
Decoding Regioselective Reaction Mechanism of the Gentisic Acid 
Catalyzed by Gentisate 1,2-Dioxygenase Enzyme 

Non-heme iron dioxygenase proteins constitute an 

important class of O2 activating oxidative enzymes with diverse 

applications spanning biosynthesis, pharmaceuticals, and 

pollutant remediation.1-4 Gentisate 1,2-dioxygenase (GDO), a 

non-heme ring-fission dioxygenase enzyme has emerged as a 

wide-ranging effective catalyst for both intra and extradiol 

cleavage for the aerobic catabolism of the toxic and xenobiotic 

compounds.5-6 GDO enzyme-containing micro-organisms 

utilize gentisic acid (GTQ), a vital intermediate for the 

biodegradation of polyaromatic hydrocarbons (PAHs) 

pollutants, as the sole source of carbon, metabolic energy, and 

convert them into less toxic compounds. Thus, biodegradation 

techniques may offer an excellent economical avenue for the 

removal of PAHs from the environment. Additionally, GTQ is 

used as an antioxidant excipient in the formation of 

pharmaceutical compounds.7 The GDO enzyme is an unique 

enzyme that regioselectively cleaves an aromatic C-C bond in 

the GTQ substrate bearing the -OH and -COOH groups to yield 

2-oxo-4-hydroxyhepta-3,5-dienedioic acid ( maleylpyruvic 

acid) as a major product in the presence of molecular oxygen 

through an intradiol cleavage.6 This type of cleavage process is 

mostly observed for the intra-diol dioxygenases.8 Furthermore, 

2,7-dioxo-3,6-dihydroxyhepta-3,5-dienoic acid is also formed 

as a minor product from the GTQ via extradiol cleavage which 

is commonly observed for the extradiol dioxygenases.6,8  In 

contrast to other substrates (such as catechol, salicylic acid) of 

the dioxygenases experimental studies showed that the 

substrate for the GDO enzyme carries a hydroxyl group at the 

5-position of the aromatic ring which happens to be a crucial 

requirement for facilitating aromatic cleavage.9-11 Several GDO 

biomimetic model catalysts 5,12 had been prepared and 

characterized to provide crucial mechanistic insights of GDO 

catalyzed enzymatic reactions. The underlying cause 

dictating the regioselectively oxidative ring C-C bond cleavage 

of the GTQ substrate by the GDO enzyme is still not known. 

The role of binding site residues in the oxidative C-C ring 

cleavage reaction is yet to be understood. The knowledge of 

mechanistic intricacies at the atomic-level is a necessary 

requirement to develop efficient biomimetic catalysts. Recent 

theoretical studies of the different enzymatic reactions 

conjectured that active water molecule plays a pivotal role in 

enzymatic catalysis.13-15 It is also interesting to probe, if there is 

any role of water molecules in effectuating the oxidative 

catalytic process. In this present venture, wild-type GDO along 

with two mutated variants (for instance, Asp174Ala, 

Asp174Glu) have been considered to elucidate the catalyzing 

role of 174th residue at the active site of the GDO enzyme, 

whose active role has been suggested in previous experimental 

investigations.6 The present study unveils the mechanistic 

paradigms at play in this crucial enzymatic cycle and reveals 

the mechanistic origin of regioselective cleavage of the 

aromatic C-C bonds of the GTQ substrate. 
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Scheme 1. Proposed mechanisms for the oxidative aromatic C-

C bond cleavage reaction of the GTQ substrate in the active site 

of GDO enzyme. All numberings of the displayed atoms and 

nomenclatures of the stationary states and transition states used 

throughout this study. 

Computational Details  

(a) Classical Molecular Dynamics Simulations  

We have taken the initial geometry of the GTQ 

docked GDO enzyme from the protein data bank (PDB ID: 

3NL1).16 Eppinger et al. resolved the structure of GDO enzyme 

from the analysis of mutants of the salicylate 1,2-dioxygenase 

from Pseudaminobacter salicylatoxidans.6 The crystal structure 

of GDO does not contain a dioxygen molecule. To prepare the 

enzyme model system, a dioxygen is manually added to the iron 

center. Since, the crystallographic water molecules are not 

around catalytic ferrous ion, hence, they removed. Moreover, 

His119, His121, His160 residues are assigned as singly 

protonated on their ND1 atoms using Gromacs 5.1 package.17 

Atomic charges of the catalytic Fe2+ ion, dioxygen, and GTQ 

are calculated using Gaussian 09 program18 at the B3LYP/6-

31++G(d, p) (C,H,N,O), LANL2DZ(Fe) level of theory.19-22 

The classical molecular dynamics (MD) simulations were 

performed to equilibrated the GTQ bound enzyme complex. 

The OPLS-AA force field 23 was used for the protein for all 

classical MD simulations as well as hybrid quantum 

mechanics/molecular mechanics (QM/MM) calculations. The 

three model systems were prepared in this present investigation, 

such as, wild type GDO–GTQ substrate, two mutated variants 

(Asp174Ala–GTQ and Asp174Glu-GTQ). In the case of a 

mutated system, the aspartic acid (D) residue in the 174th 

position of the GDO is mutated with either alanine (A) or 

glutamic acid (E).  Then, the protein-ligand complex is solvated 

in a cubic box using TIP3P water 24 molecules with a 10 Å 

radius buffer zone of water molecules around the enzyme 

complex in each direction. After solvation, the whole protein-

ligand complex is neutralized by adding ten sodium ions. The 

long-range cut-off for nonbonded interactions is taken as 10 Å 

for all the above minimization steps, and also for all subsequent 

MD simulations. Then all the systems are minimized with 

50000 steps in steepest descent method. Then, each system is 

simulated at 300 K for 1 ns using the NVT ensemble followed 

by another 1 ns simulation using NPT ensemble. The 

temperature is fixed at 300 K with the V-rescale algorithm25 and 

Parrinello−Rahman barostat 26 is used to maintain the pressure. 

The particle mesh Ewald summation method 27 is used to 

measure electrostatic interactions. The integration step for all 

MD simulations is 1 fs. Subsequently, 50 ns of production run 

simulations are performed for all the three aforementioned 

systems using NPT ensemble. During the energy minimization 

and classical MD simulations, the coordinates of iron ligating 

ligands were kept frozen. Monitoring of root means square 

deviation (RMSD), radial distribution function, the radius of 

gyration, and trajectory analysis were performed using 

GROMACS 5.1 toolkit.17 Visual Molecular Dynamics (VMD) 

1.9.2 was used in order to analyze the trajectories and explore 

the atomic-level insights.28 
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Results and Discussion  
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The triplet 

spin state of the complex (1) is  kcal/mol higher in energy 

than the quintet state of (1) at the

 level of theory ( ). On the other hand, 

the septet spin state of (1) is  kcal/mol lower than the 

quintet spin state of complex (1). It is noteworthy to mention 
that the overestimation of the stability of septet spin 
complexes of Fe2+ compared to the lower spin species are 
often observed at the B3LYP functional due to the presence of 
high percentage of exact exchange.41 We also reckoned that 
the quintet spin state complex becomes stable than the high 
spin septet state at the BP86/

The 

barrier for TS12 on the quintet spin surface (21.4 kcal/mol) is 
lower than the septet spin surface (26.4 kcal/mol). Thus, 
subsequent steps for this reaction proceed on the quintet spin 
surface.
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Eppinger et al. mentioned that the formation of the side 
products was easily explained from the dioxetane 
intermediate.6 However, no detailed mechanistic picture was 
furnished. Intriguingly, their observation prompted us to 
further probe the fate of the dioxetane intermediate. 
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