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ABSTRACT Heteroatom-doped carbon nitride (CN) materials have shown much potential as 

metal-free photocatalysts for water splitting. Graphitic phosphorus-linked triazine network (g-

PCN) materials are a unique class within this family of materials, but remain difficult to access 

due to long reaction times annealing at temperatures above 500 °C and often afford ill-understood 

structures. Here, we reveal a milder, lower temperature approach for the synthesis of catalytically 

active g-PCN materials through combining a room-temperature mechanochemical reaction of 

sodium phosphide and cyanuric chloride with brief (1 hour) annealing of the milled material at 

300 °C. This rapid, low temperature procedure yields ordered g-PCN catalysts whose layered 

structure was determined through a combination of magic-angle spinning nuclear magnetic 

resonance (MAS NMR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction 

(PXRD) and transmission electron microscopy (TEM). An excellent level of accuracy to simulated 

31P MAS NMR signals and PXRD patterns were obtained for the structure of the synthesized 

layered phosphorus-linked triazine networks following dispersion-corrected density functional 

theory (DFT). The mechanochemically-generated g-PCN is a highly effective photocatalyst for 

the hydrogen evolution reaction, producing 122 µmol H2 h
-1 g-1 under broad spectrum irradiation. 

Introduction 

Over the last decade, photocatalytic water splitting has attracted much attention as a potentially 

sustainable route to hydrogen gas production. The scaling-up of the water splitting process is 

urgently needed as today, hydrogen gas is primarily obtained through the steam reforming of 

natural gas, an energy-intensive process producing carbon monoxide and dioxide as by-products.1 

Recent improvements in water splitting catalysis have led to the development of new cocatalysts 

and photoactive supports to further increase the rate of reaction. Much of this work has focused on 

the design of new earth-abundant cocatalysts such as metal oxides,2,3 hydroxides,4,5 sulfides,6,7 
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phosphates8 and phosphides.9-11 In terms of photocatalytic supports, graphitic carbon nitride (g-

C3N4) has been one of the most promising candidates, due to its potential as a metal-free, 

heterogeneous photocatalyst, which is also readily modifiable towards different morphologies and 

dopants.12,13 While g-C3N4 has attracted interest  as a metal-free semiconductor, challenges remain 

related to the understanding of its exact structure,14 photophysical properties,15,16 and its relatively 

wide band gap as a semiconductor17 restricts its use as a photocatalyst for broad spectrum water 

splitting. Photocatalytic activity of g-C3N4 can be enhanced by doping with heteroatoms, such as 

boron, oxygen,18,19 sulfur20,21 or phosphorus,21-23 in order to tune its band gap and improve exciton 

generation.13 The Antonietti group has detailed the successful application of g-C3N4 for hydrogen 

production from water under visible light,24 while further developments explored the inclusion of 

phosphorus in this structure to afford phosphorus-doped graphitic carbon nitrides or carbon 

phosphanitride materials,25  applicable  as photocatalysts for a range of reactions, including the 

hydrogen evolution reaction (HER),26,27 oxygen evolution reaction (OER),28,29 and diverse 

photodegradation reactions.30-32  

Typical syntheses of phosphorus-containing graphitic carbon nitride rely on the hydrothermal 

carbonization (HTC) of triazine-containing starting material, such as melamine or cyanuric 

chloride as carbon and nitrogen precursors, and a phosphorus source, forming various polymeric 

carbon phosphanitrides. Alternatively, small molecular precursors containing all three elements, 

such as P(CN)3, have been thermally treated to afford extended C3N3P materials, as reported by 

Epshteyn, Strobel and coworkers (Scheme 1b).33,34 Additionally, a microwave synthesis of 

phosphorus-doped graphitic carbon nitride nanosheets for electrochemiluminescence applications 

has been reported by Wang and coworkers in 2020 (Scheme 1c).35 However, these syntheses 

typically employ high-temperature furnace techniques, annealing for relatively long periods of 
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time, or in the case of microwave synthesis, rely on the use of bulk solvent to disperse the starting 

materials.  

Recently, mechanochemistry has gained popularity as an approach for cleaner, solvent-free 

synthesis, typically based on ball milling for batch processes or twin-screw extrusion (TSE)36-39 as 

a means of continuous processing, with a range of demonstrated applications in materials synthesis 

and design.40 Mechanochemistry has been applied with much success towards various organic41-44 

and inorganic45-49 reactions, synthesis of advanced materials such as metal-organic frameworks 

(MOFs),50-52 polymers,53-56 cocrystals,57,58 and nanoparticle-based materials.59-64  

The synthesis of heteroatom-doped carbon nitrides, especially when incorporating phosphorus 

atoms, have relied on the use of non-conventional phosphorus sources, allowing for more atom-

economical and low temperature syntheses. Common reagents include pentafluorophosphate-

containing ionic liquids,25 red phosphorus,65 phytic acid,66 ammonium hypophosphite and 

phosphates,35,67 as well as P(CN)3.
33,34 Sodium phosphide has shown potential in low-temperature 

access to unique low-valent phosphorus compounds,68 as well as access to metal phosphide 

nanoparticles.69 Consequently, we hypothesized that ball-milling of sodium phosphide (Na3P) 

together with cyanuric chloride as a commercially available triazine linker would provide room-

temperature access to layered, phosphorus-linked triazine networks through a low temperature 

mechanochemical metathesis70 reaction. (Scheme 1d).  
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Scheme 1. Key examples of phosphanitride and phosphorus-containing graphitic carbon nitride 

presented by a) Antonietti b) Epshteyn  c) Wang and d) the presented work.  

Several recent reports have described the elegant mechanosynthesis of heteroatom-bridged 

carbon nitride materials, including those on doped porous covalent-organic frameworks (COFs). 

For example, Casco and coworkers showed the mechanochemical synthesis of N-doped porous 

carbons through a mechanically-induced self-sustaining reaction (MSR)71-73 between cyanuric 

chloride and CaC2 with milling times as short as 5 min. The resultant material contained up to 16 

wt% of nitrogen and formed CaCl2 as a side product.74 Cyanuric chloride was also used a triazine 

unit, alongside a variety of  aromatic monomers, and AlCl3 as an activating unit, in the 

mechanochemical Friedel-Crafts alkylation to synthesize porous covalent triazine frameworks.75  
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In contrast to significant interest in phosphorus-linked carbon nitride materials, so far, there has 

been very limited experimental work corroborating their structures. 

Here, we demonstrate how mechanochemistry enables a simple, mild route for the synthesis of 

novel carbon phosphanitride materials by milling of cyanuric chloride as a source of the triazine 

unit with sodium phosphide (Na3P) as a reactive solid phosphorus source. The use of 

mechanochemical milling enabled the synthesis of a carbon phosphanitride under significantly 

milder conditions than previously reported, by combining a brief mechanochemical step with 

room-temperature ageing and a brief (1 hour) exposure to 300 oC. By combining a range of solid-

state analytical techniques with dispersion-corrected density-functional theory (DFT) modelling 

we were able to provide unambiguous confirmation of its structure. In combination with Pt 

nanoparticles, the resulting carbon phosphanitride material exhibits high activity for water 

splitting, presenting a unique example of a carbon phosphanitride that can be obtained under mild 

conditions, is structurally well-characterized, and provides functional behavior as a photoactive 

support. 

Results and Discussion 

The presented mechanosynthesis of phosphorus-linked triazine networks involved ball milling 

of equimolar quantities of Na3P with cyanuric chloride under an argon atmosphere. In a typical 

experiment, the reactants were added to a zirconia milling apparatus along with two zirconia 

milling balls of 7 mm diameter, and the reaction mixture was milled for 30 minutes at a frequency 

of 30 Hz, followed by aging for 24 hours under an argon atmosphere for in a glovebox. Our 

previous work has demonstrated the ability to obtain well-defined nanostructured materials simply 

by brief mechanical activation through ball milling, followed by ageing at room temperature.76-78 

After aging, the jars were opened in air, their content taken up into a 3:1 v/v mixture of EtOH and 
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deionized (DI) water, and the system separated by centrifugation, before drying in vacuuo at 50 

°C for 12 h prior to analysis. Attempts to obtain the same material by milling for shorter times or 

using a single zirconia ball of 10 mm diameter led to incomplete transformation, as evident by 

violent hydrolysis of unreacted Na3P upon washing of the final product. The effect of a post-

synthetic annealing step was also investigated. The as-made carbon phosphanitride (g-PCN) 

material was placed into an alumina crucible, wrapped loosely in aluminum foil and heated in a 

tube furnace under a flow of argon gas for 1 h at either 200 or 300 °C, producing samples denoted 

as g-PCN200 and g-PCN300, respectively. As a phosphorus-free reference, graphitic carbon 

nitride (g-C3N4) was produced through a previously reported furnace-based method of thermally 

annealing melamine at 525 °C for 4 h.79 

The crystallinity of the samples before annealing and after thermal treatment was evaluated by 

powder X-ray diffraction (PXRD). For the non-annealed samples, two broad Bragg reflections are 

seen at approximately 2θ = 15° and 26° (Figure 1, teal). The measured crystallinity index (CrI) for 

g-PCN before annealing was determined to be 21%, showing a largely amorphous material being 

formed after the milling and aging process. Upon annealing at 200 oC, negligible change was noted 

in the PXRD pattern (Figure 1, blue). The most significant change was seen for the g-PCN300 

sample, where annealing led to an increase in CrI to 33%, as well as the appearance of novel X-

ray reflections (Figure 1, purple), suggesting an increase in the ordering of the graphitic structure 

of the material. 



 8 

 

Figure 1. PXRD patterns of phosphorus-linked g-C3N4, g-PCN, g-PCN200 and g-PCN300. 

The formation of a phosphorus-linked triazine was verified by X-ray photoelectron spectroscopy 

(XPS), solid-state magic angle spinning 31P NMR (MAS NMR), and Fourier-transform infrared 

attenuated total reflectance (FTIR-ATR) spectroscopy, which also permitted the quantification and 

speciation of phosphorus loading. 

  

Figure 2. Comparison of XPS scans for C 1s b) N 1s and c) P 2p scans of g-PCN and d) C 1s e) 

N 1s and f) P 2p scans of g-PCN300. 

The XPS C 1s focused scan of the g-PCN material showed three maxima at 248.4, 286.5, and 

288.6 eV, confirming the presence of C=N, C-OH, and C=O species, respectively (Figure 2a).80 

The signal corresponding to C=N bonds confirmed the retention of the triazine linker following 
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milling with Na3P and aging. The presence of the C-OH bonds suggests that upon centrifuging the 

g-PCN for a total of 15 min using a 3:1 EtOH:H2O (v/v) mixture, terminal chloride units on the 

pendant triazine fragments are hydrolyzed to form hydroxyl moieties. Similarly, the presence of 

carbonyl absorption bands at ~1600 cm-1, which is seen in FTIR-ATR data (Figure S1), suggests 

the partial hydrolysis of the triazine ring to give amide functionalities. XPS N 1s focused scans 

(Figure 2b) further validate this hypothesis as two deconvoluted maxima at 398.9 and 399.9 eV 

are observed, which correspond to pyridinic and pyridine species for nitrogen. This suggests that 

unreacted terminal chlorides were still present on the edges of the material after the reaction and 

have hydrolyzed during work up. Focused scans of the P 2p signal showed a doublet consisting of 

two maxima centred at 129.8 eV, highlighting P-C bond character as well as a broader maximum 

centred at 133.2 eV, which highlights both the formation of bridging phosphorus centers between 

triazine rings, as well as their partial oxidation, which was quantified at 48% upon deconvolution 

and integration of the XPS data (Figure 2c). Comparing to furnace-made phosphorus-doped carbon 

nitride (P@CN),81 C 1s focused scans in XPS showed two signals, at 284.7 eV and 287.9 eV, 

corresponding to C=N/C-N and C=O bonds respectively (Figure S3a). N 1s focused scans showed 

two major maxima at 397.4 eV and 398.7 eV, consistent with a majority of nitrogen being in the 

form of pyrrolic species, compared to pyridine-type nitrogen species that were observed in the 

furnace-made P@CN (Figure S3b). The P 2p scan showed only a doublet for P-O/P=O type bonds, 

centered at 133.4 eV (Figure S3c). Finally, the O 1s scan indicated the presence of two species, 

similar to g-PCN, at 531.1 eV and 533.0 eV, showing 39% -OH character, with 61% of species 

coming from an O2- species (Figure S3d). 

 Due to low crystallinity of the mechanochemically prepared samples, a subsequent annealing 

step under an argon atmosphere was conducted for 1 hour at either 200 or 300 °C. 
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Thermogravimetric analysis (TGA) confirmed that exposure to such temperatures does not lead to 

a significant mass upon heating in a nitrogen atmosphere (Figure S2). After annealing at 200 °C 

for 1 h under argon, the C 1s XPS focused scans of the resulting phosphorus-linked triazine 

network (g-PCN200) showed three signals as before annealing, at 284.6, 287.4 and 285.9 eV. 

These signals correspond to bonds of the C=N/C-N, C-OH and C=O character, respectively (Figure 

S4a). Of note is the decrease in the percentage of C-OH character after annealing, from 37% to 

10% while the carbonyl character increased from 35% to 59%. The N 1s scans showed a shift in 

the majority signal to favor pyrrolic N character on its surface up to 73% following the anneal 

(Figure S4b). The P 2p focused scans also showed an increase of the P-O/P=O character upon 

annealing at 200 °C, from 27 to 64% (Figure S4c). In contrast, the O 1s scans remained largely 

unchanged for the sample, favoring species of the O2- type (evaluated at 64% abundance) for g-

PCN200 (Figure S4d).  

Upon annealing at 300 °C for 1 h, the deconvolution of the C 1s scans revealed maxima at 284.7, 

286.3, 287.6, and 292.0 eV (Figure 1d). The respective ratios of these signals demonstrate a 

decrease in the relative quantity of hydroxyl C-OH character, implying a loss of terminal hydroxyl 

groups moieties and an increase in the relative abundance of graphitic nitride character. The 

consistency of the amount of carbonyl signal shows that partially hydrolyzed triazine units are still 

present, even after annealing. This trend is further supported by observing the ratio of pyridinic 

and pyridine-N character (Figure 1e), which showed a 90% relative content of triazines with 

hydrolyzed hydroxyl groups. The P 2p focused scan (Figure 1f) showed a small increase in the 

degree of oxidation from 27 to 39%, however the sample was still predominantly P-C in character, 

supporting the maintained integrity of the material after annealing. 
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Structural information for the phosphorus-linked triazine networks was also acquired through 

FTIR-ATR spectroscopy. Compared to g-C3N4, the mechanochemically synthesized g-PCN 

materials similarly show C-N heterocycle stretches in the 1200-1600 cm-1 range (Figure S1).82 For 

the sample annealed at 300 °C, g-PCN300, a band present at 1615 cm-1 can be attributed to a C=N 

stretch, and the bands at ~810 cm-1 can be matched to the vibrational fingerprint of the triazine 

unit,83 further suggesting the graphitic structure was preserved after both ball milling and 

annealing. While the absorption band at 534 cm-1 could also be associated with P-C bond 

character,33 other phosphorus-related stretches may overlap with the strong C-N vibrations.  

Scanning transmission electron microscopy (STEM) analysis using a high angle annular dark 

field detector (HAADF) revealed that g-PCN200 and g-PCN300 featured a layered structure. This 

is remarkable since these types of properties are seen in g-C3N4 typically when annealed at 

temperatures above 500 °C (Figure 3a). 84  

We obtained the relative thickness of g-PCN, g-PCN200 and g-PCN300 using electron energy 

loss spectroscopy (EELS). Relative thickness is the mean number of scattering events per incident 

electron and can be obtained in the low-loss region of an EELS spectrum. HAADF relative 

intensity also validated these results.85,86  In our specimens, we observed that the relative thickness 

increases from pristine g-C3N4 at 0.34 to 0.90 for g-PCN, and relative thicknesses of 0.73 and 0.66 

for g-PCN200 and g-PCN300, respectively, showing an inversed relationship of relative thickness 

to annealing temperature. This follows similarly reported trends, wherein graphitic carbon nitride 

films show a similar reduction in thickness as annealing temperature is increased from 150 °C up 

to 500 °C.87 

The EELS analysis of g-PCN (prior to any annealing) showed an even distribution of carbon, 

nitrogen, and oxygen throughout the material, while phosphorus appeared localized to specific 
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regions (Figure 3b). A similar localization of phosphorus was also seen on g-PCN200 (Figure 3c). 

However, upon increasing the annealing temperature to 300 °C, the distribution of phosphorus 

becomes more uniform. This distribution of phosphorus correlates with an increase in the presence 

of PXRD signals matching the predicted layered structure (Figure 3).  

 

Figure 3. STEM-HAADF images (left) and EELS maps (right) for the characteristic elements 

presented on graphitic carbon networks. a) g-C3N4 network without any thermal treatment or 

phosphorus bridges is compared with b) g-PCN (no annealing), c) g-PCN200 (annealing at 200 

°C) and d) g-PCN300 (annealing at 300 °C) Dotted white circles denote localized regions of high 

phosphorus density. 

To better understand the photochemical properties of the mechanochemically-synthesized 

phosphorus-linked triazine networks, the samples were characterized by ultraviolet-visible diffuse 

reflectance spectroscopy (UV-DRS) and photoluminescence (PL) measurements. Pristine g-C3N4 

showed a typical semiconductor-like absorption maximum centered around 400 nm, originating 

from the charge transfer response of g-C3N4 from the valence band (VB) populated by N 2p orbitals 

to the conduction band (CB) formed by C 2p orbitals.30,31,33 For the mechanochemically-

synthesized phosphorus-linked triazine networks, a red shift of the absorption band is seen in 

comparison to pristine g-C3N4. g-PCN samples, made by milling for 30 min and aging for 24 h 
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showed a red-shifted maximum at 518 nm, suggesting a decrease in the band gap energy compared 

to g-C3N4. After annealing of the g-PCN material at either 200 °C or 300 °C g-PCN200 and g-

PCN300, the absorption band is further broadened across the visible light range, with a maximum 

absorbance peak around 530 nm (Figure 4a). 

In PL measurements a strong, broad signal is observed for pristine g-C3N4, and a much weaker 

signal for all g-PCN samples, with a minor increase in intensity seen as a function of annealing 

temperature (Figure 4b). These results infer that the generated exciton in the phosphorus-linked 

samples is recombining at a slower rate than g-C3N4, with bridging nitrogen, resulting in increased 

excited state lifetimes (Figure 4c). For pristine g-C3N4, a τ value of 4.2 µs was noted, which 

gradually increased to 4.7, 41, and 39 µs for g-PCN, g-PCN200 and g-PCN300, respectively. This 

increase by an order of magnitude upon addition of phosphorus linkages and subsequent annealing 

suggests improved stability of the charged species, without the need for an additional 

cocatalyst.22,88 
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Figure 4. a) UV-Vis DRS b) photoluminescence b) lifetime c) photocurrent and e) Nyquist plots 

of g-C3N4 (green), g-PCN (teal), g-PCN200 (blue) and g-PCN300 (purple). 

The temporal photocurrent of g-PCN, g-PCN200, and g-PCN300 was then investigated to verify 

that the introduction of phosphorus into the triazine network improved the charge transport upon 

irradiation. The g-C3N4 material, which is typically nitrogen-linked, showed a maximum 

photocurrent of 1 μA (Figure 4c, green traces), g-PCN prior to any annealing featured a similar 

photocurrent performance (Figure 4c, teal trace). Upon annealing at 200 °C and 300 °C, the 

photocurrent increases to a maximum of 4 μA and 5 μA respectively (Figure 4c, blue and purple 

traces). Furthermore, the electrochemical impedance spectroscopy (EIS) (Figure 4e) showed a 

decrease in the impedance for the materials where g-C3N4 > g-PCN > g-PCN200 > g-PCN300. 
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This implies that incorporating phosphorus as the linking atom led to an enhancement of the 

photoelectrochemical properties. A lower arc radius, implying better charge transer,89,90 was noted 

for the g-PCN series of materials compared to the native g-C3N4. These enhancements were 

furthered by annealing g-PCN at 200 and 300 °C. This effect could be seen in the improvement of 

the photocatalytic activity for the g-PCN series compared to g-C3N4. Finally, band structure was 

studied by Mott-Schottky technique (Figure S4, see ESI for details). All phosphorus-containing 

samples exhibited a positive slope indicating an n-type semiconductor, characteristic of graphitic 

carbon nitride materials.91,92 The conduction band of all as-prepared samples was determined from 

the x-intercept value, derived from the tangent line of the slope on the Mott Schottky plot. 

Accordingly, the estimated value for g-C3N4 was ~-1.10 V Ag/AgCl which corresponds to previous 

literature reports.69, 93 For the nanocomposites it was observed a more negative band (-1.30, -1.40 

and -1.25 V for g-PCN, g-PCN200 and g-PCN300, respectively). Considering the broad visible 

light absorption of the nanocomposites and the estimated values from Mott-Schottky, it could be 

inferred that synthesized materials are suitable for HER due to their band positions, as it is more 

negative than H2 standard reduction potential, 0 V vs NHE at pH 7.89,92,94 

We then turned to 31P MAS NMR techniques in order to gain more insights into the chemical 

structure of the synthesized materials, as reported by others. 25,33,82 The spectrum of g-PCN (Figure 

S5a) featured mostly a broad and noisy band centered on δP1 = 4.00 ppm with a broad shoulder at 

δP2 = 26.65 ppm , while g-PCN200 (Figure S5b) had several resonances in a more downfield region 

at δP1 = 0.84 ppm, δP2 = -9.47 ppm and δP3 = – 20.96 ppm.  The PCN300 material exhibited the 

most easily interpreted spectrum with two peaks at δP1 = -12.8. ppm and δP2 = -24.7 ppm. This 

trend indicates that annealing results in an overall reduction of the phosphorus species inside the 

materials. This sharp resonance in the case of g-PCN300 is unprecedented for triazine-based, 



 16 

phosphorus-linked carbon nitrides, as often broad resonances are seen even upon materials treated 

at high temperature and pressure.34  

Next, we employed computational methods were employed to determine the species responsible 

for the individual signals found in the deconvoluted MAS NMR spectra. Gaussian 1695 was used 

to optimize the structure and calculate the 31P chemical shielding tensors for a variety of 

phosphorus-containing molecules serving as models in this context. These molecules were chosen 

to represent various stages of oligomerization of triazine rings bridged by phosphorus, III or V, 

and considered with either chloride or hydroxy functionalities (Chart S1). They were treated as 

isolated molecules in the gas phase and were described by an atom-centered basis set (6-311G). 

The analysis of the trends in chemical shifts of this family of molecules confirms that likely 

phosphorus containing molecules formed in this reaction are being reduced upon annealing. Also, 

despite the cleanliness of the recorded spectra, it was difficult to attribute unambiguously the peaks 

to one single computed structure, as eight of them fell in the 10 < δ < -30 ppm region (Table S1). 

To account for the pure product of the reaction, a perfectly repeating unit of g-PCN we employed 

periodic DFT calculations. The 31P chemical shifts for bulk g-PCN were calculated using the 

periodic plane-wave DFT code CASTEP, v20.11,96 following the work of Wang et al.,34 whereby 

the bridging nitrogen atoms in the experimentally resolved structure of g-C3N4, reported by 

Algara-Siller et al,97 were replaced with phosphorus (see details in Supplementary Information). 

Two unique phosphorus environments were seen in the DFT calculated structure of g-PCN. The 

environment termed P1 was calculated to have empty space above and below it, while the 

environment P2 is centered between triazine rings both above and below it (Figure 5, insert).  

Importantly, in this work we obtained a planar geometry from full structural and cell optimizations, 

which is different from the previously observed buckling of the g-PCN sheets.34 Two chemical 
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shifts were obtained for the structure, δP1 = -11.83 ppm and δP2 = -23.47 ppm and correspond to 

the two different environments experienced by phosphorus atoms in the optimized structure. These 

numbers are in excellent agreement with the experimental data for g-PCN200 and g-PCN300. 

(Figure 5a, also SI Figure S5b,) 

  

 

Figure 5. 31P MAS NMR at 13 kHz of g-PCN300. Red lines denote shifts calculated using 

CASTEP-optimized structure (insert); b) From the bottom up: Simulated PXRD patterns of the g-

C3N4 structure from Algara-Siller et al.97 (TGCN); g-PCNopt; g-PCNshift and g-PCN300. The 

asterisks denote spinning sidebands 

Given the agreement between the calculated and experiment data for the optimized structure, we 

revisited the PXRD pattern of g-PCN300, which features sharp, distinct reflections over an 

amorphous background (Figure 5b, purple). The CASTEP simulated pattern for the optimized 

structure (Figure 5b, teal) exhibits X-ray reflections at 13.5 °, 23.3 °, 26.3 °, and 32.6 ° 2θ, in good 

agreement with the experimental pattern for g-PCN300. We further improved on this agreement 

applying a translational distortion of 1% along the a-axis of the upper plane of the optimized 

structure (more positive in the c-axis). This provided more matching reflections at 23.3 °, 26.3 °, 

and 32.6 ° 2θ (Figure 5b, blue). We also compared the pattern for g-PCN300 with the simulated 

pattern of the experimentally derived g-C3N4 structure from Algara-Siller and coworkers (Figure 
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5b, green), which revealed to be close, yet not matching, as expected from a non-phosphorus-

containing structure with a similar reflection at a 2θ of 26.9 °.  

As has been previously highlighted, both by our group69 as well as other researchers,76,98,99 the 

use of sustainability metrics is paramount in demonstrating the benefit in energy-waste reduction 

that mechanochemical techniques have over the traditionally used high-temperature solid-state 

techniques often employed for layer carbon nitride based materials. Our group had previously 

shown that comparing the energy demand of a Retsch MM400 vibrational mill in comparison to 

tube furnace and solution-based routes to nickel phosphide nanoparticles69 can also be employed 

in the present study (Table 1).  

Table 1. Comparison of energy usage metrics for traditionally used annealing method, to the 

hybrid milling-aging-annealing method. 

Method Milling and Aging Time / h Annealing / Temp, Time Energy draw / kWhg-1 

Furnace - 550 °C, 4 h 1.87 

Ball 

milling 
0.5, 24 - 0.19 

Ball 

milling 
0.5, 24 200 °C, 1 h 0.75 

Ball 

milling 
0.5, 24 300 °C, 1 h 1.07 

 

A furnace-based synthesis of g-C3N4 conducted on a 2 g scale used 1.87 kWhg-1 after 4 h, while 

the presented work, at only a 250 mg scale was shown to use only 1.07 kWhg-1
, combining both 

for the energy draw during the milling step and after annealing in a tube furnace at 300 °C for 1 h. 

Even before annealing, the mechanochemical formation of the g-PCN network shows an energy 

draw value 10 times lower than that of the g-C3N4. 

The catalytic behaviour towards the hydrogen evolution reaction was optimized for a variety of 

reaction times, platinum cocatalyst loadings and total composite catalyst used. Initial studies 
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showed an increase in catalytic activity of g-PCN compared to g-C3N4. However, despite the 

increase in exciton lifetime and improved photocurrent upon annealing to obtain g-PCN200 and 

g-PCN300, catalytic activity was shown to decrease (Figure 6a).  

  

Figure 6. a) Catalytic activity of g-C3N4, g-PCN, g-PCN200 and g-PCN300 ,b) effect of mass 

loading of g-PCN, c) reaction time and d) loading of Pt cocatlyst on catalytic activity for 1 wt%, 

2 wt% and 4 wt% of Pt. 

 

Increasing the composite catalyst loading in the reaction also led to a decrease in catalytic activity, 

producing 68 µmol H2 h
-1 g-1 when using 10 mg and 47 µmol H2 h

-1 g-1 when using a total of 20 

mg of composite catalyst (Figure 6b). This effect could be related to the haze created by the high 

amount (oversaturated) of dispersed photocatalyst blocking the light in the reaction medium. In 

parallel, it was also shown that 4 hours reaction times were the most efficient (Figure 6c) and that 
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a cocatalyst loading of 4 wt% Pt produced rates upwards of ca. 122 µmol H2 h
-1 g-1 (Figure 6d). 

The loss in catalytic activity with increasing annealing temperature led to investigating the effect 

of milling times, annealing temperature and further milling treatment following isolation. g-C3N4 

made through a conventional tube furnace method showed a surface area of ~19 m2g-1. Comparing 

this initial data with g-PCN, shows a similar surface area of ~11 m2g-1 (Table S2, Entry 2). 

Extending the milling time to 90 min shows an increase to ~57 m2g-1 (Table S2, Entry 3). For the 

g-PCN300 material, the surface area remains unchanged at 13 m2g-1 (Table S2, Entry 4) with ten 

1 mm zirconia balls at ~8 m2g-1 (Table S2, Entry 5). The understanding of the mechanism for P- 

and N-doped and bridged carbons is still under considerable investigation and debate.100, 101 

However, based on the presented data, two factors seem to be the driving force for the improved 

reactivity of g-PCN. Firstly, the overall addition of strongly electron donating phosphorus-linkages 

in place of carbon or nitrogen allows for improved charged separation with the phosphorus-linked 

series as opposed to g-C3N4, as demonstrated by a reduced PL signal and extended lifetime for the 

g-PCN series (Figure 4b and 4c).101, 102 Additionally, the amorphous g-PCN showed improved 

catalytic activity over samples showing improved crystallinity after annealing. Therefore, it can 

be hypothesized that defects present in g-PCN following milling and aging allow for the trapping 

of photoexcited charges, previously demonstrated to improve the evolution of hydrogen.102, 103 

Conclusion 

In conclusion, we presented a mechanochemistry-based approach to phosphorus-bridged triazine 

based carbon nitrides. A combination of experimental and theoretical analysis confirms the 

successfully synthesis of several layered phosphorus-linked carbon nitride structures. Periodic 

DFT calculations enabled the identification of a layered structural model for the materials, which 

was confirmed by excellent match between calculated and measured 31P NMR and PXRD data. 
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The photocatalytic behaviour of the resulting triazine-based materials was evaluated towards the 

hydrogen evolution reaction and shown to feature improvement over traditional graphitic carbon 

nitride producing 122 µmol H2 h
-1 g-1. The combination of computational techniques for MAS 

NMR prediction and PXRD comparison has shown to be an effective tool for the evaluation of 

heteroatom-linked triazine based materials and should be expanded upon in future works. 
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