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ABSTRACT We demonstrate that di-tert-butylsilanols are competent nucleophiles for the intramolecular interception of pal-
ladium π-allyl species. In these reactions, allyl ethyl carbonates are the best precursors for the formation of palladium π-allyl 
intermediates, and [(Cinnamyl)PdCl]2/BINAP is superior to other Pd salt/ligand framework combinations. Our optimized 
protocol is compatible with a variety of silanol substrates. Importantly, the cyclization is perfectly stereospecific, proceeding 
via an anti-syn mechanism, which stands in contrast to reported analogous reactions of alcohols and phenols, which proceed 
via an anti-anti mechanism. The alkenes in the product dioxasilinanes serve as blank slates for further functionalization. 

The invention of highly regioselective and ste-

reoselective methods for the installation of carbon-het-

eroatom linkages remains a very active area of re-

search.1-4 The interception of palladium π-allyl com-

plexes with carbon nucleophiles is a well-established 

method for the construction of C–C bonds,5-12 but many 

opportunities remain for the analogous construction of 

C–O bonds.13-19 Our laboratory has a programmatic fo-

cus on the development of the di-tert-butyl-silanol aux-

iliary for alkene manipulation reactions.20-25 We envi-

sioned a new method for the construction of C–O 

bonds via the intramolecular interception of a palla-

dium π-allyl species with a pendant di-tert-butylsilanol 

functional group (Scheme 1). Based on our previous 

work as well as that of others,26-31 we expected such a 

reaction to be highly chemo-, regio-, and diastereose-

lective. This would be an important addition to existing 

technology for the synthesis of complex 

polyhydroxylated molecules   (Scheme 1).32 



 

Before undertaking reaction optimization, we 

first had to develop a method that would allow for fac-

ile access to the requisite starting materials (Scheme 

2). Using our laboratory’s silylation procedure,23 3-bu-

tyn-1-ol or 4-pentyn-2-ol could be converted into the 

corresponding silanol. Bis-deprotonation with two 

equivalents of n-BuLi enabled condensation with a va-

riety of aldehydes. Reduction of the alkyne to a cis-al-

kene was effected using Lindar’s catalyst under 1 atm 

of H2 gas. Finally, the free alcohol was converted into 

an ethyl carbonate using ethyl chloroformate and pyri-

dine. This procedure was remarkably modular, repro-

ducible, and scalable. We have carried it out reliably 

on starting scales as large as 10 mmol, and all sub-

strates shown in this account were prepared using this 

method. 

 

Table 1. Reaction Optimization 

 

Entry [Pd] Additivea Ligand Yield (%)b 

1 Pd(PPh3)4 - (R)-BINAPc 35% 

2 [(Cinnamyl)PdCl]2 - (R)-BINAP 62% 

3 [(Cinnamyl)PdCl]2 - (R)-BINAP 
28%d 
Tracee 

4 [(Cinnamyl)PdCl]2 - 
(R)-DTBM-
SEGPHOS 

19% 

5 [(Cinnamyl)PdCl]2 - Xantphos 27% 

6 [(Cinnamyl)PdCl]2 KOtBu (R)-BINAP 46% 

7 [(Cinnamyl)PdCl]2 NaHCO3 (R)-BINAP 42% 

8 [(Cinnamyl)PdCl]2 CH3CO2H (R)-BINAP trace 

9 [(Cinnamyl)PdCl]2 PhCO2H (R)-BINAP NR 

[a] 1 equiv. [b] Performed on a 0.1 mmol scale; yields are deter-
mined by 1H NMR integration using methyl phenyl sulfone as an 
internal standard. [c] arbitrarily chosen as no enantioselectivity was 
observed. [d] at 110 °C. [e] at room temperature. See Supporting 
Information for additional conditions tested. 

 

Treating 1 with Pd(PPh3)4 and (R)-BINAP 

gave cyclized product in 35% yield (Table 1, Entry 1). 

When Pd(PPh3)4 was replaced with [(Cin-

namyl)PdCl]2, the yield increased to 62% (Table 1, 

Entry 2). Maintaining the reaction temperature at 80 

°C was crucial, as increasing it to 110 °C and decreas-

ing it to 23 °C were both deleterious (Table 1, Entry 

3).  The reaction performance suffered when (R)-

BINAP was replaced with either (R)-DTBM-

SEGPHOS (Table 1, Entry 4) or Xantphos (Table 1, 

Entry 5). Using either base (Table 1, Entries 6–7) or 

acid additives (Table 1, Entries 8–9) was similarly 

deleterious.  

A variety of allyl electrophiles have been used 

as precursors to palladium π-allyl species.13 The ethyl 

carbonate and Boc moieties were chosen empirically 

for optimization (Table 1 and Scheme 3, Entries 1-2). 

An examination of other leaving groups, including ac-

etate (Scheme 3, Entry 3), benzoate (Scheme 3, Entry 

4), and 2,2,2-trichloroethyl carbonate (Scheme 3, En-

try 5), showed that none were superior to ethyl car-

bonate. Thus, for exploration of the substrate scope, 

ethyl carbonate was retained as the leaving group.     

                                    

Our optimized protocol was compatible with a 

variety of substrates, both with linear (Scheme 4, En-

try 1) and branched alkyl chains (Scheme 4, Entries 

1-3). Substrates with pendant cycloalkanes (Scheme 4, 

Entries 4-7), ethers (Scheme 4, Entry 1), and aro-

matic rings (Scheme 4, Entries 1, 6, 8, and 9) all re-

acted well. In general, cis alkene substrates were re-

quired for productive reaction; in our hands, only one 

trans alkene substrate (Scheme 4, Entry 9) cyclized as 

expected. In almost all reactions, starting material was 

consumed fully, and the remaining mass balance could 

be attributed to a linear diene side product arising from 

ionization and elimination of the allylic carbonate.33 A 

crystal structure of 46 (CCDC 2164073) allowed us to 

unambiguously establish product identity. Most sub-

strates were designed to form 6-membered dioxasi-

linane products, but a 5-membered dioxasilolane prod-

uct (Scheme 4, Entry 10) could be forced to form. 



 

Yields were low, however, and the product was unsta-

ble for long-term storage, even in a freezer set to -20 

°C.  

  

 

 When starting with 4-pentyn-2-ol, the alde-

hyde addition in Scheme 2 furnished mixtures of dia-

stereomers. Fortunately, in all cases, these 



 

diastereomers were separable by chromatography on 

silica gel. We were pleased to see that the subsequent 

palladium catalyzed cyclization was perfectly stereo-

specific. The major syn diastereomer reliably formed 

anti product; the minor anti diastereomer formed syn 

product (Scheme 5). Determining the stereochemistry 

of the linear starting materials was a considerable chal-

lenge (Scheme 6A). After various failed crystallization 

attempts, we globally deprotected 31 (Scheme 5, see 

supporting information for full experimental details) 

and converted it into silocine 61. Based on observed 

nOe correlations, the stereochemistry of 61 and, by 

analogy, of 31 was assigned. To explain the stereospec-

ificity of this reaction, we propose a mechanism shown 

in Scheme 6B. Insertion of palladium occurs anti to the 

ethyl chloroformate leaving group34 and is followed by 

coordination of the silanol nucleophile (inner-sphere 

process).35 Subsequent syn reductive elimination fur-

nishes product (Scheme 5). It is interesting to note that 

this stereoselectivity stands in contrast to related reac-

tions where alcohols or phenols are used as nucleo-

philes; in these reactions, there is an overall retention 

of stereochemistry through an anti-anti mechanism.13, 

18 

 

The product alkenyl dioxasilinanes could be 

further elaborated (Scheme 7). Using the 2nd genera-

tion Hoveyda-Grubbs catalyst, cross metathesis of 33 

with ethyl acrylate formed 62 in a 59% yield (Scheme 

7A). Dihydroxylation of 48 formed tetrols 63 and 64 as 

a separable mixture of diastereomers (Scheme 7B).  

 

 

 

 

In summary, we have demonstrated that di-

tert-butylsilanols are competent nucleophiles for the 

intramolecular interception of palladium π-allyl spe-

cies. In these reactions, allyl ethyl carbonates were the 

best precursors for the formation of palladium π-allyl 

intermediates, and [(Cinnamyl)PdCl]2/BINAP was su-

perior to other Pd salt/ligand framework combinations. 

Our optimized protocol was compatible with a variety 

of silanol substrates. Importantly, the cyclization is 

perfectly stereospecific, proceeding via an anti-syn 

mechanism. The alkenes in the product dioxasilinanes 

serve as blank slates for further functionalization, and 

we expect this reaction to be a useful addition to exist-

ing technology for the assembly of poly-hydroxylated 

targets.                                              
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