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Abstract

Graph neural networks (GNNs) have been widely used for predicting molecular proper-
ties, especially for single molecules. However, when treating multi-component systems, GNNs
have mostly used simple data representations (concatenation, averaging, or self-attention on
features of individual components) that might fail to capture molecular interactions and po-
tentially limit prediction accuracy. In this work, we propose a GNN architecture that captures
molecular interactions in an explicit manner by combining atomic-level (local) graph convo-
lution and molecular-level (global) message passing through a molecular interaction network.
We tested the architecture (which we call SolvGNN) on a comprehensive phase equilibrium
case study that aims to predict activity coefficients for a wide range of binary and ternary mix-
tures; we built this large dataset using the COnductor-like Screening MOdel for Real Solva-
tion (COSMO-RS). We show that SolvGNN can predict composition-dependent activity coeffi-
cients with high accuracy and show that it outperforms a previously developed GNN used for
predicting infinite-dilution activity coefficients. We performed counterfactual analysis on the
SolvGNN model that allowed us to explore the impact of functional groups and composition
on equilibrium behavior. We also used the SolvGNN model for the development of a a com-
putational framework that automatically creates phase diagrams for a diverse set of complex
mixtures. All scripts needed to reproduce the results are shared as open-source code.

*Corresponding Author: victor.zavala@wisc.edu.
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1 Introduction

Predicting the physicochemical properties of molecules is crucial for applications such as prod-
uct and process design. In the past decade, machine learning (ML) techniques have been used
as data-driven approaches that help accelerate molecule screening and to reduce experimenta-
tion cost, especially when a large chemical space is involved. These models have also shown
to be versatile and to predict diverse molecular properties such as water solubility [1–3], toxic-
ity [4–6], and lipophilicity [7,8]. A fundamental step in the use of ML models is the pre-definition
or pre-calculation of molecular descriptors [9–12]; such descriptors are used as input data to de-
velop quantitative structure-property relationship models [13]. Recently, there has been grow-
ing interest in applying ML models to study more complex chemical systems that might con-
tain multiple components such as chemical reactions [14, 15], alloys [16, 17], copolymers [18, 19],
and gas/liquid mixtures [20–28]. Among the ML techniques explored, graph neural networks
(GNNs) [29, 30] have gained special popularity because they can directly incorporate molecular
representations (in the form of graphs), which enable the capturing of key structural information
while potentially avoiding the need to pre-calculate/pre-define descriptors using more advanced
but computationally-intensive tools such density functional theory (DFT) or molecular dynamics
(MD) models.

In a typical GNN architecture for prediction of molecular properties [31], the characteris-
tics of the atoms and of the bonds are propagated based on the chemical structure of a single
input molecule, followed by featuring embedding via nonlinear transformation. The embed-
ded features are then fed to fully connected layers to construct predictive models. GNNs have
achieved better performance than conventional descriptor-based approaches in various bench-
mark datasets [32, 33]. When dealing with multiple components, several approaches have been
devised; a typical way to encode multi-molecule information is to simply average or concatenate
the features of individual molecules and to use these as system-level features for property infer-
ence with fully connected or attentive layers [14, 15, 19]. Previous studies have also incorporated
weighted sums or concatenation to take into account composition information when needed [19].
However, these approaches do not capture molecular interactions in an explicit manner, which
may limit the predictive power of GNNs for systems in which intermolecular interactions play an
important role.

In this work, we present a GNN architecture that explicitly incorporates molecular interac-
tions via the combination of atomic-level (local) graph convolution and molecular-level (global)
message passing for property prediction of multi-component chemical systems. To connect local
features with global features, we construct a molecular interaction network as an intermediate
step. The molecular interaction network is a complete graph in which each node represents a
molecule and each edge represents a hypothetical intermolecular interaction (e.g., hydrogen bond-
ing). This representation serves as a physics-informed topological prior that aid feature extraction
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from multi-component systems. The composition information is also encoded in the architecture
as node-weights for the molecular interaction network. We hypothesize that, with this type of data
representation and feature propagation guided by physical intuition, the proposed architecture
may better model mixture properties while taking composition information into consideration.

We evaluate the proposed GNN architecture through a comprehensive case study on miscibil-
ity calculations for multi-component systems. We choose activity coefficients as the target thermo-
dynamic property of interest, which measures the deviation of a liquid mixture from ideal solution
behavior. Activity coefficients are one of the fundamental properties of a mixture and therefore
can lead to the derivation of equilibrium conditions (e.g., phase diagrams), which are important in
physical chemistry and engineering for understanding and optimizing chemical separations [34].
Previous studies have developed ML-based methods to predict infinite-dilution activity coeffi-
cients for binary mixtures, including matrix completion on the activity coefficient matrix [27, 35]
and multilayer perceptrons on the system descriptors [36]. However, these methods did not ac-
count for molecular structural information directly, and the latter is limited to systems of water
in ionic liquids. A more recent study by Medina et. al. [28] used GNN models to tackle this
problem; this approach, however, used a data representation that involves a simple concatenation
of individual graph features after local embedding (i.e., the GNN architecture does not explic-
itly captures intermolecular interactions). Furthermore, all these previous studies have focused
on predicting infinite-dilution coefficients, which do not take into consideration composition in-
formation (this limits their use in more sophisticated thermodynamic predictions such as phase
diagrams). To the best of our knowledge, GNNs have not been explored as a method to pre-
dict composition-dependent activity coefficients nor have they been extended to predict activity
coefficients for systems with more than two components. The proposed GNN architecture is gen-
eralizable to multiple component systems and captures composition.

Through our case study, we demonstrate that the proposed GNN (which we call SolvGNN)
outperforms prior architectures (that lack an explicit graph representation of molecular interac-
tions) in terms of prediction accuracy. Our study leverages a large dataset that was developed
using the COnductor-like Screening MOdel for Real Solvation (COSMO-RS). SolvGNN also en-
ables better modeling of mixture compositions due to the incorporation of global message pass-
ing on the molecular interaction network with hydrogen bonding information. We also show that
SolvGNN can be applied to both binary and ternary liquid-phase mixtures to predict composition-
dependent activity coefficients. To interpret our SolvGNN predictions, we perform counterfactual
analysis [37] to identify the impact of functional groups on activity coefficients. To demonstrate
the applicability of SolvGNN, we developed a framework that can automatically generate phase
diagrams (P-x-y) for complex binary and ternary mixtures. The generated phase diagrams can be
used to study solvent miscibility and to help identify azeotrope compositions to guide the design
of targeted mixtures and chemical separations. We share scripts and datasets as open-source code
to enable the reproduction of the results and to conduct benchmarks.
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2 Materials and Methods

2.1 Data Set Summary

We assembled a list of 700 common solvents [38], covering a wide spectrum of small molecules
such as water, alcohols, esters, and ethers. We then used random sampling over the solvent space
to generate 40,000 binary mixtures and 40,000 ternary mixtures. For each binary mixture, we
explored five molar composition ratios–10%/90%, 30%/70%, 50%/50%, 70%/30%, 90%/10%; for
each ternary mixture, we explored four molar composition ratios–15%/15%/70%, 15%/70%/15%,
70%/15%/15%, and 33.3%/33.3%/33.4%. Overall, we assembled a large database with 200,000
entries for binary mixtures and 160,000 entries for ternary mixtures.

To visualize the coverage of the chemical space, the solvents were grouped into 22 categories
based on a predefined list of functional groups (details are provided in the SI). The visualization
is provided in Figure 1a. The sampled binary mixtures are represented by connections between
nodes. The number of solvents in each category and the number of sampled pairs are reflected
by node size and edge thickness; this illustrates that our random mixture sampling covers a wide
range of solvent pairs in different categories. We also visualized the chemical space of the sol-
vents by performing a t-distributed stochastic neighbor embedding (t-SNE) [39] dimensionality
reduction technique on the Morgan fingerprints [9], also known as extended connectivity finger-
prints [10] in Figure 1b. The 2D map from t-SNE shows separation between some solvent cate-
gories, such as nitriles and aromatics. However, because some solvents contain more than one
identifiable functional group, they may potentially be grouped into another category. As a result,
the clustering in a few other categories is less clear, but in general the scattered distribution here
suggests the inclusion of diverse and complex chemical structures.

We categorized the sampled binary and ternary mixtures based on whether each component in
the mixture is polar or nonpolar, as summarized in Table 1. We computed the percentage of each
mixture type; this information was used for stratified sampling, which creates training/validation
folds by preserving the percentage of samples for each mixture type (this ensure that the model
learns different types of molecular interactions). Overall, most mixtures contain at least one po-
lar component, indicating the presence of strong intermolecular interactions (e.g., , dipole-dipole
forces).

2.2 Activity Coefficient Calculations

To overcome the challenge of limited experimental data availability, we used the COnductor-like
Screening MOdel for Real Solvation (COSMO-RS) to generate ground-truth labels for supervised
ML. COSMO-RS calculations are based on surface charge densities (σ-profiles) of mixture compo-
nents, which are obtained from DFT calculations coupled with the COSMO continuum solvation
model [40], and it can be used to calculate the activity coefficients for any mixture as long as the
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Figure 1: Dataset visualization. (a) Solvent categories based on the primary functional group of
individual solvents with examples. The size of a node reflects the number of solvents in that cat-
egory, and the thickness of an edge reflects the number of sampled pairs between two categories.
(b) 2D map obtained by t-SNE dimensionality reduction [39] applied to molecular fingerprints.

Table 1: Mixture types based on polarity of individual components.

Mixture Type Count Percentage

Binary

(200,000)

polar-polar (p-p) 116,105 58%

polar-nonpolar (p-n) 72,795 36%

nonpolar-nonpolar (n-n) 11,100 6%

Ternary

(160,000)

polar-polar-polar (p-p-p) 71,136 45%

polar-polar-nonpolar (p-p-n) 66,040 41%

polar-nonpolar-nonpolar (p-n-n) 20,848 13%

nonpolar-nonpolar-nonpolar (n-n-n) 1,976 1%

chemical structures are provided and optimized. For each solvent mixture, we obtained activity
coefficients γi for individual components i from COSMO-RS and constructed large and structured
data sets for model training and evaluation.

COSMOtherm [41] (version 2019), a software that implements COSMO-RS, was used to obtain
composition-dependent activity coefficients for the individual components of each sampled mix-
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ture. Prior to COSMO-RS calculations, chemical structures were generated from CirPy (version
1.0.2), a Python library that serves as the interface for the Chemical Identifier Resolver (CIR) [42];
this searches the National Institutes of Health (NIH) database for the chemical structures and pro-
vides the optimized coordinates for the atoms. We next conducted DFT calculations using TUR-
BOMOLE [43] (version 7.5) at the BP-TZVP theory level with the Becke-Perdew (BP) functional
and the resolution of identity approximation under ideal screening condition (ϵ∞, COSMO con-
tinuum solvation model). A single-point calculation was then conducted with the def2-TZVPD
basis set and fine cavity parameter to create the σ-profiles. Activity coefficients were then calcu-
lated given the σ-profiles of individual components, the mixture compositions in the liquid phase,
and temperature (298K).

2.3 GNN Model Architecture

As shown in Figure 2, each input mixture is represented as molecular graphs G = (V,E,H) of
individual components with nodes v ∈ V , edges e ∈ E, and node feature matrix

H =


— hTv1 —
— hTv2 —

...

 (1)

that encodes atom and bond information such as atom types and degrees [44]. A local graph
convolution [45] was applied to each of the input molecular graphs, and the node features were
updated through

H(t+1) = ReLU
(
D̃− 1

2 ÃD̃− 1
2H(t)W (t)

)
. (2)

Here, Ã is the adjacency matrix of graph G with self-loops, D̃ =
∑

j Ãij is the degree matrix and
W (t) is the learnable weight matrix at time step t. D̃− 1

2 ÃD̃− 1
2 is derived from normalized graph

Laplacian that accounts for graph topology and implicitly imitates molecular interactions. The
W (t) values are kept the same for each component in the mixture. After local graph convolution,
node-level features are averaged to generate the graph-level feature uG = 1

|V |
∑

v hv.

We compared several approaches to capture molecular interactions. The first approach is il-
lustrated in Figure 2a and referred to as SolvCAT. In this approach, uG ’s undergo a composition
x-weighted concatenation to form a fixed-length latent feature vector. For a ternary system, for ex-
ample, umix = x1uG1 |x2uG2 |x3uG3 . The system-level feature vector is then sent to fully connected
neural network layers for activity coefficient predictions. The second approach is illustrated in
Figure 2b and referred to as SolvGCN. In this approach, a molecular interaction network was
constructed to explicitly simulate molecular interactions between the components in a system.
The molecular interaction network Gint = (Vmol, Eint, Hmol) is a complete graph where each node
vmol ∈ Vmol denotes a molecule, each edge eint ∈ Eint denotes the existence of certain intermolec-

6

http://zavalab.engr.wisc.edu


http://zavalab.engr.wisc.edu

ular interaction, and molecular-level node feature matrix:

Hmol =


— hTvmol1

= x1u
T
G1

—
— hTvmol2

= x2u
T
G2

—
...

 . (3)

A global graph convolution is applied using the same updating rules as Eq.2; in this case, umix is
obtained by concatenating the latent node features hmol’s after global graph convolution.

The third approach is illustrated in Figure 2c and referred to as SolvGNN. Building on SolvGCN,
for this approach we developed a more informative representation of the molecular interaction
network; we encoded hydrogen-bond (H-bond) information, one of the strongest form of dipole-
dipole interactions, as the edge feature. For a ternary system, this feature is formulated as:

eint(vmoli
vmolj

)
= min(#H-bond acceptorvmoli

,#H-bond donorvmolj
) (4)

where H-bond information between like molecules (i = j) and unlike molecules (i ̸= j) are both
captured. In this case, the global graph convolution integrates edge features and is achieved via
message passing [30] expressed by

m(t+1)
vmol

=
∑

vmoli
∈N(vmol)

Mt(h
(t)
vmol

, h(t)vmoli
, eint(vmolvmoli

)
) (5)

and
h(t+1)
vmol

= Ut(h
(t)
vmol

,m(t+1)
vmol

), (6)

Here, we used the original message passing formulation [30], where the message function Mt is a
fully-connected edge network to compute a message matrix based on graph topology as well as
edge features, and the node update function Ut is a gated recurrent unit (GRU) [46] to aggregate
”message” and the original node feature, which can be viewed as a generalization of the plain
GCN.

In all three cases mentioned above, the embedded features after ”intermolecular interactions”
are flattened and sent to the fully connected readout layers for the final activity coefficient (γi)
prediction.

2.4 GNN Training and Hyperparameter Tuning

SMILES strings were used as molecule identifiers and processed by RDKit (version 2019.03.2) [47]
to generate molecular graphs. The GNN models were constructed using PyTorch (version 1.2.0)
[48] and Deep Graph Library (version 0.4.3) [49]. The major hyperparameters we varied include
the number of graph convolution layers (1,2), the number of fully connected readout layers (1,2,3),
the number of hidden neurons (128,256), and the learning rate (0.0005,0.001). The model was
trained with the average mean-squared-error (MSE) loss for the ln γi values, the Adam optimizer, a
learning rate of 0.001, and a batch size of 100 for 100 epochs. We performed 5-fold cross-validation
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Figure 2: GNN architectures studied. All three GNN architectures undergo the same graph convo-
lution for feature embedding of individual components at a local level. They differ in their way of
capturing intermolecular interactions. SolvCAT (a) conducts a simple weighted concatenation of
the locally embedded features; SolvGCN (b) constructs an intermediate molecular interaction net-
work followed by global convolution without explicit edge information; SolvGNN (c) explicitly
incorporates H-bond information as the edge feature in the interaction network, which undergoes
global message passing for ”intermolecular”-level feature embedding. In each case, the globally
embedded features are flattened and used for activity coefficient (γi) predictions through fully
connected readout layers. Images at the bottom illustrate screening charge densities computed
from COSMO-RS and representative interactions.

(CV) with stratified random sampling for hyperparameter tuning and model evaluation. Stratifi-
cation is based on the type of mixture (e.g., polar-polar or polar-nonpolar). All evaluation metrics
are computed using the compilation of the validation data in each fold to obtain a realistic estima-
tion of the model performance. More implementation details can be found in the SI.
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Because the data sets contain a large number of binary or ternary mixtures at different compo-
sitions, it is computationally expensive to generate the corresponding molecular graphs for every
training/validation instance. As a result, we designed our data loading and model training al-
gorithm to lower the training time. Upon data set initiation, we generated and stored all 700
molecular graphs at once in a dictionary format. When a training/validation instance was passed
to the algorithm, the molecular graphs were obtained from the dictionary using the index and
only require simple manipulation (e.g., calculation for intermolecular H-bond) to form the desired
mixture data. Doing so largely reduced redundant calculations and saved time (from days to a
couple of hours).

2.5 Counterfactual Analysis

To interpret the trained model, we adapted the counterfactual framework proposed in [37] to un-
derstand which chemical structures and functional groups lead to certain activity coefficient pre-
dictions. Here, we generated two types of counterfactuals for our dataset. Counterfactual Type I
(Eq.7) focused on searching for mixture samples with minimal input differences but maximal out-
put deviations from a base mixture. Counterfactual Type II (Eq.8) focused on the mixture samples
with the maximal input differences and minimal output deviations. The distance between mix-
tures d(mixture,mixture′) was obtained via the mean Tanimoto similarity [50] of the pair, and
the difference between predicted activity coefficient predictions was computed with the MAE of
the ln γi values using the trained SolvGNN denoted as f̂ . The parameter λ is a trade-off param-
eter that controls the relative importance of mixture (input) similarity and prediction (outcome)
difference. The parameter λ was set to 0.9 to generate Type I counterfactuals with a similarity
value of at least 0.6. The search space was limited to the 700 solvents in our data set to keep the
computational cost tractable, especially for Type II counterfactuals.

2.6 Phase Diagram Calculations

For an illustration of real-world applications, we set up a computational framework that can in-
take the chemical structures from diverse binary or ternary mixtures and make activity coeffi-
cient predictions with uncertainties by averaging the predicted values from individually trained
SolvGNNs in each CV fold. P-x-y phase diagrams were then generated from the predicted activity
coefficients γi using modified Raoult’s Law P =

∑
i yiP =

∑
i xiγiP

sat
i . The saturation pressure

P sat
i for each component was obtained using the Antoine Equation log10 P

sat
i = Ai− Bi

Ci+T with co-
efficients collected from the National Institute of Standards and Technology (NIST) via web scrap-
ing [51]. We sampled the liquid-phase compositions xi and calculated the equilibrium pressures P
with the specified compositions at 298 K. For ternary systems, we computed phase diagrams fol-
lowing the same method for the binary systems by sampling the mixture compositions followed
by equilibrium pressure calculations. The isobaric liquid-liquid-equilibrium (LLE) lines were then
obtained by filtering the sampled points around a selected equilibrium pressure.
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max
mixture′

d(mixture,mixture′) + λ(MAE(f̂(mixture), f̂(mixture′))) (7)

and
min

mixture′
d(mixture,mixture′) + λ(MAE(f̂(mixture), f̂(mixture′))) (8)

3 Results and Discussion

3.1 Model Performance on Binary Mixtures

We compared the three GNN architectures (SolvCAT, SolvGCN, and SolvGNN) introduced in the
previous section in terms of their ability to predict the composition-dependent activity coefficients.
SolvCAT takes the weighted concatenation of embedded features after local graph convolutions
on individual components; SolvGCN constructs a complete interaction network after local convo-
lution without any assumptions on the edge weights for another layer of graph convolution at the
global level. SolvGNN takes this SolvGCN one step further by introducing H-bond information
as an example prior knowledge on intermolecular interactions for further message passing. The
performance of the three GNN architectures was evaluated on the binary mixture data set by the
cumulative frequency plot, as shown in Figure 3a. In the cumulative frequency plot, the absolute
errors of the natural logarithms of the activity coefficients, ln γ1 and ln γ2, (between true and pre-
dicted values from CV) for each data point were first averaged, and the cumulative frequencies
for the averaged error values were then plotted in the ascending order. Among the three GNN
architectures, SolvGNN exhibits the best performance; specifically, it shows that almost 96% of the
data points are predicted with an error of less than 0.1. SolvCAT performs slightly worse, with
88% of the data points falling within the 0.1 error range. SolvGCN shows the worst performance,
with only 46% of the data points are predicted with an error less than 0.1. These observations are
also supported by the mean absolute errors (MAEs), which are 0.03, 0.05, and 0.20 for SolvGNN,
SolvCAT, and SolvGCN (respectively).

The above results indicate that the inclusion of the global interaction network with H-bond
information in SolvGNN provides an effective method for improving the prediction accuracy for
activity coefficients. However, when H-bond information is excluded, the pure global graph con-
volution worsens the model performance, possibly due to the unbiased ”averaging” without any
physics-informed resemblance to intermolecular interactions. On the other hand, SolvCAT, de-
spite the lack of explicit global graph convolution that depicts intermolecular interactions, still
exhibits satisfactory predictive power. This is consistent with an earlier study [19], which has
found that aggregation over composition-weighted latent features provides an effective approach
to handle information of mixture composition.

Figure 3b and 3c show individual parity plots from SolvGNN for ln γ1 and ln γ2. All the predic-
tions shown are from the validation process yet still exhibit high accuracy, with average ln γi MAE
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being 0.03 and average ln γi RMSE being 0.08. The data points are colored by the mixture type de-
fined earlier. In general, the values of ln γ for nonpolar-nonpolar interactions are close to 0 (ideal
behavior) and have smaller MAE, while the values of ln γ for mixtures with polar components
spread across the entire data range and have larger MAE. With respect to composition, mixtures
that are rich in one of the components (10%/90%) exhibit a higher MAE (∼0.04), whereas the mix-
tures with equimolar components exhibit a lower MAE (∼0.025). We also identified a couple of
outliers in the plots; these mixtures contain amines with hydrogen-bonding solutes or solvents.
The extreme ln γ values of these mixtures can be the result of limitations of COSMO-RS, which has
been specifically noted to incorrectly simulate the interactions of secondary and tertiary amines
when hydrogen-bond donors or acceptors are present in the system [52].

Figure 3: Model comparison and parity plots for binary and ternary mixtures. (a) Cumulative
frequency plots for the average ln γi errors for binary (black) and ternary (red) mixtures to compare
SolvCAT, SolvGCN, and SolvGNN. Additionally, the parity plots for individual ln γi’s between
the true (COSMO-RS) and predicted (SolvGNN) values from CV are displayed for binary (b-c)
and ternary (d-f) mixtures. The points are colored by the type of mixtures defined in Table 1 based
on polarity.

Besides the regular CV using stratified sampling that relies on the type of mixture, we also
tested the robustness of the SolvGNN using an alternative CV method. Here, for each CV fold, we
trained the model on only two of the three mixture types (polar-polar, polar-nonpolar, or nonpolar-
nonpolar; see Table1) and validated the rest. Results have shown that, although the model could
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achieve similar training losses (MAE=0.04) to the regular CV (MAE=0.03), the validation accu-
racy was reduced accordingly. For the case where we trained the model with polar-polar and
polar-nonpolar mixtures (94% of the data set) while validating on nonpolar-nonpolar mixtures, the
model demonstrated suitable transferability by comparable validation losses (MAE=0.04). How-
ever, when we trained the model on only polar-polar and nonpolar-nonpolar samples (64%) while
validating on polar-nonpolar samples, validation MAE increased by 0.09, which indicates the dis-
tinct nature of polar-nonpolar interactions and suggests that it is non-trivial and therefore cannot
be omitted during model training. Additionally, we examined the condition when the model was
trained on only polar-nonpolar and nonpolar-nonpolar mixtures (42%) and validated on polar-
polar mixtures. The convergence plot (included in the SI) indicates over-training with high val-
idation losses; such behavior was expected because the training size is less than half of the data
set, and the majority of the training samples lack H-bond acceptors or donors, which are present
in most of the validation set. This result again suggests that polar-polar and polar-nonpolar mix-
tures, despite possessing strong intermolecular interactions such as H-bonding in both cases, are
intrinsically different and therefore are both required in the training process. These results are in
general agreement with chemical intuition.

3.2 Scale up to Ternary Mixtures

We next scaled up the proposed SolvGNN architecture to ternary mixtures. As shown in Figure 3a
(red), the cumulative frequency of the average ln γ errors demonstrates similar trends as in binary
mixtures. SolvGNN provides the best model performance, followed by SolvCAT and SolvGCN.
Here, we observed that the gaps between the curves appear wider, suggesting a more significant
advantage of SolvGNN over SolvCAT and SolvGCN. For SolvGNN, more than 93% of the data
points were predicted with an error less than 0.1. SolvCAT was the second-most accurate model,
with around 80% of the data points falling within the 0.1 error range, showing a more notable per-
formance drop (13%) than the results for binary mixtures (8%). SolvGCN continues to exhibit the
worst performance, and only around 30% of the data points are predicted with an error less than
0.1. These observations are supported by MAE values, which are 0.04, 0.07, and 0.27 for SolvGNN,
SolvCAT, and SolvGCN.

For SolvGNN, comparable model accuracy was obtained even though the number of train-
ing/validation samples was reduced compared to the binary mixture data set, as shown in Figure
3d-f. The CV R2, MAE, and RMSE are similar to the results from binary systems, with correspond-
ing values around 0.99, 0.04, and 0.08. When breaking down the predicted values based on the
mixture type, we found that samples containing only nonpolar components tend to have smaller
errors and systems containing only polar components have larger errors. Mixtures with both po-
lar and non-polar components have MAEs and RMSEs lying somewhere in between the extremes.
When grouping by composition, mixtures that are rich in one of the components tend to have
higher prediction errors than equimolar mixtures. This observation is consistent with previous
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model performance on binary mixtures and could be caused by the fact that the majority of the
training data are not equimolar systems.

Overall, SolvGNN exhibited satisfactory performance in making predictions for activity coef-
ficients of binary and ternary systems, given the advantage of explicitly including H-bond infor-
mation (as a representative and primary intermolecule force) via global message passing on the
molecular interaction network. To the best of our knowledge, this is the first time that such a GNN
architecture is used to make predictions for general activity coefficients that depend on compo-
sition (compared to infinite-dilution activity coefficients) and for ternary systems (compared to
binary systems).

3.3 Comparison to Previous GNN for Infinite-Dilution Activity Coefficients

To compare SolvGNN with a recently developed GNN for infinite dilution activity coefficient
(ln γ∞) prediction by Medina et al. [28], we conducted a benchmark of our model on the same
experimental data set used in their study, which contains 2,810 binary mixtures (with specific
solute/solvent assignment) and values of ln γ∞ for the solute. Because infinite-dilution activity
coefficients do not rely on composition, we removed the composition information xi, but kept the
same interaction network and the H-bond method. To conduct a fair comparison, we applied the
same training / validation / testing method described in their research [28] through ensemble
learning (bagging), which splits the training/validation data randomly 30 times and averages the
predictions. We also used the same batch size (32) and epoch number (200), and calculated the
evaluation metrics on the unscaled γ∞ values. The results are summarized in Table 2 for a com-
parison of the test data. We observed that the performance of SolvGNN (without composition) is
better than the previous GNN model [28] for ln γ∞ prediction. The proposed SolvGNN shows im-
provements in all metrics used to evaluate the model in the original paper, including a significant
decrease in the mean absolute percent error (MAPE) by 44%.

Table 2: Simplified SolvGNN without composition xi for prediction of infinite dilution activity
coefficients (ln γ∞) and a comparison with the previously developed GNN [28] on the test data.

Model MAE SDEP MSE RMSE MAPE R2

Previous GNN [28] 3.91 26.73 729.69 27.01 22.66 0.82

SolvGNN w/o xi 3.73 21.25 465.66 21.58 12.72 0.87

% difference -5% -21% -36% -20% -44% +6%

In general, our results provide evidence that the simplified version of SolvGNN (without com-
position information) can be used to predict infinite-dilution activity coefficients in a satisfactory
manner, thus illustrating that the architecture is versatile. Comparison of the evaluation metrics
indicates that there is a benefit in including intermolecular interactions in the GNN architecture.
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These results also provide evidence that the SolvGNN architecture can be used to learn not only
from simulation data (e.g., COSMO-RS) but also from experimental data. To further confirm com-
parable performance on both COSMO-RS and experimental data, we also generated ln γ∞ (on our
binary data set) using COSMO-RS and trained the simplified SolvGNN. The results are summa-
rized in the SI and again demonstrate accurate predictions.

3.4 Counterfactual Analysis

We derived counterfactuals [37] as a way to provide some interpretability to SolvGNN predic-
tions. Here, we investigated two types of counterfactuals: mixtures with the highest similarity
yet the most different predictions (Type I), and mixtures with the lowest similarity yet the most
similar predictions (Type II). As illustrated in Figure 4, we started with a base mixture (50% ben-
zene and 50% toluene) that exhibits nearly ideal behavior (γi = 1 for both components). Since
input chemical ratios are also a contributing factor to activity coefficients, we first identified the
composition with the same two molecular species that leads to the farthest deviation in activity co-
efficients, as illustrated by Counterfactual 1. We found that increasing the composition in toluene
to the extreme has the most significant impact on activity coefficients, although the deviation from
ideal behavior is still small. Next, we fixed one of the components and varied the other to find the
mixture with the highest structural resemblance yet the most dissimilar activity coefficients, illus-
trated by Counterfactual 2 and Counterfactual 3. When fixing benzene, Counterfactual 2 shows
that replacing the methyl group with a hydroxyl group, coupled with a change in composition,
largely influences activity coefficients. This can be explained by the fact that removing the methyl
group converts one of the components from nonpolar to polar, thus resulting in strong deviations
from ideal behavior. Counterfactual 3 shows a similar tendency. When fixing toluene, the other
component in the counterfactual tends to converge to a more polar chemical, such as pyridine
which converts one of the carbons on the benzene ring to nitrogen.

On the other hand, Type II counterfactuals also reveal interesting trends to identify mixtures
with dissimilar chemical structures but similar γi’s. When fixing one of the components, counter-
factuals 4 and 5 both acquire an alternative component that is highly symmetric, such as divinyl
sulfide and diethyl disulfide. In both cases, one of the nonpolar components is replaced by a
polar molecule as the result of the effort to minimize similarity, but the mixtures exhibit near-
ideal behavior because the nonpolar content dominates as reflected by the activity coefficients
and the compositions. Lastly, when we relaxed the constraint and allowed both components to
vary, counterfactual 6 picks out the mixture from the data set that shows two polar components
with near-ideal behavior.

In general, the counterfactual analysis has shown coherent physical insights regarding how
compositions and structural features may lead to variations in activity coefficient, and these find-
ings in turn agree with our chemical understanding of mixture behavior. Such interpretation,
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especially Type II counterfactuals, can be used to apply SolvGNN to procedures such as the selec-
tion of a candidate good solvent for a desired solute. For example, counterfactuals could be used
to identify an antisolvent given a known good solvent for a specific polymer for polymer recycling
applications [53, 54]. The antisolvent is expected to be miscible with the solvent while immiscible
with the polymer, and therefore counterfactual Type I may be identified as the candidate antisol-
vent.

Figure 4: Counterfactual analysis. Type I (red) shows mixtures with the most similar structures
but the most different activity coefficients from the base mixture whereas Type II (green) shows
the opposite. The corresponding solvents are labeled on the 2D t-SNE map introduced in Figure 1
to help illustrate similarity.

3.5 From Activity Coefficients to Phase Diagrams

Although activity coefficients suggest the miscibility of different components in a mixture, they
are not a direct measurement of equilibrium behavior (which might exhibit complex behavior such
as the presence of azeotropes). Therefore, we further developed a framework to generate phase
diagrams directly from chemical structures using the trained SolvGNN. These results aim to show
the potential use of SolvGNN in industrially-relevant applications or experimental studies (e.g.,
miscibility or separation of target components). The framework uniformly samples the composi-
tions of the input mixtures and predicts the corresponding activity coefficients using SolvGNN,
which are then used for calculating equilibrium bubble and dew pressures via modified Raoult’s
Law. Figure 5 showcases several phase diagrams generated from the framework for both binary
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and ternary mixtures. We would like to point out that most of the shown mixtures (all except for
water-methanol) are not in our training or validation data, so they can be viewed as additional test
instances, in spite of the fact that they are commonly used as mixture examples with contrasting
equilibrium behavior.

Figure 5: Example phase diagrams generated from SolvGNN. (a-c) P-x-y diagrams of three binary
mixtures, each representing a different type of mixture (polar-polar, nonpolar-nonpolar, and polar-
nonpolar). The equilibrium pressure is computed with the modified Raoult’s Law that uses the
predicted activity coefficients from SolvGNN. The phase diagrams are compared with those gen-
erated from two other state-of-the-art tools, including COSMOtherm that implements COSMO-
RS [52] and Aspen Plus that implements UNIFAC [55] (as well as other activity models [56–60]).
The vapor compositions are represented as circles and liquid compositions are represented as
squares. The phase diagram for an example ternary mixture (e) is calculated in the similar way
to indicate isobaric curves for liquid-liquid equilibrium. Here, Aspen Plus (UNIFAC) fails to con-
verge and therefore only COSMOtherm is used for comparison. Additionally, (d) displays the es-
timated activity coefficients for individual components at different x1 and x2 compositions while
fixing x3 = 0.2 from SolvGNN and COSMOtherm. In all of phase diagram calculations, the ln γi’s
are obtained by averaging the predictions of SolvGNN trained from each CV fold, and the stan-
dard deviations are visualized as the error bars.
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Figure 5a-c includes representative examples of polar-polar, nonpolar-nonpolar, and polar-
nonpolar binary mixtures. At 298K, a water-methanol mixture deviates positively from ideal so-
lution behavior and shows higher equilibrium bubble pressure as a result of unfavorable unlike-
molecule interactions. By contrast, a benzene-toluene mixture exhibits near-ideal behavior, as
indicated by a bubble line that is almost linear, which suggests a homogeneous solution where
molecular interactions between like and unlike components are viewed the same. Additionally,
we showcase a cyclohexane-ethanol mixture that forms an azeotrope, which was successfully
identified by SolvGNN, and the predicted azeotrope composition (xcyclohexane ∼ 0.65) is consis-
tent with the estimates from COSMOtherm and Aspen Plus. In all three cases, the predicted phase
diagrams obtained by SolvGNN are consistent with the phase diagrams generated using COS-
MOtherm (COSMO-RS) or Aspen Plus (UNIFAC), and the MAE values in the equilibrium pres-
sure range from 0.002 to 0.005 bar. We also observed that, compared to Aspen Plus (UNIFAC),
SolvGNN tends to underestimate equilibrium pressure values, whereas COSMOtherm tends to
overestimate these values.

Figure 5d demonstrates conditions for liquid-liquid equilibrium (LLE) for a ternary mixture
of water-acetone-methyl isobutyl ketone (MIBK). Similar to the phase diagram calculations for bi-
nary systems, we sampled different liquid compositions and calculated the equilibrium pressures
using modified Raoult’s Law. The conventional way to report phase equilibrium for ternary sys-
tems is by specifying a temperature and pressure and solving for the equilibrium compositions.
However, we instead computed the equilibrium pressure from sampled compositions to match
the procedure used in the binary phase diagrams. For visual clarity, we picked three pressures
and showed the corresponding liquid compositions on each isobaric curve. The generated phase
diagram was again compared with the one generated by COSMOtherm; in general, the shapes of
the curves match, yet the LLE points from SolvGNN appear above the LLE points from COSMOth-
erm, suggesting that SolvGNN tends to converge to a lower pressure value than COSMOtherm.
Upon inspecting the activity coefficients at xMIBK = 0.2, we found that, although the activity co-
efficients were trained only on four compositions, SolvGNN was able to make relatively accurate
predictions for compositions in a continuous space, with a few exceptions at the extreme points.
For example, when xwater is close to 0, the corresponding ln γwater deviates from that of COSMO-
RS. This could be a result of the lack of extreme points in the training samples, since we only sam-
pled compositions within 15% and 70%. A similar pattern is present at xwater = 0.8(xacetone = 0)
for ln γacetone (dark gray). Nevertheless, these extreme points are multiplied by the corresponding
liquid compositions (likely zero) in modified Raoult’s Law, thus the effect of such errors is mini-
mal in phase equilibrium calculations.

In summary, we were able to create phase diagrams (at 298K) with a full range of compositions
using SolvGNN that was only trained on a few sampled input ratios. The provided framework has
shown great potential for high-throughput screening of mixtures for use cases including azeotrope
identification and non-ideal behavior investigation for liquid mixtures. Incorporating SolvGNN

17

http://zavalab.engr.wisc.edu


http://zavalab.engr.wisc.edu

into such phase equilibrium calculations bypasses the need to identify functional groups with
human expertise and obtain interaction parameters (as needed in UNIFAC) or to conduct DFT
calculations (as needed in COSMO-RS), especially when the chemicals in a mixture are relatively
uncommon. Moreover, this framework could be used in conjunction with open-source process
models (e.g., BioSteam [61]) as an addition to the existing computational models (e.g., UNIFAC)
for generating thermodynamic data.

4 Conclusions and Future Outlook

We developed a GNN architecture (SolvGNN) that incorporates both local (intramolecular) and
global (intermolecular) convolutions on graph representations and used this for predicting ac-
tivity coefficients of solvent mixtures. SolvGNN explicitly integrates intermolecular interactions
through the construction of the molecular interaction network that encodes H-bonding informa-
tion. We found that with such feature embedding, SolvGNN can successfully estimate the general
activity coefficients that vary with chemical compositions for binary as well as ternary mixtures,
which has not been explored much under the hood of ML, especially in the context of activity
coefficients.

Compared to the current state-of-the-art approach for general activity coefficient estimations
(e.g., UNIFAC and COSMO-RS), SolvGNN achieves comparable model performance and is easy
to use without any additional calculations for missing parameters or DFT. We also benchmarked
SolvGNN on the same experimental dataset that was used in an earlier study for developing a
GNN that predicts infinite-dilution activity coefficients (with no composition dependence) of bi-
nary mixtures [28]; SolvGNN (without composition information) outperforms the previously de-
veloped GNN in almost all evaluation metrics, proving the importance to use prior knowledge (in
this case explicit topological prior pertinent to intermolecular interactions) when designing GNN
architectures. These findings demonstrate the ability of SolvGNN to learn from simulation (e.g.,
COSMO-RS) and experimental data.

Moreover, we provided an open-source computational tool for creating phase diagrams (P-x-
y) using SolvGNN as an example to show its potential for real-world applications. The generated
phase diagrams were consistent with those obtained from COSMOtherm and Aspen Plus (with
the selection of UNIFAC as the thermodynamic method), which further illustrated the generaliza-
tion ability of SolvGNN that was only trained on a minimal subset of composition cases. Besides
phase diagrams, we provided algorithms to obtain counterfactuals to aid model interpretation,
which may help extract physical insights that are less known and help design solvent mixtures.

The architecture and study can be expanded in a number of ways. For example, so far we
have only obtained activity coefficients at room temperature, and thus SolvGNN does not have
temperature dependence. However, obtaining temperature-dependent activity coefficients from
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COSMO-RS and re-training SolvGNN with an additional temperature variable would be a rel-
atively trivial, given that the computational framework is in place. Another limitation for phase
equilibrium predictions is related to the availability of Antoine coefficients; in circumstances where
Antoine coefficients are missing, we cannot compute the corresponding phase diagrams. A poten-
tial solution could be to develop another GNN architecture for Antoine coefficient predictions or
expand the output dimension of our current SolvGNN to make these predictions. Furthermore,
the presented counterfactual analysis only searches the chemical space within the data set, and
therefore to obtain more meaningful results, we will adapt some of the more established chemical
search algorithms [37, 62] that have been designed for single chemicals to the case of mixtures.
Future studies will also explore the use of SolvGNN for other mixture properties and investigate
different possible representations of intermolecular interactions (e.g., Lennard-Jones potentials).
We are also interested in using these types of architectures to design solvents that can selectively
solubilize target molecules.
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