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Abstract：Protein cysteine residues have unique reactivity due to the low redox potential of 
its thiol side chain. Protein S-sulfenylation (protein sulfenic acid), as one of the most 
significant oxidative post-translational modifications (OxiPTMs), plays a vital role in 
regulating protein function. Due to the transient presence of sulfenic acid in living cell, many 
detecting methods have been limited. Activity-based probes provide powerful tools to 
elucidate this process, so their discovery has been at the forefront of redox biology. In this 
study, two caged cysteine sulfenic acid probes DYn-2-ONB, DYn-2-Cou with either an 
o-nitrobenzyl or coumarin protecting group were developed. Both probes can be efficiently 
uncaged via irradiation to produce the active C-nucleophile probe DYn-2. Labeling assay in 
living cells demonstrated DYn-2-ONB exhibited better labeling capacity compared with DYn-2, 
providing it as a powerful tool to detect protein S-sulfenylation in spatio-temporally 
controllable manner.  

  



Cysteine residues play a vital role in maintaining the function of many proteins since they are 
catalytic residues for many enzymes including transferase (desulfurase) [1], hydrolase (cysteine 
protease) [2], and isomerase (protein disulfide isomerase) [3]. Cysteine can undergo oxidative 
post-translational modifications (OxiPTMs) by reactive oxygen species (ROS) and these processes 
have been implicated in many cellular processes, including signal transduction [4], autophagy [5], 
and differentiation [6].  

Cysteine can be oxidized to different oxidation states. As shown in Fig. 1A, the thiol group (-SH) 
of cysteine can be first oxidized to sulfenic acid (-SOH). Sulfenic acid can be further oxidized to 
sulfinic acid (-SO2H) and sulfonic acid (-SO3H). Among these oxidation states, sulfenic acid attracts 
much attention due to its reversible property, which is proved to be involved in redox regulatory 
mechanisms and signaling pathways. Sulfenic acid is also a biomarker of cellular oxidative stress 
[7]. However, sulfenic acid detection is a big challenge due to its low content, high electrophilicity 
and rapid turnover in cells. Moreover, it is an intermediate state, and difficult to capture [8]. 
Initially protein S-sulfenylation was detected by an indirect approach which involved pre-blocking 
of cysteine, reduction of Cys-SOH and then labelling of nascent thiols with cysteine probes [9]. 
This approach has some limitations such as extensive denaturing conditions and unmanageable 
reduction steps. To address these issues, different probes which directly trapped Cys-SOH were 
developed. Dimedone is a classical Cys-SOH probe [10]. Based on this scaffold, Carroll group has 
generated a variety of C-nucleophile probes to achieve better reactivity and selectivity 
[7],[11],[12]. These probes can be also attached with an alkyne or azide group, so the labelled 
proteins can be easily detected via CuI-catalyzed azide-alkyne click reaction (CuAAC) [13],[14]. To 
facilitate quantitative proteomic analysis, Carroll group also developed isotope-labelled 
dimedone probes[11]. As shown in Fig. 1B, DYn-2 is a widely used Cys-SOH probe in recent years, 
which has been successfully applied for monitoring changes of protein sulfenylation during cell 
signaling [15] and other cell processes. Besides dimedone-based probes, some other effective 
trapping reagents including strained alkynes [16] and alkenes [17-19] have also been applied for 
Cys-SOH detection. 

So far, a variety of Cys-SOH probes have been discovered and some of them including DYn-2 
have been successfully exploited for profiling protein S-sulfenylation in live cells. However, there 
are still some limitations for these probes. First, high concentrations of these probes (e.g. 1 mM 
or even 5 mM DYn-2) were usually required for successful labelling in living cells. Sulfenic acid is 
short-lived and it’s easy to be affected by the local microenvironment in live cell [20]. Although 
some probes have shown good selectivity towards sulfenic acid in cell-free experiments with 
various reactants, they might not behave the same in cells considering the complexity of cellular 
context. Thus a large quantity of these probes might be consumed before they reached the 
targets. This may account for high doses of these probes for efficient labelling of sulfenic acid in 
cells. Second, sulfenic acid is a transient state, which is easily to be transformed to other states. 
Thus an in situ activation of caged probes would be advantageous for its capture. We envision 
photochemistry might be a good strategy to address this issue in view of its spatial and temporal 
controllability [21].  
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labelling in the presence of DYn-2, much less bands were observed in the living cell labelling. 
Distinctly, DYn-2-ONB still exhibited strongest labelling efficiency. Compared with that, fewer 
bands were observed in DYn-2-Cou treated cells. Actually, some precipitation was observed when 
DYn-2-Cou was added into the medium. As mentioned above, the poor solubility of DYn-2-Cou 
can be one reason. Phototoxicity might be another reason for its low labelling ability in living cells, 
since multiple studies have shown coumarin-containing reagents are toxic under irradiation 
[31],[32]. We evaluated cell viability with MTT assay. DYn-2-ONB showed modest phototoxicity 
(53% viability) in the presence of 1 mM DYn-2-ONB, 0.5 mM H2O2 and UV irradiation (Fig. S3A). As 
a comparison, DYn-2-Cou was more toxic than DYn-2-ONB. Only ~36% of cells were alive under 
the same treatment (Fig. S3B).  

Collectively, all the data have proved DYn-2-ONB exhibited potent ability to capture 
protein-SOH in living cells, which was worthy of further investigation. Therefore, we carried out 
experiments with DYn-2-ONB of different concentrations. As shown in Fig. S4, the ability of 
DYn-2-ONB to capture sulfenic acid was concentration-dependent. It’s worth noting that without 
UV irradiation, no labeling bands were observed in the presence of DYn-2-ONB. This result clearly 
substantiates our notion that the caged probe is not active in living cells, until it was activated by 
irradiation. 

In conclusion, we developed two caged Cys-SOH probes DYn-2-ONB and DYn-2-Cou for the in 
situ detection of protein S-sulfenylation. The extracellular systems proved both probes can 
efficiently capture sulfenic acid either with a small-molecule model (CSA) or with a purified 
protein model (UPS2CD). However, they exhibited distinct labelling property in living cells. The 
caged probe DYn-2-ONB showed better labelling capacity than the widely used probe DYn-2, 
while DYn-2-Cou labelled fewer protein-SOH, partly due to its poor solubility and its high 
phototoxicity towards cells. DYn-2-ONB can capture sulfenic acid in cells in a spatiotemporally 
controllable way, which implies that the change of sulfenic acid in cells may be monitored. The 
good performance of DYn-2-ONB, together with its temporal control over sulfenic acid, provides 
it as a powerful tool for the study of biological role of cysteine oxidation in living cells. The 
different labeling styles between DYn-2-ONB and the conventional probe DYn-2 also intrigue us to 
compare their application in Cys-SOH proteomics and this work is ongoing in our lab. 
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