connecting to chemical concepts.

Explanation methods do not necessarily provide contextual and scalable outcomes. Domain knowledge needs to be
incorporated to make explanations contextual and usable. Counterfactuals, for example, are actionable and contextual
since they provide exact changes that need to be made to a molecule to change its activity. They are agnostic to input
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Figure 1: Different explanation methods from literature. (a) Counterfactuals give the smallest possible change that
changes the activity [35] (b) Contrastive explanations identify the missing features that may influence the prediction,
image taken from Lim et al. [37] (c)Atomic attribution techniques give scores for each contribution of atoms and
subgroups [33,39] (d) SHAP uses Shapley values to give feature attributions [40] (e) Gradient based methods for graph
attribution [41]

features. Feature attribution and weighting methods are limited by the original set of features or model inputs. This
often hinders interpretability when input features are complex and do not incorporate chemistry knowledge. [24] We aim
to develop an intuitive understanding of local SAR for chemical data by attributing descriptors that are independent of
model features and use concepts that are of interest to users of molecular data.

In this paper, we present a post-hoc model-agnostic explanation method for providing locally faithful, meaningful
quantitative explanations for predictions from DL models of molecules using domain ontology. We aim to develop
an intuitive understanding of local SAR for chemical data by attributing descriptors, independent of model features.
Molecules are represented using interpretable chemical fingerprints and Rdkit descriptors. Chemical fingerprints en-
code structural characteristics of molecules into a vector. In graph terminology, fingerprints are k-neighborhood sub-
graph counts [52–54]. A simple linear surrogate model based on LIME is used to get attributions for these descriptors.
For perturbation of the input features, we use the Superfast Traversal, Optimization, Novelty, Exploration and Dis-
covery (STONED) algorithm which allows for generation of chemically similar, valid molecules without the need for
a pretrained generative model. [55] Molecules are described using MACCS fingerprints [56] (referred to as MACCSfps
hereafter), Extended Connectivity FingerPrints (ECFP), [52] and Rdkit descriptors [57] since these have been widely
used in chemistry and are interpretable to domain experts. They each serve a slightly different purpose: ECFP works
well when a molecule can be broken into subgraphs. MACCS works well on small molecules or very large molecules
that cannot be broken-up. Rdkit descriptors provide complementary “whole-molecule” information. We test the expla-
nations for soundness, completeness and coherence. [58] The explanations obtained are quantitative and give insights
into the influence of molecular substructures and descriptors on a model prediction, thereby giving structure–activity
relationships.
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Figure 2: Conversion from Tanimoto similarity score to weights for regression. Shifted sigmoid curve generated using
Equation 3

2 Methods

Our method compute QSARs for molecular structure properties, independent of features used for model predictions.
We use LIME to compute these because it is locally faithful, can compute QSARs, and is model agnostic.

LIME is a model-agnostic, perturbation based method that aims to explain a specific model prediction using an in-
terpretable surrogate model. [47] Let f be the original black box model to be explained and let g be the surrogate
explanation model. Let ~x be the feature vector for a given instance. The objective of the local surrogate model is to fit
the perturbed inputs around an instance ~x and corresponding model predictions from f , such that predictions from g
match those from f closely. The explanation ξ for a given instance ~x is given by Equation 1.

ξ(~x) = arg min
g∈G
L(f, g, w) + Ω(g) (1)

Where the explanation model g minimizes the loss L which is a measure of how closely g approximates f . G is
a class of interpretable models. w represents the similarity between ~x and it’s perturbed input ~x′, and Ω(g) is an
optional parameter that controls complexity of g. Ω could be a regularization term, like L1 used in lasso or L2 used
in ridge regression. We use a linear model fit with weighted least squares (WLS) regression [59] with a Tikhonov
regularization [60] term for our surrogate model g, because linear models are self-explaining and have been shown to
be comparable to sophisticated explanation strategies [61]. The regularization term is added to alleviate the problem of
multicollinearity due to correlated features.

The weights represent distance from the instance we are trying to explain and are computed by Tanimoto similarity. [62]

ECFP4 fingerprints [52] are used to calculate tanimoto similarity between the instance to be explained ~x and the points
~x′. ECFP4 fingerprints capture the entire molecular structure and hence, ensure accurate comparison of molecular
structures.

g(~x) = βX, β = (XTWX + λI)−1XTWY (2)

w =
1

1 + ( 1
d(~x,~x′) − 1)k

(3)

Mathematically, WLS is given by Equation 2 where the regression coefficients βi indicate how much ŷ changes if
feature ~xi is changed while other features are kept constant. λI is the Tikhonov regularization term. The features can
be ranked using the regression coefficients by finding the t-statistic for each βi. Equation 4 is used to calculate feature
t-statistics. It is a ratio of βi and standard error in βi. In Equation 2, weighted tanimoto similarities are used for W .
Tanimoto similarities are weighted using a shifted sigmoid function (Equation 3) so that molecules that are dissimilar to
the base molecule are disregarded in determining the explanation. In Equation 3, d(~x, ~x′) denotes tanimoto similarity
between molecules represented by ~x and ~x′ and k is a parameter that is used to adjust the slope of the curve. Figure 2
shows a plot of the shifted sigmoid curve. Figures S4, S5, S6 show how ignoring the regularization term and using
unweighted tanimoto similarity as WLS weights affects the regression fit and descriptor explanations. For some
molecules, considering dissimilar molecules doesn’t affect the regression fit, but leads to misleading explanations.

ti =
βi
Sβi

, S2
βi

=
1

N −D
∑
j

(ŷj − yj)2

(xij − x̄i)2
(4)
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In Equation 4, N is the number of examples and D is the number of features. Standard error, Sβi , is a ratio of the
prediction accuracy to feature variance. Here, prediction accuracy refers to how closely g(~x) approximates f(~x).
Finding the t-statistic removes sensitivity coming from units and magnitudes of the features.

Using LIME explanations allows the use of any interpretable representation of the inputs as features for the surrogate
model. [47] The surrogate model’s inputs do not have to be the same as features used to train the underlying model.
This makes the explanations focused on the features of interest and accessible to domain-specific experts. To make
our molecular explanation method model agnostic and widely applicable, we use MACCSfps, ECFP fingerprints, and
RdKit chemical descriptors to represent molecules when generating explanations. MACCSfps are binary vectors that
encode the presence of predefined substructures in a molecule. [56] They are fixed size vectors that contain a total of
166 keys. ECFP are binary vectors that encode instance-based substructures. It is also possible to obtain atomic
contributions using ECFP descriptors, however this results in the loss of interpretability that substructures provide.
While MACCSfps and ECFP account for structural characteristics, Rdkit descriptors constitute physical and chemical
properties.

To get perturbed input features around a molecule of interest, we create a chemical space around the instance using the
STONED algorithm. [55] STONED creates a chemical space by mutating the SELFIES representation of the instance
being explained. SMILES strings are not used for this because mutations of a SMILES string do not always correspond
to valid molecules. SELFIES (SELF-referencIng Embedded Strings), introduced by Krenn et al. [63], are surjective in
nature and any mutation made to a SELFIES string gives a valid molecule. Hence, the resulting chemical space
from STONED contains all valid molecules. However, the chemical stability and synthesizability is not guaranteed.
Wellawatte et al. [35] utilized STONED to generate a chemical space that was used to identify counterfactuals in their
method, called MMACE.

To test our method, we applied it to small molecule solubility prediction. Aqueous solubility is a key physicochemical
property in drug design and development, since it has an impact on drug uptake and bioavailability. [64] Hence, many
predictive models have been developed to predict solubility of molecules. [65–67] We use the AqSolDB database curated
by Sorkun et al. [68] to build a DL model and then draw explanations for its predictions. AqSolDB contains 9982 small
molecules along with their experimental aqueous solubility and has been of interest in developing several DL solubility
prediction models. [69–72]

3 Results and Discussion

We evaluate the explanations obtained from our method. We investigate whether our model can recover known SARs.
Next, we evaluate how well the linear regression fits the original model and if it can provide local explanations that
match chemical intuition about SARs for real data. Finally, we check if the method is robust to the sampling method.

3.1 Can the method recover a known SAR?

To evaluate if our method can explain known SARs in the vicinity of a given instance, we used the same features for
the model and explanation. A random forest (RF) regression model was trained using three calculated features for the
AqSolDB dataset. These features were picked randomly from the list of ten Rdkit descriptors. The RF model was
implemented in Scikit-learn [73] using 100 decision trees with a maximum tree depth of 10 and mean squared error
as the loss function. The data was split using a 10% train/test split. A correlation coefficient of 0.82 was obtained
(see Figure S2). Correlation is not expected to be high, since we are using few features. The described method was
used to generate descriptor explanations for one of the molecules, and we check if the features used for training were
recovered as important. Figure 3 shows the outcome of this analysis. Features in purple font were used to train the
RF model and, as can be seen, they are reflected in the set of important descriptors calculated. Thus, our method can
recover the known model features.

3.2 Does the method recover SAR for real data?

We use AqSolDB with another DL model to evaluate the SAR obtained. The DL model we use for this regression task
is a gated recurrent unit (GRU) recurrent neural network (RNN) implemented in Keras. [75,76] Molecules are specified
as SMILES [77] in the data. They are canonicalized and converted to SELFIES for model training. The model is trained
for 100 epochs using the Adam optimizer [78] with a learning rate of 10−4, and validated using early stopping. An
80%-10%-10% train-validation-test split is used. A correlation coefficient of 0.87 is obtained (see Figure S3), and the
state-of-the-art is between 0.8 and 0.93. [66]
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number of heteroatoms

Figure 3: Descriptor explanations retrieve features used to train the model and weigh these higher than others, indi-
cating that the XAI model is robust to training features. The descriptors highlighted in purple were used to train a
random forest model, and green and red bars show descriptors that influence predictions positively and negatively,
respectively. Wildman-Crippen LogP is a measure of hydrophobicity [74] and has an inverse relationship with aqueous
solubility. Number of hetero atoms shows up among the important descriptors since it is correlated with the number
of hydrogen bond donors.

To get the SAR for solubility data, we pick an instance to explain (referred to as ‘base molecule’) from AqSolDB,
create a chemical space around that molecule and fit the WLS regression model to predictions for this space. Figure 4b
shows the chemical space for a given base molecule. Distance in the chemical space denotes similarity to the base
molecule, and the color indicates agreement between RNN predictions, ŷ and regression model approximations, g.
Notice that the regression is weighted to fit in the vicinity of the base molecule. We see that regression fit becomes
poorer as we move away from the base molecule in chemical space, as desired by Equation 1. The parity plot (Fig-
ure 4a) shows the regression fit between ŷ and g obtained for points in the chemical space, and color and transparency
of the points denotes similarity to the base molecule. A correlation coefficient of 0.78 indicates a strong positive cor-
relation between ŷ and g, meaning we see a good agreement between the local model and the RNN prediction – the
locally interpretable model is faithful.

Figure 5 shows the descriptor explanations for the base molecule shown. These attributions are calculated using
Equation 4. The five highest t-statistic descriptors are shown. The yellow dotted lines indicate the significance
threshold for the t-statistics. The significance threshold is set at 0.05, although this is somewhat arbitrary. Significance
t-statistics help provide sparse explanations and quantify whether a descriptor is important or shows up as likely due to
chance. Among the classic descriptors, acidic group count, basic group count, and number of hydrogen bond acceptors
positively influence solubility predictions. By chemical intuition, acidic and basic groups as well as hydrogen bond
donors and acceptors make molecules more polar, and polar compounds are more soluble in water. Wildman-Crippen
LogP [79], and aromatic bonds count negatively influence the solubility. LogP is a measure of hydrophobicity and
has an inverse relationship with aqueous solubility. [74] Increase in aromaticity has been shown to decrease aqueous
solubility. [80,81] The classic descriptor explanations show that this approach is chemically intuitive.

The MACCSfps and ECFP explanations show which functional groups or substructures affect solubility of the
molecule in water. Because these are local explanations, substructures or functional groups that show up as im-
portant are related to the base molecule and perturbations created around it. For example, in Figure 5, the pictured
molecule is highly insoluble in water. MACCS descriptors suggest that multiple six member rings negatively influ-
ence the aqueous solubility. Adding heteroatoms to the ring increases solubility. This is intuitive, since addition
of heteroatoms increases polarity. This is also alluded by the ECFP descriptors where substructures containing het-
eroatoms are shown to increase solubility. Substructure attributions, provided with statistical significance, give sparse
structure–activity relationships that are locally valid.

3.3 Is the method sensitive to STONED parameters?

The STONED algorithm has a few parameters that affect the way chemical space is sampled. These parameters are
number of mutations, choice of alphabet and size of chemical space. Depending on choice of parameters, chemical
space creation varies. In Figure 5, the parameters are chemical space size of 2500 molecules created using the basic
alphabet with up to two mutations to the base molecule. “Alphabet” implies the available tokens that may be utilized
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Figure 4: (a) Parity plot showing weighted least squares predictions against true values (black box predictions) and
colored by chemical similarity from the base molecule. (b) Chemical space created by STONED around the base
molecule, colored by the weighted least squares fit.

Is there more than one 
6M ring?

Figure 5: Descriptor t-statistics for the molecule pictured. The green and red bars show descriptors that influence
predictions positively and negatively, respectively. Dotted yellow lines show significance threshold (α = 0.05) for the
t-statistic. SMARTS annotations for MACCS descriptors were created using SMARTSviewer (smartsview.zbh.uni-
hamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. [82] The MACCS
and ECFP descriptors indicate which substructures influence model predictions. MACCS substructures may either be
present in the molecule as is or may represent a modification, and ECFP fingerprints are substructures in the molecule
that affect the prediction.
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for SELFIES modification in STONED. Basic alphabet restricts the available elements to B, C, N, O, S, F, Cl, Br, I.
Other alphabet choices include “training data” and the SELFIES alphabet. Training data alphabet includes all unique
SELFIES tokens present in the training data. ‘SELFIES’ alphabet includes all elements or tokens that are allowed
in SELFIES representation. [63] The descriptor explanation method itself is insensitive to the choice of parameters.
However, descriptor explanations depend on the chemical space and the choice of parameters affects the mutations
created around the base molecule. For example, Wellawatte et al. [35] showed that increasing the number of SELFIES
mutations leads to perturbed molecules being dissimilar from the base molecule. Hence, the choice of parameters
should be governed by the kind of molecule mutations expected by the user. Figures 6,S7,S8 in the supplementary
information shows the effect of these parameters on explanations. Notice how substructures that matter for prediction
differ as parameters change.

3.4 Is the method robust to incomplete sampling of chemical space?

The chemical space sampled by STONED may not be complete and is sensitive to hyperparameters chosen of the
method. We investigate the robustness of our method by varying chemical space size. To do this, we subsample chem-
ical space of different sizes from a large reference chemical space sampled using STONED. The reference chemical
space is sampled using two mutations, basic alphabet and a chemical space size of 7500. Descriptor explanations
are calculated for each of the sampled subspaces and compared to the reference set of important descriptors using
Spearman’s rank-order correlation coefficient. [83] Spearman’s rank-order correlation is a non-parametric measure of
the monotonicity between two sets. Figure 7 shows the rank correlation for chemical subspaces as a function of in-
creasing space size. For each size, ten chemical spaces are subsampled and the average of rank correlations found
for those ten spaces is reported. The correlation between descriptor explanations of a subsampled chemical space and
reference set (red dotted line in Figure 7) increases monotonically and then plateaus. Rank correlation shows how
close the ranks of important descriptors in the subsampled set are to the reference set. For as low as 1000 perturbed
examples, we see a rank correlation of 0.9. A high rank correlation coefficient indicates that descriptor ranks for the
subsampled set and the reference set are positively correlated. We observe high correlation of ranks at chemical space
size of 4000, and increasing the chemical space size beyond that doesn’t change the ranks assigned to descriptors.

4 Conclusions

Machine learning models are becoming widespread in chemical and life science. It is important to understand whether
these models behave as expected and provide valid predictions. The presented method is a descriptor explanation
method that provides localized explanations of model predictions and quantifies the importance of certain functional
groups or fragments present in the molecule. We demonstrated our method by applying it to AqSolDB. We recovered
known structure-activity relationships and showed our method is robust. MACCSfps and ECFP are a set of substruc-
tures that provide insight into which parts of the molecule explain predictions, and Rdkit descriptors explain which
chemical properties might be influencing predictions. Our method also provides a confidence threshold for explana-
tions. These outcomes are intuitive, connect well to SAR and are easily interpretable by chemists. Counterfactuals
are actionable explanations; however, they do not provide a quantitative view of the SAR. Descriptor explanations
complement counterfactual explanations, as they provide quantitative SAR with significance statistics for important
molecular substructures.

5 Data Availability

The code and data is available at https://github.com/ur-whitelab/exmol.
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SUPPLEMENTAL INFORMATION: EXPLAINING
STRUCTURE–ACTIVITY RELATIONSHIPS USING LOCALLY

FAITHFUL SURROGATE MODELS

Figure S1: Tanimoto similarities of molecules are weighted using a shifted sigmoid function so that dissimilar
molecules are excluded from weighted least squares regression fit. The histogram shows the distribution of tanimoto
similarities and purple line shows the weighted value for tanimoto similarity.

Figure S2: Random Forest Regression performance. The model was trained using 100 decision trees with a tree depth
of 10. Data was split using a 90-10 train-test data split.
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Figure S3: RNN performance. Loss curve shows training and validation loss over 100 epochs. Parity plot for testing
data shows correlation between RNN predictions and experimental values.

Figure S4: Comparison of using unweighted and weighted tanimoto similarities as weights for weighted least squares
regression. The dissimilar molecules do not affect the regression fit, however, they end up contributing in determining
descriptor explanations.
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Figure S5: Comparison of using unweighted and weighted tanimoto similarities as weights for weighted least squares
regression. For small molecules, the dissimilar molecules lead to poor regression fit and misleading explanations.
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Figure S6: Comparison of using unweighted and weighted tanimoto similarities as weights for weighted least squares
regression. The dissimilar molecules don’t affect the regression fit for ring compounds, but affect the explanations.
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Is there more than one 
6M ring?
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6M ring?

Figure S7: Effect of number of mutations on descriptor explanations. Number of mutations is a STONED parameter
that controls how many additions, deletions or modifications can be made to the SELFIES string. SMARTS annota-
tions for MACCS descriptors were created using SMARTSviewer (smartsview.zbh.uni-hamburg.de, Copyright: ZBH,
Center for Bioinformatics Hamburg) developed by Schomburg et al. [S82]
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Figure S8: Effect of chemical space size on descriptor explanations. ‘Chemical space size’ parameter specifies how
many mutated molecules of the base instance must be created. SMARTS annotations for MACCS descriptors were cre-
ated using SMARTSviewer (smartsview.zbh.uni-hamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg)
developed by Schomburg et al. [S82]
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