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Abstract 
There are thousands of different per- and polyfluoroalkyl substances (PFAS) in 

everyday products and in the environment. Discerning the abundance and diversity of 

PFAS is essential for understanding sources, fate, exposure routes, and the associated 

health impacts of PFAS. While comprehensive detection of PFAS requires use of non-

targeted mass spectrometry, data-processing is time intensive and prone to error. While 

automated approaches can compile all mass spectrometric evidence (e.g., retention 

time, isotopic pattern, fragmentation, and accurate mass) and provide ranking or scoring 

metrics for annotations, confident assignment of structure often still requires extensive 

manual review of the data. To aid this process, we present FluoroMatch Visualizer 

which was developed to provide interactive visualizations which include normalized 

mass defect plots, retention time versus accurate mass plots, MS/MS fragmentation 

spectra, and tables of annotations and meta-data. All graphs and tables are interactive 

and have cross-filtering such that when a user selects a feature, all other visuals 

highlight the feature of interest. Several filtering options have been integrated into this 

novel data visualization tool, specifically with the capability to filter by PFAS chemical 

series, fragment(s), assignment confidence, and MS/MS file(s). FluoroMatch Visualizer 

is part of FluoroMatch Suite, which consists of FluoroMatch Modular, FluoroMatch Flow, 

and FluoroMatch Generator. FluoroMatch Visualizer enables annotations to be 

extensively validated, increasing annotation confidence. The resulting visualizations and 

datasets can be shared online in an interactive format for community based PFAS 

discovery. FluoroMatch visualizer holds potential to promote harmonization of non-

targeted data-processing and interpretation throughout the PFAS scientific community.   
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1. Introduction: 
 
Innovation in the chemical industry often leads to better consumer products,1–3 longer 
life expectancy, new scientific discoveries, and higher interconnectivity of society, to 
name a few benefits. There are revolutionary new prospects of technology2 enabled by 
chemistry. These revolutionary benefits are actualized through a diversification of 
synthesized chemicals. Alongside the benefits of novel chemicals are the unknown 
health impacts of exposure2,4. Databases of chemicals which may be found in the 
environment range from 360,0005 to over 800,000 compounds6, with additional 
compounds added annually. Determining which chemicals pose a health risk is 
challenging without an understanding of the persistence, bioaccumulation, fate and 
transport, transformation products, and toxicity of the compound. One major chemical 
class that is receiving scientific and regulatory attention is the expanding list of per- and 
polyfluoroalkyl substances (PFAS). 
 
There are thousands of known PFAS, which combined with the fact that they are 
pervasive,7–10 persistent, and are often noted as toxic, makes these chemicals an 
important target for comprehensive nontargeted analysis. The health burden associated 
with PFAS can depend on structure, and most studies on PFAS health effects primarily 
focus on perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Most 
PFAS bioaccumulate11–16 and certain PFAS have been linked to high cholesterol17,18 
and triglycerides19,20, thyroid disease18, pregnancy-induced hypertension21,22, ulcerative 
colitis23, cancers24,25, and a weakened immune system26–29. While there has been 
increased regulatory30,31, academic, and public awareness, scrutiny, and action to limit 
PFAS exposures, novel PFAS chemicals often are outside the scope of these efforts32–

34. To accompany the growing need for regulatory changes, tools, such as high-
resolution mass spectrometry,35–37 are needed to provide the capability to rapidly 
assess the diversity, abundance, and health impacts of environmental exposures in a 
comprehensive fashion to better determine and understand emerging and legacy 
chemicals of concern. 
 
Liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS) utilizes 
universal chemical principles to determine chemical structure including chemical 
polarity, size, or charge (retention time), bond connectivity (fragmentation), molecular 
formula (mass and isotopic pattern), and chemical moieties / chemical class 
(fragmentation and spectral similarity)35–37. The specificity and universality of mass 
spectral evidence allows for non-targeted analysis: the analysis of thousands to 
hundreds of thousands of signals representing individual chemicals or structurally 
similar isobars or isomers. However, annotating chemical structure from mass spectral 
signal is often the bottleneck in nontargeted LC-HRMS/MS and even with sophisticated 
software, manual review of data is generally required for high confidence38–41.  
 
For nontargeted PFAS data processing, we have previously released FluoroMatch 
Flow, FluoroMatch Modular, and FluoroMatch Generator which cover all steps of the 
PFAS data processing workflow. FluoroMatch Flow performs all steps in automatic 
fashion, FluoroMatch Modular can be used to annotate feature tables acquired using 



the users own peak picking and filtering algorithms, and FluoroMatch Generator can be 
used to develop PFAS MS/MS libraries from a few class-representative standards. 
While a low false positive rate has been shown for FluoroMatch Flow, using class-based 
fragmentation rules from standards,42–45 annotations using fragment screening, 
homologous series detection, and other more non-targeted approaches are more 
susceptible to very high false positive rates.45 Most features have modest to low 
confidence in the noted annotations and hence, manual validation is often required for 
the annotation of the majority of PFAS suspected in nontargeted high resolution mass 
spectrometry datasets. 
 
To aid in manual validation of PFAS annotations, we introduce FluoroMatch Visualizer. 
This tool provides interactive, cross-linked, and cross-filtered graphics and tables to 
facilitate evaluation of annotations in complex data. Here we describe a suggested step-
by-step workflow employing the tool, exemplifying this workflow using PFAS detected in 
Aqueous Film Forming Foam (AFFF).  
 

2. Methods: 
 
2.1. FluoroMatch Visualizer integration with FluoroMatch Flow / Modular 
FluoroMatch Visualizer was developed to work with outputs from FluoroMatch Flow or 
Modular44,45. FluoroMatch v2.6 currently outputs a csv file, which contains over 35 
columns of information for each feature and includes confidence scores, SMILES 
structures, identifiers, names, formulaes, mass-to-charge ratios, retention times, peak 
area(s), mass defects, fragments and annotations, MS/MS files, and adducts. The code 
was modified to also output annotated MS/MS spectra combined across all MS/MS-
containing files in a format readable by Microsoft Power BI. These are the only two 
inputs needed for FluoroMatch Visualizer.  
 
2.2. Data-acquisition and data-processing 
An AFFF mixture was collected from a holding tank at a field site in 1999; this holding 
tank contained a mixture of legacy AFFF products. Therefore, characterization of this 
AFFF mixture can serve as a proxy for legacy AFFF-contaminated sites46. The sample 
was diluted 100,000 fold in 70:30 water:methanol (Fisher Scientific Optima® LCMS-
grade). The diluted sample was injected four times for iterative exclusion information-
data dependent analysis (iterative MS/MS), with a 50 μL injection volume onto an 
Agilent 1290 Infinity II ultra-high-performance liquid chromatography (UHPLC) system 
connected to an Agilent 6545 quadrupole time-of-flight mass spectrometer (Q-TOF MS). 
Blanks were acquired every other injection for blank filtering. PFAS were detected in 
negative electrospray ionization mode. Data was acquired from m/z 100-1100, with 
MS/MS collision energy set to 0, 25, and 40 eV. Source parameters and further 
acquisition parameters for this dataset have been previously described45,47. 
 
3. Results and Discussion: 
 
3.1. FluoroMatch Workflow 



FluoroMatch and FluoroMatch Visualizer were developed to be comprehensive, 
modifiable, user-friendly, and open source. The workflow starts with FluoroMatch Flow 
(or Modular), which can be used to directly process vendor files (Figure 1); the software 
is freely available at innovativeomics.com/software. FluoroMatch Modular uses the 
same annotation algorithms as FluoroMatch Flow but can be used to annotate feature 
tables generated using the users own peak picking and filtering algorithms/software 
(vendor or open source including Profinder, Compound Discoverer, MZMine and 
XCMS). FluoroMatch Flow, which covers the entire PFAS nontargeted data-processing 
workflow (Figure 1), uses MZMine,48 MSConvert,49 and in-house code using R and C# 
in the background to process the files. FluoroMatch Flow works for most vendor files 
including Waters, Agilent, Thermo, and Bruker. Together FluoroMatch Flow, 
FluoroMatch Modular, FluoroMatch Generator, and FluoroMatch Visualizer are termed 
FluoroMatch Suite, and this suite of software offers several workflows (Figure 1). After 
following the proper naming conventions outlined for this software program, users 
simply drag files onto the interface, choose blank filtering parameters and their preferred 
output directory, and click run. The software performs file conversion, peak processing 
(including peak picking, alignment, and gap-filling), blank filtering, compilation of 
annotation evidence, annotation, and assignment of confidence (Figure 1). Confidence 
assignments are based on an in-house scoring framework44,45 (Figure 2) and the 
Schymanski scheme50. Comparison of FluoroMatch Flow with other software, including 
Compound Discoverer and EnviMass, shows unique advantages and disadvantages of 
various software.42,43 Generally FluoroMatch Flow has similar or lower false positive 
rates among high confidence annotations and has similar or more comprehensive 
annotation when the same peak list is used, but vendor or open-source peak picking 
algorithms designed specifically for the methods / instruments deployed often have 
better peak picking coverage then built-in algorithms in FluoroMatch Flow. To increase 
coverage, users can use their own peak picking workflow optimized for their instrument 
and gradient, using FluoroMatch Modular for annotation, compiling evidence, and 
scoring; this workflow is currently recommended for expert users. FluoroMatch Modular 
works with any peak picking / processing software (both vendor and open source), 
which outputs a txt file with m/z and retention time information.  
 
FluoroMatch Visualizer requires the desktop version of Power BI which can be freely 
downloaded. An online version is being developed for future use. Using the 
FluoroMatch Visualizer Power BI file, users upload their data-processing output file from 
FluoroMatch Modular or FluoroMatch Flow.  



 
Figure 1: The FluoroMatch Suite covers the entire PFAS non-targeted data-processing 
and manual validation workflow. User acquisition and data-processing workflow using 
FluoroMatch Modular, FluoroMatch Flow, and FluoroMatch Visualizer are shown. 
Acronyms: data-dependent analysis (DDA), iterative exclusion (IE), fragmentation 
spectra (MS/MS). 
 



 
Figure 2: FluoroMatch includes a systematic scoring framework to communicate 
confidence for every single feature, alongside also reporting confidence levels via the 
Schymanski schema. All scores are shown alongside visual and descriptive definitions. 



*B-- are features with fluorine containing fragments using a list of 777 Fluorine 
containing fragments for screening derived from standards, but the fragments observed 
are not common fragments with only one possible predicted formula. 
 
3.2. FluoroMatch Visualizer Description and Possible Workflow 
 
FluoroMatch Visualizer includes three interactive graphs: m/z vs retention time (Figure 

3B), normalized mass defects (Figure 3C), and MS/MS spectra (Figure 3E). These 

graphs can be filtered by score and chemical series (Figure 3A). Data is further 

summarized in two tables: annotated and scored features (Figure 3F) and annotated 

fragments for fragment screening (Figure 3D). For all tables and graphs users can drag 

over entries to visualize PFAS chemical structures, or substructures related to 

fragmentation. For this we developed a novel tool for interpreting SMILES within Power 

BI.  

All graphs and tables can be filtered by user selected feature(s). For example, if a row in 

the feature table is selected then only that feature is displayed in the charts and vice 

versa. Cross-filtering is important so that all evidence for a feature, PFAS series, or 

other group of features, can be analyzed simultaneously. FluoroMatch Visualizer 

additionally includes tool tips, which provide further information when the user hovers 

over a feature or fragment in the MS/MS spectra. When hovering over a feature in 

graphs showing m/z vs retention time (Figure 3B) or normalized mass defects (Figure 

3C), the chemical series, formula, SMILES structure, name/class, score, and x/y-axis 

values are shown. In the graph of MS/MS spectra (Figure 3E), any fragment 

annotation, potential SMILES substructure of fragment, fragment m/z, fragment 

intensity, and ppm error of any fragment annotation are shown. In addition, features 

aligned with presented fragments are presented, which is important when MS/MS 

spectra from multiple features are overlaid. 

 
User workflows employing FluoroMatch Visualizer can be diverse, especially 
considering that using Power BI Desktop new graphs, variables, and tables can be 
designed and added by users familiar with the platform. For example, new columns can 
be added to tables containing information of interest, new plots, for example mass 
defect versus retention time can be added, and new splicers and filters can be 
developed. Here we describe a simple workflow for determining false positives and true 
positives, in section 3.3. this workflow will be exemplified using an AFFF mixture.  
 
Step 1) Determine series with high confidence series 
By filtering features to only those having score “A” using the Score Filter (Figure 3B) the 
most confident annotations are retained (~5% false positive rate). The remaining series 
containing one or more confident annotation can then be selected in the legend (Figure 
3B or Figure 3C). Then in the Score Filter all scores can be added back (no filtering) 
and now the user can view only those series with confident annotations. Confident 
series should be documented separately for future use.  
 



Step 2) Determine false positives using retention time vs m/z plots 
Opening the annotated feature table (.csv) in excel from LipidMatch Flow (the file with 
FIN in the name), a new column can be added for comments and for flagging potential 
false positives or true positives. The file should be saved with a different name in excel 
format (.xlsx). Now, select the first confident series, and look for patterns in retention 
time vs m/z (Figure 3B). Members of the same homologous series should follow a 
diagonal line. Outliers that do not fall along this diagonal can then be noted in the 
annotated feature table as likely false positives. The remaining members will now have 
higher confidence, given that they fall withing a clear retention time pattern even for 
features without MS/MS. This process can be iterated across all remaining high 
confidence series. Depending on the goals of the study this process can also be done 
for all series, including series without structural annotations, although this may be too 
time intensive. Because FluoroMatch is designed to define series using the mass defect 
plot (Figure 3C) no false positives will be observed for series in those plots.  
 
Step 3) Determine false positives using MS/MS spectra 
For each series selected the MS/MS will be combined (summed) for all individual PFAS 
species for that series which have MS/MS acquired (Figure 3E). Clear fragmentation 
patterns can be observed in this manner, with the most abundant and common 
fragments for this PFAS class readily noted. Any features with MS/MS but without a 
confident annotation (score of A) can then be elevated if they have the appropriate 
fragments and fall into the observed fragmentation pattern. Furthermore, false positives 
which do not have expected fragments can be noted for that class. This information can 
be noted in a separate column in the final table in excel, and flags for both retention 
time and MS/MS can be referenced to remove false positives which do not belong to the 
series.  
 
Step 4) Discovery of PFAS structures without confident assignments 
After flagging potential false positives and true positives for confident annotations, then 
all other annotations with some PFAS MS/MS evidence can be screened. Using the 
same methodology as in Step 1 through Step 3, series with B+, B, or B- can be 
determined (and series with A’s can be removed from this list) and false positives 
flagged. For certain features with a score of B+, B, or B-, structures will be assigned 
using in-silico approaches or fragment screening. MS/MS evidence should be carefully 
considered and benchmarked against literature or standards for validation of these 
structures. Furthermore, isotopic pattern matching and formula prediction (not included 
in the platform) can be used to validate formula.  
 
Step 5) Discovering series and PFAS chemical classes using fragment screening 
In addition to investigating by predefined series and scores, series can be determined 
by filtering based on fragments which are most abundant across the entire dataset, and 
which represent chemical moieties of interest, using the Fragment Screening Filter 
(Figure 3D). After these features are discovered, MS/MS evidence (Figure 3E) can be 
investigated to ensure these fragments are of high abundance for each feature, and 
then new series can be defined, or series can be selected and investigated based on 
containing these moieties.  



 
Step 6) Discovery of PFAS series without MS/MS Evidence 
Depending on the application, further validation of series which do not have any 
structural information but may be PFAS based on accurate mass can be performed. In 
this case using methods in Step 1 through Step 2 series with D+ and D can be 
investigated for retention time patterns (no MS/MS evidence exists for these). In 
addition, these series can further be narrowed down to only those series within the 
normalized mass defect where high confidence annotations were observed, as these 
are more likely to be PFAS (Figure 3C). One way to navigate these series is to sort the 
table (Figure 3F) by number of compounds in the series and look at series with many 
members, these series are likely to be more confident. Finally, as in Step 4, isotopic 
pattern matching, and formula prediction can be used to validate formula. 
 
 
 

 
Figure 3. The FluoroMatch interface is designed so that all relevant information can be 
observed simultaneously. The user view of the FluoroMatch Visualizer interface is 
shown. The interface consists of three filters (by MS/MS file, score and chemical series; 
Figure 3A), three visuals (m/z vs retention time, normalized mass defect plot, and 
MS/MS spectra; Figure 3B, Figure 3C, and Figure 3E, respectively), and two tables 
(table of fragments, and table of annotated features; Figures 3D, and Figure 3F, 
respectively). 
 
3.3. Application of FluoroMatch Visualizer to identify PFAS in a Legacy AFFF Mixture 
 



Non-targeted data provide a wealth of information and in most datasets the majority of 
chemical features are not PFAS related. By looking at all features simultaneously, it can 
be difficult to determine patterns and discover potential PFAS series. Often thousands 
of features are observed (3,686 for the AFFF mixture after blank filtering), and no user 
can look at all the data and make sense of it simultaneously; for example, when all 
features are displayed the resulting plots show few clear patterns (Figure 4 and Figure 
5).  
 

 
Figure 4. Several PFAS series can be discovered by looking at certain regions of mass 
defect plots normalized to CF2. Without filtering data by series or score the visual is 



overly complex and challenging to make sense of. Mass defect plot (normalized to CF2) 
showing a PFAS specific region and all features. Horizontal evenly spaced (intervals of 
50 Da) points of the same color represent potential PFAS homologous series. 
 

 
Figure 5. Retention time vs m/z plots are overly complex without filtering; certain PFAS 
rich regions, blank signal, and other non-PFAS series can readily be discovered using 
these plots. Retention time vs m/z for all features (Figure 5A) and for features that 
belong to high confidence series with one or more PFAS with a score of A (Figure 5B). 
A specific region in the plot is where most PFAS can be found, and certain outliers of 
high confident series can easily be found (Figure 5B). Red highlighted areas show 
background noise, yellow highlighted area shows PFAS region of plot, and grey 
highlighting shows another potential non-PFAS series. 
 
Because of the complexity and richness of non-targeted data, users need to look at a 
subsection of PFAS features and multiple filters are provided in FluoroMatch Visualizer 
to prioritize which group of features to investigate. Ideally the user would want to know 
which series have confident annotations and which series have no annotations, in order 
to evaluate the most confident annotations first. Filtering by score (Figure 6) allows 
users to determine which features to focus on based on the evidence provided, by 
selecting the series which contains the highest scoring features. A description of the 
scores can be found in Figure 2 and are described previously45. Briefly, features 



assigned as A (A, A-) contain class-based MS/MS fragments required for confident 
assignments, features assigned B (B+, B, and B-) have an in-silico or fragment 
screening match, features assigned C (C+, C, and C-) are in homologous series with 
B’s or A’s, and D’s form homologous series or have accurate mass evidence consistent 
with PFAS but no MS/MS information; E’s are the remaining features which are likely 
not PFAS and therefore can be generally ignored, drastically reducing the number of 
features needing manual validation45.  
 
By filtering to retain only features with high-confidence scores (e.g., scores of A; Figure 

6A), known series (about a 5% false positive rate)44,45 can be readily viewed. In the 

case of the AFFF mixture, 18 PFAS series were determined, covering 62 individual 

species with a high-confidence score (Figure 6A). These series can then be expanded 

to all features which fall within the series (including lower confidence annotations or no 

annotations), in which case the coverage of species with likely annotations expanded to 

257 individual species for the AFFF mixture (Figure 6C). After establishing these series 

containing high-confidence annotations it is important to distinguish which members of 

the series are false positives via manual review.  

 

Organizing features by series is essential for determining false positives, as clear 
patterns are observed for each series. If a member of a series falls outside of this 
pattern, it may be considered a false positive. Therefore, using the drop-down menu (or 
by selecting series in the legend), users can select one or more series to start 
determining true and false positives, as well as false negatives. Each member of a 
series should follow a clear diagonal pattern in m/z vs retention time plots as shown for 
only high-confidence annotations of perfluorosulfonic acids (PFSAs) (Figure 6B) and 
any outliers can be considered false positives (Figure 6D). Furthermore, members of 
the series should also follow a clear trend in the normalized mass defect plots. Because 
the tool automatically assigns series by mass defect and nominal mass, the PFAS 
series will follow trends in these plots automatically and no manual removal of false 
positives is needed (Figure 6A and Figure 6C).  
 



 
Figure 6. By filtering to only include those series with the most confident annotations, 
true positives and false negatives can manually be determined using clear trends. 
Shown above are kendrick mass defect plots normalized to CF2 (KMD (CF2)) for 
annotations with high confidence (Figure 6A) and series containing one or more high 
confident annotations (Figure 6C). As an example, for high confidence annotation, the 
series for perfluoroalkyl sulfonic acids (PFSA) are selected (Figure 6A) and the 
retention time vs m/z plot is shown for this series (Figure 6B). Retention time vs m/z 
plots are also shown for all high confidence series’ (Figure 6D). 
 
Cross-filtering is especially important when looking at MS/MS spectra, as multiple 
MS/MS spectra can be overlaid. If certain members of a series MS/MS spectra are 
overlaid, for example by sorting and selecting them in the plots (e.g., as selected in 
Figure 6A for the PFSA series) or feature table, the trends for neutral losses and 
fragment ions become clear (Figure 7). Any MS/MS spectra which do not have 
fragments consistently observed in other features of the same series can then be 
labeled as potential false positives. Furthermore, assignments with low confidence may 
attain higher confidence by the user after surveying the MS/MS spectra overlaid with 
other members of the series.  
 



 
Figure 7. Averaging spectra across series can be readily done in the visualizer platform 
and used to determine common fragmentation patterns and false positives. Combined 
mass spectra after highlighting the perfluoroalkyl sulfonic acids (PFSA) series (Figure 
5A), zoomed out (Figure 7A) and zoomed in (Figure 7B) with annotations (annotations 
are provided by the software upon dragging over a fragment peak). 
 
Fragment screening can also be achieved by annotated fragments from MS/MS 
spectra, which can aid in finding unknowns and identifying chemical series/classes. 
Common fragments which were annotated can be selected and all MS/MS spectra and 
features across all charts will be shown, which contain these annotated fragments. This 
can aid in grouping compounds which contain certain moieties. For example, [SO3F]- 
and [SO2F]- may be selected to find PFAS with sulfonic acid groups, and [CF3]- and 
[C2F5]- may be selected to identify carbon fluorine chains. PFAS containing sulfonic acid 
groups (Figure 8) and PFAS-containing pentafluorosulfide (Figure 9) were screened in 
this manner. One strategy to determine which fragments to use for fragment screening 



is to sort the annotated fragments by fragment abundance and then select those 
representing a moiety of interest. Fragments related to sulfonic acid and the PFAS 
carbon fluorine chain were the most abundant fragments when all fragments across all 
features were summed (automatically provided by FluoroMatch Visualizer) (Figure 8A). 
Many potential false positives were determined using retention time vs m/z plots 
(Figure 8B), showing the importance of this visualization.  
 
  
Fragment screening using the [SF5]- fragment for pentafluorosulfide-containing PFAS 
showed that while the fragment was of low abundance across all features (Figure 9B) 
11 features were determined (Figure 9A). When looking at all members of those series 
containing at least one feature with a [SF5]- fragment, 83 features were determined 
(Figure 9C and Figure 9D). For one series, many false positives (teal series containing 
m/z 257.0472, 307.0419, and 357.0414) were observed (Figure 9D) and the entire 
series (blue) was also likely a false positive (no retention time order, data not shown).  
 
 
 



 
Figure 8. Fragment screening can be deployed to determine PFAS series with specific 
moieties and by sorting annotated fragments by abundance, the most common PFAS 
fragments can be determined out of a database containing over 777 potential PFAS 
fragments. Topmost abundant annotated fragments for an entire dataset containing 
fluorine atoms (Figure 8A), sulfonic acid related fragments are selected (Figure 8A) to 
identify all PFAS series (Figure 8C) with sulfonic acids.  Numerous outliers are shown 
in retention time vs m/z plots which may not belong to PFAS series, as well as likely 
true positives (Figure 8B). 
 



 
Figure 9. Certain fragments are very specific to chemical moieties and hence can be 
advantageous to use in fragment screening, for example the [SF5]- fragment is specific 
to pentafluosulfide containing species found in AFFFs. Features (Figure 9A) and their 
scores, homologous series, retention time (RT), mass to charge ratio (m/z), and level A 
annotations, filtered by performing fragment screening on the [SF5]- fragment are 
shown. [SF5]- fragment intensities from different fragment scans / features are shown 
within a 5-ppm window (Figure 9B), and these fragments were used to screen for 
pentafluorosulfide containing series (Figure 9C). Most species form clear trends in 
retention time vs m/z plots, with some obvious outliers (Figure 9D). 
 
Beyond fragment filtering and overlapping series MS/MS spectra, MS/MS spectra and 
features can be filtered by MS/MS file, in case certain files represent very different 
sample types, which may have different PFAS isomers. Furthermore, techniques using 



different MS/MS methods or parameters can be cross compared readily using filter by 
MS/MS file. Here we compared different acquisitions of iterative exclusion (IE), where 
repeated injections of a sample using a rolling exclusion list of ions previously selected 
is deployed (ensuring that each new injection has MS/MS acquired on new ions not 
previously selected). As shown in mass defect plots in the PFAS region filtered by each 
MS/MS file, new series and new members are discovered for each additional round of 
IE (Figure 10A).44,51 Note these plots are cumulative, showing all past acquisitions and 
new acquisitions. Furthermore, by summing and plotting the number of features and 
filtering by score, it’s shown that the advantage dissipates for high confidence 
annotations after about the 4th injection, meaning fewer injections are needed if high 
confidence annotations are the goal (Figure 10B-D).  
 

 
Figure 10. By filtering by MS/MS file, the benefit of different MS/MS acquisition 
techniques can readily be explored. Features with MS/MS after four iterations of 
iterative exclusion (IE), showing increased coverage in the PFAS region of kendrick 
mass defect plots with additional injections (Figure 10A). The increase in MS/MS 
coverage is more representative of features with low abundance after iterative 
injections; whereas the number of new features with MS/MS increases linearly 
throughout all injections (Figure 10B), after the 3rd and 4th injection new ions selected 
are of too low abundance for MS/MS to have high enough spectral quality for most 



confident assignments (Figure 10C and Figure 10D). All scans represent any score A 
through E (Figure 10B), scans with PFAS MS/MS evidence represents scores of A 
through B (except B--) (Figure 10C), and confident annotations refer to those with 
scores of A and A- (Figure 10D).   
 
4. Conclusion and Future Developments: 
 
Nontargeted liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS) 
provides evidence using universal chemical properties (polarity, functional groups, 
molecular formula, bond linkages and strength) for comprehensive characterization of 
molecules. Sifting through this rich set of evidence provided by LC-HRMS/MS, for 
structural characterization of the molecules, is a major bottleneck in nontargeted 
workflows. Our automated approach previously released for PFAS (FluoroMatch) 
incorporates mass defect, retention time order, exact mass matching, homologous 
series grouping, and fragmentation pattern searching (class-based fragment rules, 
common PFAS fragment screening, and structure to fragmentation in-silico approaches) 
to annotate features. While scores are provided to communicate confidence in the 
results, for most annotations, manual review is required. FluoroMatch Visualizer was 
developed to meet this need with interactive tables and charts, allowing the user to 
examine visually several lines of evidence for annotating a specific feature. Visual 
evidence includes kendrick mass defect type plots normalize to CF2 or other repeating 
unit type, m/z versus retention time plots, and annotated tandem mass spectra, while 
tables provide a wealth of other evidence for each selected feature. While this software 
currently covers PFAS, the framework can readily be adapted to other chemical series, 
and work is being undertaken to expand capabilities to polymers and lipids. 
 
To investigate trends across PFAS, the user can narrow down the number of features to 
examine using multiple methods. One of the most useful methods is to select individual 
homologous series, automatically determined using nominal mass and normalized mass 
defect. When series are selected, all visuals, including MS/MS spectra, are updated to 
show all members of a series overlaid. Then patterns can easily be observed, and 
outliers determined. Tens to hundreds of series often exist, and therefore series can 
further be narrowed down easily by those containing high scores or certain 
characteristic PFAS fragments. Beyond series automatically assigned, PFAS can be 
determined in another nontargeted fashion, by selecting all features containing a 
specific fragment. In an application to a mixture of aqueous firefighting foams (AFFF), 
certain PFAS functional groups and structural characteristics could be determined, for 
example, sulfonic acid, alcohol, pentafluorosulfide, double bond, carbon-fluorine chain, 
and carboxylic acid containing species in this application. 
 
Future developments will further improve the utility of this software. For example, 
statistics could also be performed in Power BI including boxplots, tests of significance, 
ANOVA, and volcano plots. The advantage of embedding statistics here is that the 
statistical graphs and tables would update depending on the features or series the user 
selects. Furthermore, this visual platform can be expanded to other applications being 
developed, including lipids and polymers.  



 
By using FluoroMatch Visualizer as part of FluoroMatch Suite, researchers can quickly 
cross compare results in a visual manner and share reports and data online in an 
interactive fashion. This will ideally aid in transparency and community-based validation 
of results in nontargeted PFAS analysis. The nontargeted community uses various 
methodologies and lines of evidence and this harmonization of reporting an data 
sharing can improve trust and comprehension in the field of LC-HRMS/MS PFAS 
analysis.  
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