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ABSTRACT: We report a new method for the hydroboration reactions of nitriles, imines and amides.

The conversions of nitriles, readily available synthetic 
precursors, into other N-containing derivatives (Scheme 
1) such as amines, imines or amides are important chem-
ical transformation in both synthetic laboratories and in-
dustrial chemistry.1 This process can be realized by direct 
hydrogenation or reduction with organometallic or or-
ganic hydride donors such as boranes.1 The former often 
requires precious metal catalysts and complicated reac-
tion setups and controls to deliver desirable efficiency 
and selectivity. The latter, while being milder and more 
selective, generally involves specifically designed cata-
lysts and laborious product purification processes. How-
ever, it is still being use predominantly in synthetic labor-
atories to discover new synthetically useful approaches 
to access important N-containing organic compounds.2 
Based on our recent works on tropylium-promoted hy-
droboration chemistry3 and Ritter reaction,4 we believed 
that the simple and commercially available tropylium tet-
rafluoroborate (TropBF4) salt5 could act as a traceless re-
action promoter for the hydroboration of nitriles. Our 
previous experimental and computational mechanistic 
studies revealed that TropBF4 facilitated hydroboration 
with pinacolatoborane (HBpin) via a hydride abstraction 
of pinacolborane with tropylium ion, followed by a series 
of in situ substituent exchanges to generate boron inter-
mediate BH2F that was the active catalyst for the reac-
tion.3 TropBF4 turned itself into cycloheptatriene5i, 6 and 
BH2F and possibly some other borane by-products during 
the course of the reaction.3 All of these are volatile 

compounds and can be removed under reduce pressure 
at the end of the reaction,3 making TropBF4 a traceless 
reaction promoter and reducing the complication of 
product purification. This in addition to the transition 
metal-free nature of this process offer an attractive syn-
thetic toolbox for the hydroborative reduction of nitriles 
and further functionalization reactions to produce a 
broad range of amines and amides in one-pot fashion 
(Scheme 1). 
 
Scheme 1. One-pot synthesis of amines and amides via 
traceless hydroboration of nitriles, amides and imines. 

 

We were delighted to see that TropBF4 could indeed effi-
ciently promote the hydroboration reaction of nitriles. A 
standard optimization study (see page S3 in the 
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experimental SI for detail)7 led us to the optimal condi-
tions depicted in Scheme 1, where a wide range of ni-
triles 1 were converted to their corresponding N,N-di-
borylamines 2 in excellent efficiencies (Scheme 2) using 
10 mol% TropBF4 at 70 ºC for 18-24 h. As predicted, 1H, 
13C, 11B and 19F NMR of the crude reaction mixture after 
evaporation under reduced pressure showed no evi-
dence of the catalyst or its byproducts. The “traceless” 
nature of TropBF4 allowed for a simple product purifica-
tion process via recrystalization, which enable us to iso-
late these N,N-diborylamines with exceptional purity in 
comparison to previously reported protocols in litera-
ture, based on reported NMR spectra. Functional groups 
tolerated in this reaction included halogens, alkoxy, thi-
oether and heterocyclic systems (Scheme 2). 
However, the key significance of this “traceless” catalytic 
method was that we could directly submit new reagents 
to the crude hydroboration reaction mixtures to perform 
sequential one-pot functionalization chemistry. Such 
one-pot sequence might not always be feasible using tra-
ditional catalytic hydroboration approaches, as the effi-
ciency of the first step might not be adequate or the cat-
alysts might not be compatible with further chemical 
transformations.1b Our developed catalytic method 

satisfies both criteria, offering a pathway to conveniently 
access downstream N-containing derivatives (Scheme 3).  
Scheme 2. Hydroboration of nitriles 

 

Scheme 3. Two-step one-pot synthesis of amides and imines from nitriles. 

 
Indeed, by treating the hydroboration crude mixtures 
with benzoic acid in toluene at reflux for 24 h in the same 
reaction pot, we could isolate corresponding benzamides 
in good to excellent yields (3a-r, Scheme 3a).7 Similarly, 

trifluoroacetic acid could also react with the in situ gen-
erated N,N-diborylamines to form trifluoroacetamides 
(3s-y, Scheme 3b) with good efficiencies. Treatment of 
the same crude reaction mixtures of 2 with 
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benzaldehyde1b in chloroform at 70 ºC for 3 h afforded 
the corresponding phenylimines (4a-g, Scheme 3c). The 
by-product of these reactions was Bpin-O-Bpin (see page 
S15-16 in the SI). 
We subsequently investigated the four-step one-pot syn-
thesis of secondary amines from nitriles via a hydrobora-
tion followed by amidation or imination and further hy-
droborative reduction and acidic workup of the resulting 
amide or imine, respectively (Scheme 4). This was in-
spired by common reactivity trend that a catalyst system 
capable of promoting nitrile hydroboration can also 

mediate similar reactions on amides and imines. Indeed, 
after some optimization studies, we were able to carry 
out such four-step one-pot synthetic sequences to pro-
duce a wide range of unsymmetrical secondary amines, 
including CF3-containing amines, with good to excellent 
outcomes (5a-t, Scheme 4). The reduction of the amide 
group in this synthetic sequence likely went through a 
deoxygenative step to the imine intermediate before be-
ing further reduced to the N-boryl secondary amine, as 
evidenced by NMR spectroscopy (see page S36 in the SI 
for more details). 

 

Scheme 4. Four-step one-pot synthesis of secondary amines. 

 
While the deoxygenative reduction of secondary amides 
similar to the third reaction step in Scheme 4 is generally 
straightforward, the reduction of primary amides is more 
challenging due to catalyst poisoning and unwanted side 
processes.8 Therefore, we subsequently set out to inves-
tigate the applicability of our Trop.BF4 promoted reduc-
tion protocol on primary amides (Scheme 5). Gratifyingly, 
it was shown to efficiently reduce a range of primary am-
ides to the corresponding amines in good to excellent 
yields. Lactams could also be reduced under the same 
conditions to afford cyclic amines in high yieds (Scheme 
5). 
In conclusion, we have developed a new hydroborative 
method employing tropylium tetrafluoroborate as a 
traceless reaction promoter. It is amenable to the reduc-
tion of nitriles, amides and imines to give convenient ac-
cess to their corresponding products with excellent effi-
ciencies. 

Scheme 5. Reduction of primary amides 
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