EXPLAINING STRUCTURE–ACTIVITY RELATIONSHIPS USING LOCALLY FAITHFUL SURROGATE MODELS

A Preprint

Heta A. Gandhi
Department of Chemical Engineering
University of Rochester
Rochester, NY, 14627
hgandhi@ur.rochester.edu

Andrew D. White
Department of Chemical Engineering
University of Rochester
Rochester, NY, 14627
andrew.white@rochester.edu

ABSTRACT

We present a model-agnostic method that gives structure-activity explanations of black-box models. Machine learning models are now common for molecular property prediction and chemical design. They typically are black boxes – having no explanation for predictions. Our method uses surrogate models to attribute predictions to chemical descriptors and molecular substructures, independent of the black box model inputs. Our approach provides explanations consistent with chemical reasoning, like connecting existence of a functional group or molecular polarity.

1 Introduction

Understanding the link between chemical or biological activity and molecular structure is central to aspects of drug discovery and medicinal chemistry. Quantitative structure–activity relationship (QSAR) modeling aims to model the variations in biological or pharmacokinetic properties caused by a variation in structural properties. As a result, QSAR modeling has been applied across disciplines to comprehend, rationalize and predict biological activity and physicochemical properties of molecules. Some specific use cases include chemical property prediction, computer-aided drug design, and lead optimization.

In recent years, deep learning (DL) methods have gained popularity for QSAR modeling. While these methods may be highly accurate in their predictions, most DL models are black box functions that provide little explanation or scientific insight for their predictions. For many of the chemistry and biochemistry applications, especially in healthcare and drug discovery, predictions from DL models may be used to make high-stakes decisions. Thus, it is crucial that prediction accuracy comes from learning relevant relationships between data features rather than from picking up potential biases in the data, also known as the so-called Clever Hans effect. For example, Chuang and Keiser found spurious correlations in a black box model used to predict C-N cross-coupling reaction yields. Understanding what the model is learning and what factors impact model predictions assists in avoiding the Clever Hans effect by detecting model bias and in determining whether to trust the predictions while making decisions.

Explainable artificial intelligence (XAI) has emerged as a field to better comprehend what DL models learn and to gain scientific insight into model predictions. Two broad approaches are typically used for model interpretability — intrinsic interpretability and post-hoc approaches. Intrinsic interpretability comes from using models that are considered inherently interpretable or self-explaining. These models are generally simple, and model weights can be used to draw relationships between model outputs and input features. Examples of interpretable models are linear models, decision trees, k-nearest neighbors. However, as the complexity of models increases, they typically become less interpretable. Post-hoc methods are instead applied as an extra step after model training to explain predictions.

Interpretability methods and model interpretations may be categorized in multiple ways. One categorization is based on whether the method is model-specific or model-agnostic. Model-specific methods are applicable only

*Corresponding Author
to certain models for which they are devised. Self-explaining methods are always model-specific. Model-agnostic methods can be applied to any deep learning model, generally in a post-hoc fashion.

The scope of model interpretation can either be global or local. Global interpretations focus on general model decisions and provide insight into how the model learns. Miller defines such interpretability as “the degree to which an observer can understand the cause of a decision.” Global interpretations provide a generic understanding of the model, while local explanations capture input-output relationships that may not be apparent from global trends. By Miller’s definition, an explanation is “a presentation of information intended for humans that gives the context and cause for an outcome.”

Here, we focus on developing a post-hoc model-agnostic local explanation method. The desire for post-hoc is because self-explaining models cannot compete with deep learning and other black box methods in accuracy. The motivation for local explanations is both because of their better agreement with the model being explained and because of the well-known activity cliffs in structure–activity relationships (SAR). An activity cliff is the often observed effect of SARs breaking down as a model leaves one region of chemical space. Since our desire in this work is explanations rooted in SARs, we focus on local explanations to avoid activity cliffs.

Commonly used local explanation approaches include counterfactual analysis, feature importance, training data importance, and surrogate models. and Rodríguez-Pérez and Bajorath provide a good review on application of these approaches in chemical property prediction and QSAR modeling. Humer et al. compare visualization based XAI methods to get per atom attributions in their interpretability visualization tool called cheminformatics model explorer (CIME). Jiménez-Luna et al. discuss various XAI methods, as applicable to drug discovery.

Counterfactual analysis are instance-based approaches that rely on creating counter examples for molecules of interest. Counterfactuals of a prediction are similar molecules with a different outcome. Figure shows an example of counterfactuals. Although counterfactuals are intuitive and provide insight into chemical predictions, these explanations are not complete since they cannot quantify the effect of a structural change on the prediction. An expert needs to examine multiple counterfactual molecules to deduce a SAR. Contrastive explanations are a similar approach, except the counterexamples give information of pertinent or missing features that influence predictions positively and negatively. An example is seen in Figure where pertinent negative features for triphenylphosphine oxide are shown. Contrastive explanations, like counterfactuals, provide chemical intuition but do not provide a quantitative description.

Feature importance or feature attribution methods assign a numerical score to each input feature to indicate how important it is for the prediction. Figure shows a visualization technique called similarity maps that use fingerprint similarity to compare chemical structures and highlight atomic contributions to DL predictions. Rasmussen et al. recently developed benchmarks for visualization-based feature attribution methods. Gradient-based feature attribution techniques and layerwise relevance propagation (LRP) are most frequently used to explain predictions by assigning feature importance. McCloskey et al. use integrated gradients for substructure attribution to understand protein-ligand binding, see Figure. proposed a graph architecture to get attribution scores for molecular features using integrated gradients, shown in Figure. Payne et al. use an attention-based transformer model to get per atom contributions. Feature attributions can provide valuable model insight, but they are only partial explanations because it is difficult to act on them (know how to modify structure to get a different outcome) and connect to an underlying structure–activity relationship.

Surrogate models have been widely used to explain model predictions. Locally interpretable model-agnostic explanations (LIME) uses a surrogate interpretable model to approximate the black box function and provides per-instance explanations by perturbing the input features of that instance. They have been seen in chemistry too. For example, Whitmore et al. show a model-specific application of LIME to interpret research octane number predictions coming from a random forest classifier. A related, popular approach is SHapley Additive exPlanations (SHAP). SHAP is a kernel-based approach that gives features contributions using Shapley value explanations. The concept of Shapley values originated in game theory to fairly distribute gains and costs among players depending on their contributions. Rodríguez-Pérez and Bajorath showed how SHAP can be used to generate local explanations for compound activity predictions. Wojtuch et al. used SHAP to understand metabolic activity of compounds using Molecules are described using Molecular ACCess System (MACCS) fingerprints. Figure is an example of feature importances extracted using SHAP. Although accurate and consistent, SHAP ignores feature dependence, can be computationally expensive because of the combinatorial scaling of coalitions, and result in feature attributions, thereby having the same drawbacks of unactionability and difficulty in connecting to chemical concepts.

Explanation methods do not necessarily provide contextual and scalable outcomes. Domain knowledge needs to be incorporated to make explanations contextual and usable. Counterfactuals, for example, are actionable and contextual since they provide exact changes that need to be made to a molecule to change its activity. They are agnostic to input
Explaining structure–activity relationships using locally faithful surrogate models

Figure 1: Different explanation methods from literature. (a) Counterfactuals give the smallest possible change that changes the activity \[35\] (b) Contrastive explanations identify the missing features that may influence the prediction, image taken from Lim et al. \[37\] (c) Atomic attribution techniques give scores for each contribution of atoms and subgroups \[33,39\] (d) SHAP uses Shapley values to give feature attributions \[40\] (e) Gradient based methods for graph attribution \[41\]

features. Feature attribution and weighting methods are limited by the original set of features or model inputs. This often hinders interpretability when input features are complex and do not incorporate chemistry knowledge. \[52\] We aim to develop an intuitive understanding of local SAR for chemical data by attributing descriptors that are independent of model features and use concepts that are of interest to users of molecular data.

In this paper, we present a post-hoc model-agnostic explanation method for providing locally faithful, meaningful quantitative explanations for predictions from DL models of molecules using domain ontology. We aim to develop an intuitive understanding of local SAR for chemical data by attributing descriptors, independent of model features. Molecules are represented using interpretable chemical fingerprints and Rdkit descriptors. Chemical fingerprints encode structural characteristics of molecules into a vector. In graph terminology, fingerprints are k-neighborhood subgraph counts. \[52\] A simple linear surrogate model based on LIME is used to get attributions for these descriptors. For perturbation of the input features, we use the Superfast Traversal, Optimization, Novelty, Exploration and Discovery (STONEd) algorithm which allows for generation of chemically similar, valid molecules without the need for a pretrained generative model. \[55\] Molecules are described using MACCS fingerprints (referred to as MACCSfps hereafter), Extended Connectivity FingerPrints (ECFP), \[52\] and Rdkit descriptors \[57\] since these have been widely used in chemistry and are interpretable to domain experts. They each serve a slightly different purpose: ECFP works well when a molecule can be broken into subgraphs. MACCS works well on small molecules or very large molecules that cannot be broken-up. Rdkit descriptors provide complementary “whole-molecule” information. We test the explanations for soundness, completeness and coherence. \[58\] The explanations obtained are quantitative and give insights into the influence of molecular substructures and descriptors on a model prediction, thereby giving structure–activity relationships.
Explaining structure–activity relationships using locally faithful surrogate models

2 Methods

Our method computes QSARs for molecular structure properties, independent of features used for model predictions. We use LIME to compute these because it is locally faithful, can compute QSARs, and is model agnostic.

LIME is a model-agnostic, perturbation-based method that aims to explain a specific model prediction using an interpretable surrogate model. Let f be the original black box model to be explained and let g be the surrogate explanation model. Let \vec{x} be the feature vector for a given instance. The objective of the local surrogate model is to fit the perturbed inputs around an instance \vec{x} and corresponding model predictions from f, such that predictions from g match those from f closely. The explanation ξ for a given instance \vec{x} is given by Equation 1.

$$\xi(\vec{x}) = \arg \min_{g \in G} L(f, g, w) + \Omega(g)$$

Where the explanation model g minimizes the loss L which is a measure of how closely g approximates f. G is a class of interpretable models. w represents the similarity between \vec{x} and its perturbed input \vec{x}', and $\Omega(g)$ is an optional parameter that controls complexity of g. Ω could be a regularization term, like L1 used in Lasso or L2 used in ridge regression. We use a linear model fit with weighted least squares (WLS) regression with a Tikhonov regularization term for our surrogate model g, because linear models are self-explaining and have been shown to be comparable to sophisticated explanation strategies.

The regularization term is added to alleviate the problem of multicollinearity due to correlated features.

The weights represent distance from the instance we are trying to explain and are computed by Tanimoto similarity. ECFP4 fingerprints are used to calculate Tanimoto similarity between the instance to be explained \vec{x} and the points \vec{x}'. ECFP4 fingerprints capture the entire molecular structure and hence, ensure accurate comparison of molecular structures.

$$g(\vec{x}) = \beta \cdot X, \quad \beta = (X^T WX + \lambda I)^{-1}X^T W Y$$

$$w = \frac{1}{1 + \left(\frac{d(\vec{x}, \vec{x}')}{d(\vec{x}, \vec{x})} - 1 \right)^k}$$

Mathematically, WLS is given by Equation 2 where the regression coefficients β_i indicate how much \hat{y} changes if feature x_i is changed while other features are kept constant. λI is the Tikhonov regularization term. The features can be ranked using the regression coefficients by finding the t-statistic for each β_i. Equation 4 is used to calculate feature t-statistics. It is a ratio of β_i and standard error in β_i. In Equation 2, weighted Tanimoto similarities are used for W. Tanimoto similarities are weighted using a shifted sigmoid function (Equation 3) so that molecules that are dissimilar to the base molecule are disregarded in determining the explanation. In Equation 3, $d(\vec{x}, \vec{x}')$ denotes Tanimoto similarity between molecules represented by \vec{x} and \vec{x}' and k is a parameter that is used to adjust the slope of the curve. Figure 2 shows a plot of the shifted sigmoid curve. Figures S4, S5, S6 show how ignoring the regularization term and using unweighted Tanimoto similarity as WLS weights affects the regression fit and descriptor explanations. For some molecules, considering dissimilar molecules doesn’t affect the regression fit, but leads to misleading explanations.

$$t_i = \frac{\beta_i}{S_{\beta_i}}, \quad S_{\beta_i}^2 = \frac{1}{N-D} \sum_j \frac{(\hat{y}_j - y_j)^2}{(x_{ij} - \bar{x}_i)^2}$$
In Equation 4, \(N \) is the number of examples and \(D \) is the number of features. Standard error, \(S_{\beta_i} \), is a ratio of the prediction accuracy to feature variance. Here, prediction accuracy refers to how closely \(g(\vec{x}) \) approximates \(f(\vec{x}) \). Finding the t-statistic removes sensitivity coming from units and magnitudes of the features.

Using LIME explanations allows the use of any interpretable representation of the inputs as features for the surrogate model.\(^{13} \) The surrogate model’s inputs do not have to be the same as features used to train the underlying model. This makes the explanations focused on the features of interest and accessible to domain-specific experts. To make our molecular explanation method model agnostic and widely applicable, we use MACCSfps, ECFP fingerprints, and RDKit chemical descriptors to represent molecules when generating explanations. MACCSfps are binary vectors that encode the presence of predefined substructures in a molecule.\(^{58} \) They are fixed size vectors that contain a total of 166 keys. ECFP are binary vectors that encode instance-based substructures. It is also possible to obtain atomic contributions using ECFP descriptors, however this results in the loss of interpretability that substructures provide. While MACCSfps and ECFP account for structural characteristics, RDKit descriptors constitute physical and chemical properties.

To get perturbed input features around a molecule of interest, we create a chemical space around the instance using the STONED algorithm.\(^{55} \) STONED creates a chemical space by mutating the SELFIES representation of the instance being explained. SMILES strings are not used for this because mutations of a SMILES string do not always correspond to valid molecules. SELFIES (SELF-referencIng Embedded Strings), introduced by Krenn et al.\(^{63} \), are surjective in nature and any mutation made to a SELFIES string gives a valid molecule. Hence, the resulting chemical space from STONED contains all valid molecules. However, the chemical stability and synthesizability is not guaranteed. Wellawatte et al.\(^{55} \) utilized STONED to generate a chemical space that was used to identify counterfactuals in their method, called MMACE.

To test our method, we applied it to small molecule solubility prediction. Aqueous solubility is a key physicochemical property in drug design and development, since it has an impact on drug uptake and bioavailability.\(^{64} \) Hence, many predictive models have been developed to predict solubility of molecules.\(^{65-67} \) We use the AqSolDB database curated by Sorkun et al.\(^{68} \) to build a DL model and then draw explanations for its predictions. AqSolDB contains 9982 small molecules along with their experimental aqueous solubility and has been of interest in developing several DL solubility prediction models.\(^{69-72} \)

3 Results and Discussion

We evaluate the explanations obtained from our method. We investigate whether our model can recover known SARs. Next, we evaluate how well the linear regression fits the original model and if it can provide local explanations that match chemical intuition about SARs for real data. Finally, we check if the method is robust to the sampling method.

3.1 Can the method recover a known SAR?

To evaluate if our method can explain known SARs in the vicinity of a given instance, we used the same features for the model and explanation. A random forest (RF) regression model was trained using three calculated features for the AqSolDB dataset. These features were picked randomly from the list of ten RDKit descriptors. The RF model was implemented in Scikit-learn\(^{13} \) using 100 decision trees with a maximum tree depth of 10 and mean squared error as the loss function. The data was split using a 10% train/test split. A correlation coefficient of 0.82 was obtained (see Figure S2). Correlation is not expected to be high, since we are using few features. The described method was used to generate descriptor explanations for one of the molecules, and we check if the features used for training were recovered as important. Figure 3 shows the outcome of this analysis. Features in purple font were used to train the RF model and, as can be seen, they are reflected in the set of important descriptors calculated. Thus, our method can recover the known model features.

3.2 Does the method recover SAR for real data?

We use AqSolDB with another DL model to evaluate the SAR obtained. The DL model we use for this regression task is a gated recurrent unit (GRU) recurrent neural network (RNN) implemented in Keras.\(^{76,77} \) Molecules are specified as SMILES\(^{78} \) in the data. They are canonicalized and converted to SELFIES for model training. The model is trained for 100 epochs using the Adam optimizer\(^{79} \) with a learning rate of \(10^{-4} \), and validated using early stopping. An 80%-10%-10% train-validation-test split is used. A correlation coefficient of 0.87 is obtained (see Figure S3), and the state-of-the-art is between 0.8 and 0.93.\(^{60} \)
Explaining structure–activity relationships using locally faithful surrogate models

Figure 3: Descriptor explanations retrieve features used to train the model and weigh these higher than others, indicating that the XAI model is robust to training features. The descriptors highlighted in purple were used to train a random forest model, and green and red bars show descriptors that influence predictions positively and negatively, respectively. Wildman-Crippen LogP is a measure of hydrophobicity and has an inverse relationship with aqueous solubility. BertzCT shows up among the important descriptors since it is correlated with the number of hydrogen bond donors. BertzCT is a measure of complexity and accounts for bonding complexity and heteroatom distribution.

To get the SAR for solubility data, we pick an instance to explain (referred to as ‘base molecule’) from AqSolDB, create a chemical space around that molecule and fit the WLS regression model to predictions for this space. Figure 4b shows the chemical space for a given base molecule. Distance in the chemical space denotes similarity to the base molecule, and the color indicates agreement between RNN predictions, \(\hat{y} \) and regression model approximations, \(g \). Notice that the regression is weighted to fit in the vicinity of the base molecule. We see that regression fit becomes poorer as we move away from the base molecule in chemical space, as desired by Equation 1. The parity plot (Figure 4a) shows the regression fit between \(\hat{y} \) and \(g \) obtained for points in the chemical space, and color and transparency of the points denote similarity to the base molecule. A correlation coefficient of 0.78 indicates a strong positive correlation between \(\hat{y} \) and \(g \), meaning we see a good agreement between the local model and the RNN prediction – the locally interpretable model is faithful.

Figure 5 shows the descriptor explanations for the base molecule shown. These attributions are calculated using Equation 4. The five highest \(t \)-statistic descriptors are shown. The yellow dotted lines indicate the significance threshold for the \(t \)-statistics. The significance threshold is set at 0.05, although this is somewhat arbitrary. Significance \(t \)-statistics help provide sparse explanations and quantify whether a descriptor is important or shows up as likely due to chance. Among the classic descriptors, acidic group count, number of hydrogen bond acceptors, and atomic polarizability positively influence solubility predictions. By chemical intuition, acid group counts and hydrogen bond donors and acceptors make molecules more polar, and polar compounds are more soluble in water. Wildman-Crippen LogP negatively influence the solubility. LogP is a measure of hydrophobicity and has an inverse relationship with aqueous solubility. BertzCT is a measure of complexity, and accounts for aromatic rings and heteroatoms in the molecule. The classic descriptor explanations show that this approach is chemically intuitive.

The MACCSfps and ECFP explanations show which functional groups or substructures affect solubility of the molecule in water. Because these are local explanations, substructures or functional groups that show up as important are related to the base molecule and perturbations created around it. For example, the MACCS key “Is there an S involved in a double bond” likely alludes to the S-O double bond in the base molecule in Figure 5. Substructure attributions, provided with statistical significance, give sparse structure–activity relationships that are locally valid.

3.3 Is the method sensitive to STONED parameters

The STONED algorithm has a few parameters that affect the way chemical space is sampled. These parameters are number of mutations, choice of alphabet and size of chemical space. Depending on choice of parameters, chemical space creation varies. In Figure 5 the parameters are chemical space size of 2500 molecules created using the basic alphabet with up to two mutations to the base molecule. “Alphabet” implies the available tokens that may be utilized for SELFIES modification in STONED. Basic alphabet restricts the available elements to B, C, N, O, S, F, Cl, Br, I. Other alphabet choices include “training data” and the SELFIES alphabet. Training data alphabet includes all unique SELFIES tokens present in the training data. ‘SELFIES’ alphabet includes all elements or tokens that are allowed
Explaining structure–activity relationships using locally faithful surrogate models

Figure 4: (a) Parity plot showing weighted least squares predictions against true values (black box predictions) and colored by chemical similarity from the base molecule. (b) Chemical space created by STONED around the base molecule, colored by the weighted least squares fit.

Figure 5: Descriptor t-statistics for the molecule pictured. The green and red bars show descriptors that influence predictions positively and negatively, respectively. Dotted yellow lines show significance threshold ($\alpha = 0.05$) for the t-statistic. SMARTS annotations for MACCS descriptors were created using SMARTSviewer (smartsview.zbh.unihamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. [81]. The MACCS and ECFP descriptors indicate which substructures influence model predictions. MACCS substructures may either be present in the molecule as is or may represent a modification, and ECFP fingerprints are substructures in the molecule that affect the prediction.
Explaining structure–activity relationships using locally faithful surrogate models

A P REPRINT

The descriptor explanation method itself is insensitive to the choice of parameters. However, descriptor explanations depend on the chemical space and the choice of parameters affects the mutations created around the base molecule. For example, Wellawatte et al. showed that increasing the number of SELFIES mutations leads to perturbed molecules being dissimilar from the base molecule. Hence, the choice of parameters should be governed by the kind of molecule mutations expected by the user. Figures S7-S8 in the supplementary information shows the effect of these parameters on explanations. Notice how substructures that matter for prediction differ as parameters change.

3.4 Is the method robust to incomplete sampling of chemical space?

The chemical space sampled by STONED may not be complete and is sensitive to hyperparameters chosen of the method. We investigate the robustness of our method by varying chemical space size. To do this, we subsample chemical space of different sizes from a large reference chemical space sampled using STONED. The reference chemical space is sampled using two mutations, basic alphabet and a chemical space size of 7500. Descriptor explanations are calculated for each of the sampled subspaces and compared to the reference set of important descriptors using Spearman’s rank-order correlation coefficient. Figure 7 shows the rank correlation for chemical subspaces as a function of increasing space size. For each size, ten chemical spaces are subsampled and the average of rank correlations found for those ten spaces is reported. The correlation between descriptor explanations of a subsampled chemical space and reference set (red dotted line in Figure 7) increases monotonically and then plateaus. Rank correlation shows how close the ranks of important descriptors in the subsampled set are to the reference set. For as low as 1000 perturbed examples, we see a rank correlation of 0.9. A high rank correlation coefficient indicates that descriptor ranks for the subsampled set and the reference set are positively correlated. We observe high correlation of ranks at chemical space size of 4000, and increasing the chemical space size beyond that doesn’t change the ranks assigned to descriptors.

4 Conclusions

Machine learning models are becoming widespread in chemical and life science. It is important to understand whether these models behave as expected and provide valid predictions. The presented method is a descriptor explanation method that provides localized explanations of model predictions and quantifies the importance of certain functional groups or fragments present in the molecule. We demonstrated our method by applying it to AqSolDB. We recovered known structure-activity relationships and showed our method is robust. MACCSfps and ECFP are a set of substructures that provide insight into which parts of the molecule explain predictions, and Rdkit descriptors explain which chemical properties might be influencing predictions. Our method also provides a confidence threshold for explanations. These outcomes are intuitive, connect well to SAR and easily interpretable by chemists. Counterfactuals are actionable explanations; however, they do not provide a quantitative view of the SAR. Descriptor explanations complement counterfactual explanations, as they provide quantitative SAR with significance statistics for important molecular substructures.

5 Data Availability

The code and data is available at https://github.com/ur-white laboratory/exmol

6 Acknowledgements

Research reported in this work is supported by the National Science Foundation under Grant number 1751471, and National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM137966. The authors thank the Center for Integrated Research Computing (CIRC) at the University of Rochester for providing computational resources and technical support.

References

Figure 6: Descriptor explanations are insensitive to alphabet choice. However, the chemical space created around the base molecule varies with the choice of alphabet, and descriptor explanations generated depend on the chemical space. Choice of alphabet should be dictated by the kind of mutations that are of interest to the user. ‘Basic’ alphabet which restricts available elements to \([B, C, N, O, S, F, Cl, Br, I]\). ‘Training data’ alphabet includes all unique SELFIES tokens available in the training data examples. ‘SELFIES’ alphabet includes all elements that are allowed in SELFIES representation. SMARTS annotations for MACCS descriptors were created using SMARTSViewer (smartsview.zbh.unihamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. [81]
Explaining structure–activity relationships using locally faithful surrogate models

Figure 7: Rank correlation as a function of chemical space size. Spearman’s rank-order correlation coefficient is calculated between the top five important descriptors in the subsampled chemical space and the reference chemical space. The red dotted line shows the size of the reference chemical space. We observe high correlation of ranks beyond a chemical space size of 4000.

A P

Explaining structure–activity relationships using locally faithful surrogate models

Supplemental Information: Explaining Structure–Activity Relationships Using Locally Faithful Surrogate Models

Figure S1: Tanimoto similarities of molecules are weighted using a shifted sigmoid function so that dissimilar molecules are excluded from weighted least squares regression fit. The histogram shows the distribution of tanimoto similarities and purple line shows the weighted value for tanimoto similarity.

Figure S2: Random Forest Regression performance. The model was trained using 100 decision trees with a tree depth of 10. Data was split using a 90-10 train-test data split.
Explaining structure–activity relationships using locally faithful surrogate models

Figure S3: RNN performance. Loss curve shows training and validation loss over 100 epochs. Parity plot for testing data shows correlation between RNN predictions and experimental values.

Figure S4: Comparison of using unweighted and weighted tanimoto similarities as weights for weighted least squares regression. The dissimilar molecules do not affect the regression fit, however, they end up contributing in determining descriptor explanations.
Figure S5: Comparison of using unweighted and weighted Tanimoto similarities as weights for weighted least squares regression. For small molecules, the dissimilar molecules lead to poor regression fit and misleading explanations.
Explaining structure–activity relationships using locally faithful surrogate models

A PREPRINT

Figure S6: Comparison of using unweighted and weighted tanimoto similarities as weights for weighted least squares regression. The dissimilar molecules don’t affect the regression fit for ring compounds, but affect the explanations.
Figure S7: Effect of number of mutations on descriptor explanations. Number of mutations is a STONED parameter that controls how many additions, deletions or modifications can be made to the SELFIES string. SMARTS annotations for MACCS descriptors were created using SMARTSviewer (smartsview.zbh.uni-hamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. [81]
Figure S8: Effect of chemical space size on descriptor explanations. ‘Chemical space size’ parameter specifies how many mutated molecules of the base instance must be created. SMARTS annotations for MACCS descriptors were created using SMARTSviewer (smartsview.zbh.uni-hamburg.de, Copyright: ZBH, Center for Bioinformatics Hamburg) developed by Schomburg et al. [S81]