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ABSTRACT:	 C–Cl	 bond	 cleavage	 of	 unactivated	 alkyl	 chlorides	 with	 zirconocene	 and	 photoredox	 catalysis	 has	 been	
achieved.	The	present	protocol	exhibited	a	broader	scope	of	alkyl	chlorides	compared	to	the	preceding	methods	with	titan-
ocene.	This	scope	expansion	could	be	attributed	to	the	zirconium	metal	center	rendering	the	C–Cl	bond	cleavage	more	en-
dergonic	and	lowering	the	transition	states.	

Alkyl	chlorides	are	ubiquitous	structural	motifs	found	in	
natural	products,	and	synthetic	intermediates,1–5	and	these	
can	 be	 readily	 prepared	 using	 common	 synthetic	 trans-
formations.	 The	 activation	 mode	 for	 alkyl	 chlorides	 is	
broadly	classified	as	two-electron	processes	such	as	nucle-
ophilic	 substitution,	 halogen-metal	 exchange,	 and	 cross-
coupling,	or	one-electron	processes	generating	radicals	as	
represented	 by	 single	 electron	 transfer	 (SET)	 or	 halogen	
atom	 transfer	 (XAT).6–8	 In	 these	 one-electron	 processes,	
alkyl	 chlorides	are	 less	prevalent	 radical	precursors	com-
pared	to	alkyl	bromides	and	 iodides	due	to	 their	strongly	
negative	potentials	(ca.	–2.8	V	vs	SCE)9	and	high	bond	dis-
sociation	 energies	 (BDE)(ca.	 84	 kcal/mol)10	 hampering	
access	to	carbon	radicals.	Compared	to	activated	chlorides	
such	 as	 benzyl	 chlorides,	 a-chloro	 carbonyls,	 and	 tri-
chloromethyl	 compounds,	 unactivated	 alkyl	 chlorides	 are	
particularly	 challenging	 substrates.	 Classical	 approaches	
for	 the	generation	of	carbon	radicals	 from	unactivated	al-
kyl	chlorides	are	 typically	 limited	 to	 the	reactions	requir-
ing	 strong	 reductants	 including	 active	 metals	 and	 metal	
hydrides,11	 or	 stoichiometric	 reductants	 such	 as	 SmI2,12,13	
organotin	hydrides,14	and	organosilanes.15	
Modern	 visible	 light	 photocatalysis	 have	 emerged	 as	 a	

preeminent	 strategy	 for	 the	 catalytic	 activation	of	 unacti-
vated	 chlorides	 (Figure	 1A).16	 Unactivated	 alkyl	 chlorides	
have	successfully	proven	to	be	a	practical	radical	source	by	
a	 series	 of	 SET-based	 approaches.17–21	 These	 elegant	 ap-
proaches	provide	a	powerful	platform	to	generate	carbon	
radicals	 from	 alkyl	 chlorides	 but	 potentially	 erode	 more	
reducible	bonds	such	as	aryl	C–Cl	and	C–Br	bonds	due	 to	
their	 strong	 reducing	 power.22	 As	 a	 unique	 activation	 for	
unactivated	 alkyl	 chlorides,	 formation	 of	 metal–carbon	
bonds	from	C–Cl	bonds	using	nucleophilic	low-valent	met-
als	 (CoI	 and	 NiI)	 followed	 by	 photolysis	 is	 effective,	 but	
substrates	have	been	restricted	to	primary	and	a	few	sec-
ondary	alkyl	chlorides.23,24	XAT-based	activation	exhibits	a	
distinct	mechanism	 for	generating	carbon	radicals,	where	

the	 chemoselectivity	 depends	 on	 the	BDE	 and	polarity	 of	
the	 C–Cl	 bond.	 Nickel/photoredox25	 and	 cop-
per/photoredox26	 dual	 catalysis	 successfully	 engaged	 un-
activated	alkyl	chlorides	with	the	aid	of	organosilane	rea-
gents.	 These	 methods	 exhibited	 broad	 substrate	 scope,	
however,	 no	 examples	 of	 tertiary	 alkyl	 chlorides	 were	
demonstrated.	 Recently,	 photo-induced	 Pd	 catalysis	 has	
emerged	as	a	valuable	tool	for	the	activation	of	unactivated	
alkyl	 chlorides.	Although	a	broad	 range	of	 alkyl	 chlorides	
could	be	accommodated	to	couple	with	styrenes	and	elec-
tron-deficient	olefins,	 this	 catalysis	has	been	only	applied	
to	Mizoroki–Heck	type	reactions.27,28		
Meanwhile,	 titanocenes	 have	 been	 widely	 used	 for	 the	

variety	of	radical	transformations	of	alkyl	chlorides.29–37,38–
46	 Regarding	 unactivated	 chlorides,	 Tufariello	 reported	 a	
dehalogenation	 of	 linear	 chloroalkanes	 using	 stochio-
metric	 Cp2TiCl2	 and	 excess	 magnesium,47	 nonetheless,	
catalytic	protocols	for	the	unactivated	alkyl	chlorides	have	
remained	a	 long-standing	challenge.	Recently,	Lin	and	co-
workers	have	achieved	 the	alkylation	of	a	broad	 range	of	
secondary	and	tertiary	unactivated	alkyl	chlorides	by	XAT	
using	less	bulky	Cp*TiCl3.48	The	Wu	and	Xia	groups	demon-
strated	 a	 titanocene-catalyzed	 borylation	 of	 unactivated	
alkyl	 halides.49	 These	 successful	 examples	 significantly	
improved	 the	 potential	 of	 titanocene	 catalysis	 for	 unacti-
vated	 alkyl	 chlorides,	 however,	 the	 activation	 of	 primary	
unactivated	 alkyl	 chlorides	 is	 currently	 limited	by	 the	 re-
quirement	of	high	temperature	under	basic	conditions	and	
narrow	substrate	scopes	of	linear	chloroalkane.49	We	envi-
sioned	 that	a	mild	photochemical	XAT-based	protocol	ap-
plicable	to	broad	types	of	chlorides	can	expand	the	poten-
tial	of	unactivated	alkyl	chlorides	as	a	practical	and	versa-
tile	radical	precursor.	
Recently,	we	have	developed	 zirconocene	 and	photore-

dox	catalysis	enabling	the	ring	opening	of	epoxides	to	fur-
nish	less	stable	radicals.50	Based	on	our	previous	investiga-
tions,	we	hypothesized	that	lowering	the	kinetic	barrier	of	



 

chlorine	atom	transfer	by	changing	the	metal	center	of	the	
metallocene	would	facilitate	access	to	the	unactivated	pri-
mary	chlorides.	The	bond	dissociation	energy	(BDE)	of	Zr–
Cl	 (116	 kcal/mol)	 is	 higher	 than	 that	 of	 Ti–Cl	 (93	
kcal/mol).10	 This	 difference	 results	 in	 the	 C–Cl	 bond	 ho-
molysis	being	more	exothermic,	and	decreases	the	activa-
tion	 energy	 (DETS)	 considering	 the	 Bell–Evans–Polanyi	
principle	(Figure	1C).51,52	For	example,	the	activation	ener-
gy	 of	 chlorine	 atom	 transfer	 from	 ethyl	 chloride	 to	
Cp2Zr(III)Cl	is	dramatically	lower	than	that	for	Cp2Ti(III)Cl	
(calculated	DGTS	=	4.5	kcal/mol	for	Zr,	16.6	kcal/mol	for	Ti,	
see	SI	for	details).	Here,	we	report	the	successful	execution	
of	 these	 ideas	 and	 a	 new	 catalytic	 protocol	 for	 chlorine	
atom	transfer	from	a	series	of	unactivated	alkyl	chlorides.	

	

Figure	1.	Reductive	activation	of	 alkyl	 chlorides	 (A)	General	
scheme	of	the	activation	of	alkyl	chlorides	(B)	Titanocene(III)-
catalyzed	C–Cl	bond	cleavage	(C)	Lowering	DETS	by	changing	
metal	center	from	Ti	to	Zr.		

Our	working	hypothesis	is	briefly	described	in	Figure	2.	
Cp2ZrX2	would	be	 reduced	by	 an	 excited	photocatalyst	 to	
furnish	 zirconocene	 (III)	 with	 elimination	 of	 the	 ligand.	
The	alkyl	chloride	could	then	undergo	C–Cl	bond	cleavage	
with	 zirconocene	 (III)	 to	 provide	 carbon	 radical	 species.	
Hydrogen	atom	transfer	(HAT)	from	cyclohexadiene	would	
then	 give	 the	 hydrogenated	 product	 and	 cyclohexadienyl	

radical	which	would	undergo	oxidation	by	 Ir(IV).	 The	 re-
sulting	cation	and	anion	X	would	act	as	a	Brønsted	acid	to	
produce	benzene	and	HCl,	 along	with	 ligand	exchange	on	
zirconocene,	then	completing	the	catalytic	cycle.53		

	

Figure	2.	Working	hypothesis	for	reductive	activation	of	alkyl	
chlorides.	

We	 initially	 tested	 the	 feasibility	 of	 C–Cl	 bond	 cleavage	
using	zirconocene	and	photocatalyst	by	screening	reaction	
conditions.	 Our	 initial	 attempts	 focused	 on	 reductive	
dehalogenation	 of	 unactivated	 primary	 alkyl	 chlorides	
(Table	1).	Notably,	our	optimized	conditions	from	our	pre-
vious	 report	 on	 the	 zirconocene-catalyzed	 reductive	 ring	
opening	of	epoxides,	which	utilized	Cp2Zr(OTf)2·THF,	Ir[(4-
MeO)ppy]3	 (P1),	 1-methyl-3-phenyl	 thiourea	 (T1),	 and	
1,4-cyclohexadiene	 (CHD)	 proved	 unsuccessful	 but	 fur-
nished	measurable	product	 formation	(entry	1).	A	change	
to	Cp2Zr(OTs)2	resulted	in	the	hydrogenated	product	2A	in	
58%	yield	 (entry	2).	Further	optimization	of	 thiourea	de-
rivatives	 revealed	 that	 1,3-di(p-tolyl)thiourea	 (T3)	 pro-
vides	 superior	 yields	 (entries	 3	 and	 4).	 Other	 photocata-
lysts	were	 ineffective	 in	 this	 dechlorinative	 protocol	 (en-
tries	5	and	6).	The	control	experiments	indicated	that	zir-
conocene,	 photocatalyst,	 1,4-CHD,	 or	 visible	 light	 irradia-
tion	was	essential	while	 the	 lack	of	 thiourea	dramatically	
decreased	the	yield	of	the	desired	product	2A	and	the	re-
covery	of	alkyl	chloride	1A	(entries	7–11).	
Table	1.	Screening	of	reaction	conditions	a	

	
entry	 Cp2ZrX2	 photocatalyst	 thiourea	 2A	(%)a	

1	 Cp2Zr(OTf)2·THF	 P1	 T1	 29	

2	 Cp2Zr(OTs)2	 P1	 T1	 58	

3	 Cp2Zr(OTs)2	 P1	 T2	 73	

4	 Cp2Zr(OTs)2	 P1	 T3	 96	

5	 Cp2Zr(OTs)2	 P2	 T3		 0	

6	 Cp2Zr(OTs)2	 P3	 T3	 0	

7	 none	 P1	 T3	 0	

8	 Cp2Zr(OTs)2	 none	 T3	 0	

C. Altering Transition State of Chlorine Atom Transfer with Zirconocene

Ti–Cl
93

Zr–Cl
116

M-Cl Bond Energy

BDE [kcal/mol]

[Cp2TiIVX2] TiIII
X

B. Catalytic XAT of Unactivated Alkyl Chlorides with Titanocenes

A. Generation of Carbon Radicals from Unactivated Alkyl Chlorides with Visible Light

Challenge: Mild activation by lowering kinetic barrier of  chlorine atom transfer

R2

R3

Methods

Functionalization R2

R3

R1

Cl
R1

R3
R2

R1

R2

R3
Cl

R1

R3
R2

R1

XATReduction

R2

R3
Cl

R1

2° and 3° chlorides

Accessible
(using Cp*TiCl3)

H
H

Cl
R1

Elusive
(stoichiometric Ti, high temperature)

1° chlorides

MIII X

I

Me
Cl

Et

C–Cl homolysis

II

ΔETS-Ti
ΔETS-Zr

IIIH TS III

ΔETS-Ti

TS

ΔETS-Ti 16.6 kcal/mol  ΔETS-Zr 4.5 kcal/mol

• SET
• Nucleophilic CoI or NiI

Cp2MIVCl2
+

• Photo-induced Pd

: requring strongly reducing power
: no example of 3° chlorides
: no example of 3° chlorides
: limited to Mizoroki-Heck reactions

• XAT
Methods

ZrIV
X

X

ZrIII X

H

IrIVIrIII

visible light

XATHAT

SETProton Transfer

XX IrIII*

R2
R3

Cl
R1

R3
R2

R1
R2

R3
H

R1 ZrIV
Cl

X

HCl

1A

5.0 mol % Cp2ZrX2
3.0 mol % photocatalyst

60 mol % thiourea 
1,4-CHD (3.0 equiv)

PhCF3 (0.10 M), MS4Å 50 mg
blue LEDs, 35 °C, 12 h

2A

Ph
Cl

Ph
H



 

9	 Cp2Zr(OTs)2	 P1	 none	 11	

10b	 Cp2Zr(OTs)2	 P1	 T3	 0	

11c	 Cp2Zr(OTs)2	 P1	 T3	 0	

	

aReactions	were	 conducted	 on	 a	 0.10	mmol	 scale	 and	 yields	
were	 determined	 by	 NMR	 analysis.	 bWithout	 irradiation.	
cWithout	1,4-CHD.	See	also	the	SI	for	more	information.	

With	these	optimized	conditions	in	hand,	we	next	exam-
ined	the	substrate	scope	of	this	protocol	(Figure	3A).	First,	
we	 examined	 primary	 alkyl	 chlorides	 with	 a	 variety	 of	
functional	 groups.	 In	 addition	 to	 phenyl	 (1B),	 phenoxy	
(1C)	and	amide	(1D)	were	tolerated	and	afforded	the	cor-
responding	dechlorinated	products	2B–2D	 in	 high	 yields.	
Aryl	chloride	(1E)	(E1/2	=	–2.6	V	vs	SCE)9	and		aryl	bromide	
(1F)	 (E1/2	 =	 –2.2	 V	 vs	 SCE)9	 functional	 groups	 both	 re-
mained	intact,	despite	the	susceptibility	to	strongly	reduc-
ing	photocatalysis18–20.	A	cyano	group	(1G)	was	also	toler-
ated	 to	 give	 the	 product	2G	 in	moderate	 yield.	 A	 diverse	
array	 of	 electrophiles,	 including	 phenyl	 ester	 (1H),	 car-
bonyls	(1I	and	1J),	phosphonate	(1K),	sulfonate	(1L),	and	
phthalimide	 (1M)	 remained	 intact.	 The	 present	 protocol	
was	 also	 applicable	 to	 both	 acyclic	 and	 cyclic	 secondary	
alkyl	 chlorides	 (1N–1Q).	 a-Chloro	 ketone	 (1R)	 and	 pro-
tected	piperidine	derivatives	(1S	and	1T)	were	found	to	be	
suitable	substrates.	We	next	evaluated	tertiary	alkyl	chlo-
rides.	 The	 present	 protocol	 converted	 a	 branched	 alkyl	
chloride	(1U),	adamantanes	with	chlorine	atoms	at	differ-
ent	positions	(1V	and	1W),	and	a	sulfonamide	(1X)	to	the	
corresponding	reduced	products	2U–2X	in	excellent	yields.	
Additionally,	 our	 reaction	 conditions	 were	 applicable	 to	
the	derivatives	of	natural	products	or	medicinal	agents.	C–
Cl	 bond	 cleavage	 in	 biologically	 important	 architectures	
such	as	amino	acid	(1Y),	purine	(1Z),	sugar	(1AA),	as	well	
as	 steroids	 (1AB	 and	1AC)	 smoothly	proceeded	 to	 afford	
the	products	2Y–2AC	in	good	yields.	It	is	noted	that	a	drug	
for	 the	 treatment	 of	 adrenocortical	 carcinoma,	 mitotane	
(1AD),	was	successfully	underwent	 two	C–Cl	cleavages	 to	
furnish	methyl	derivative	2AD.	
With	the	scope	of	the	reductive	dehalogenation	shown	to	

be	broad	across	a	range	of	substrates,	we	next	turned	our	
attention	 to	 the	 mechanism	 of	 this	 reaction.	 To	 gain	 in-
sights	into	the	reaction	mechanism,	intermolecular	cycliza-
tion	of	alkyl	chloride	1AE	was	carried	out	(Figure	3B).	Un-
der	 our	 optimized	 conditions,	 THF	 derivative	 4AE	 was	
obtained	from	1AE	in	78%	yield.	A	comparable	result	was	
observed	with	Oshima’s	 conditions	using	 zirconocene(III)	
prepared	 from	 Cp2ZrCl2,	 Red-Al,	 and	 Et3B,	 suggesting	 the	
involvement	 of	 a	 zirconocene(III)	 species.54,55	 To	 better	

understand	 the	 mechanism	 of	 C–Cl	 bond	 cleavage,	 we	
made	use	of	 luminescence	quenching	studies	 (Figure	3C).	
Stern-Volmer	analysis	showed	that	 the	excited	photocata-
lyst	 is	efficiently	quenched	by	zirconocene	and	not	 thiou-
rea,	which	 is	 in	agreement	with	 the	 reduction	of	 zircono-
cene	 by	 the	 excited	 photocatalyst.	Next,	 thiouronium	 for-
mation	 via	 an	 SN2	 process	 was	 investigated	 (Figure	 3D).	
The	 possibility	 of	 reductive	 radical	 generation	 emerged	
from	 recent	 reports	 from	 the	 Melchiorre	 group.56–58	 An	
experiment	 without	 light	 irradiation	 revealed	 that	 the	
starting	 chloride	 remains	 intact	 even	 in	 the	 presence	 of	
base:	the	corresponding	thiouronium	was	not	observed.	To	
further	 investigate	 the	 C–Cl	 bond	 cleavage,	we	 compared	
the	reactivity	between	unactivated	alkyl	chlorides	(Figure	
3E).	When	a	competitive	experiment	was	carried	out	with	
a	1:1	mixture	of	1B	and	1N,	the	hydrogenation	was	faster	
for	the	secondary	chloride.	Tertiary	chloride	1U	was	more	
reactive	 than	 the	 secondary	 chloride	1N,	 thus	 the	 rate	 of	
C–Cl	bond	cleavage	is	in	the	order	of	tertiary	>	secondary	>	
primary,	which	is	consistent	with	the	order	of	the	calculat-
ed	kinetic	barrier	of	 chlorine	atom	 transfer	with	 zircono-
cene	(III)	(0.6,	1.7,	and	4.5	kcal/mol,	see	the	SI	for	details).	
A	series	of	mechanistic	studies	are	 in	agreement	with	the	
hypothesis	that	chlorine	atom	transfer	from	alkyl	chloride	
to	 zirconocene(III)	 occurred	 with	 the	 assistance	 of	 the	
photocatalyst.		
We	 next	 sought	 to	 expand	 the	 synthetic	 utility	 of	 the	

newly	developed	C–Cl	bond	cleavage.	Alkyl	boronic	esters	
are	high-value	synthetic	precursors	due	to	 their	synthetic	
versatility	allowing	 for	a	diverse	array	of	 transformations	
as	well	as	their	utility	in	chemical	biology	and	drug	discov-
ery.59	Despite	 the	 tremendous	advances	 in	photochemical	
dechlorinative	 transformations,	 borylation	 of	 unactivated	
alkyl	chlorides	remains	elusive.60	To	our	delight,	we	found	
that	 our	 protocol	 is	 applicable	 to	 the	 photochemical	
borylation	of	alkyl	 chlorides	 (Scheme	1).	The	exposure	of	
alkyl	 chlorides	 to	 Cp2ZrCl2	 in	 the	 presence	 of	 P1,	 1,3-
dicyclohexylurea,	 and	 B2(cat)2	 under	 visible	 light	 irradia-
tion	smoothly	provided	the	desired	boronic	esters	after	the	
treatment	 with	 pinacol	 under	 basic	 condition.	 It	 is	 note-
worthy	that	1,3-dicyclohexylurea	is	more	effective	than	T3	
and	 other	 thioureas	 in	 the	 borylation	 (see	 the	 SI	 for	 de-
tails),	 presumably	 due	 to	 a	 better	 coordinating	 ability	 of	
the	 carbonyl	 oxygen	 toward	 B2(cat)2	 than	 sulfur.61–63	 Ali-
phatic	 primary	 borates	 including	 neopentyl	 borate	 were	
successfully	 obtained	 in	 good	 yields	 (3A–3D).	 As	well	 as	
aryl	 chloride	 1E,	 readily	 reducible	 aryl	 bromide	 1F	 was	
tolerated	 to	 afford	borylated	 compounds	3E	 and	3F.	 Sec-
ondary	 chlorides,	 possessing	 either	 acyclic	 or	 cyclic	 alkyl	
substituents	 efficiently	 underwent	 borylation	 under	 the	
optimized	 conditions	 (3G-3J).	 The	 C–Cl	 bond	 cleavage	 of	
tertiary	 chloride	1V	 also	proceeded	successfully	 to	afford	
borylated	 adamantane	 3K.	 In	 addition	 to	 cholesterol	 de-
rivatives	 (3L),	 caffein	 derivatives	 (3M)	 was	 successfully	
borylated.	Notably,	1,4-dichloro	butane	was	found	to	be	a	
suitable	substrate,	and	diborylated	compound	3N	was	ob-
tained.	 It	 should	be	noted	 that	mixtures	of	diastereomers	
(3H	 and	3L)	were	obtained	 from	diastereomerically	pure	
starting	materials.	This	observation	provides	 further	sup-
port	for	radical-mediated	C–Cl	bond	cleavage.	
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Figure	3.	Reductive	activation	of	alkyl	chlorides	(A)	Substrate	scope.	aReactions	were	conducted	on	a	0.20	mmol	scale	and	yields	
are	for	isolated	material	unless	otherwise	noted.	All	data	are	the	average	of	two	experiments.	bYields	were	determined	by	GC	anal-
ysis	due	to	volatility.	cReaction	was	run	for	24	h.	(B)	Intramolecular	cyclization.	(C)	Stern–Volmer	quenching	experiments.	(D)	Sub-
stitution	of	thiourea.	(E)	Competitive	experiments.	See	the	SI	for	details.	
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Scheme	1.	Substrate	Scopea	

 
aReactions	were	conducted	on	a	0.20	mmol	scale	and	yields	are	for	isolated	material.	All	data	are	the	average	of	two	experiments.	
See	the	SI	for	details.	

In	 summary,	 we	 succeeded	 in	 the	 development	 of	 zir-
conocene-photoredox	 cooperative	 catalysis	 for	 the	 reduc-
tive	 hydrogenation	 and	 borylation	 of	 unactivated	 alkyl	
chlorides.	Our	protocol	accommodated	primary,	secondary,	
and	tertiary	chlorides,	in	the	presence	of	substituents	that	
are	 commonly	 susceptible	 to	 strong	 reductants.	A	 variety	
of	experimental	observations	were	consistent	with	a	radi-
cal-mediated	C–Cl	bond	cleavage.	We	believe	that	changing	
the	metal	center	 in	 the	metallocene	 influences	 the	energy	
profile	of	C–Cl	bond	cleavage,	which	is	useful	in	the	context	
of	 halogen	 atom	 abstraction.	 Efforts	 towards	 exploring	
transformations	 with	 this	 new	 cooperative	 catalysis	 and	
further	 mechanistic	 investigations	 are	 ongoing	 in	 our	 la-
boratory.64	
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