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ABSTRACT: The potential energy surface (PES) plays a central role in chemistry. As the size of 

the reaction system increases, it would be more and more difficult to develop its globally accurate 

full-dimensional PES. One unavoidable difficulty is that it is too expensive to calculate electronic 

energies of ample configurations for complicated reactions. Δ-machine learning, or the 

hierarchical construction scheme is a highly cost-effective method as only a small number of high-

level ab initio energies are required to improve a potential energy surface (PES) fit to a large 

number of low-level points. Based on this idea, we propose a permutation-invariant-polynomial 

neural-network (PIP-NN)-based Δ-machine learning approach to construct full-dimensional 

accurate PESs of complicated reactions efficiently. Particularly, the high flexibility of the NN is 

exploited to efficiently sample points from the low-level dataset, which is very useful for the large 
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systems with large configuration space. The approach is applied to the HO2 + HO2 → H2O2 + O2 

reaction, a key process in combustion and atmosphere. The full-dimensional triplet state PES is 

first constructed with a large number of density functional theory (DFT) points, which cover all 

dynamically relevant regions. Only 14% of the DFT dataset are used to successfully bring the DFT 

PES to the UCCSD(T)-F12a/AVTZ quality. On this PES of high quality, quasi-classical trajectory 

(QCT) calculations are performed to study the dynamics of the title reaction. A surprising mode-

specific dynamics is observed, in which exciting a spectator mode leads to significant enhancement 

of the reactivity at low collision energy. This special mechanism can be attributed to increased 

attraction potential caused by the excited spectator mode. Such mode specificity may be quite 

prevalent in free radical reactions involving HO2, which is common in combustion and atmosphere.   
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Although several product pathways are available in the self-reaction of HO2,
1 it is well 

established that the H2O2 + O2 channel dominates on the electronic triplet state, namely,  

HO2 + HO2 → H2O2 + O2   ΔH(0K) = -38.3±0.10 kcal mol-1        (R1).2 

R1 is of great significance in many situations, including combustion and Earth’s atmosphere. 

This reaction significantly affects the concentrations of HOx radicals in the troposphere,3 and is 

the main source of H2O2 in the atmosphere.4-6 HOx and H2O2 are widely recognized as important 

species in both combustion and atmosphere.7, 8 In combustion, R1, a hydrogen abstraction reaction, 

is a key chain termination step that inhibits ignition. The accuracy of the kinetics for R1 is 

important for the performance of the combustion modeling9 as well as engine simulations.10  

Ample theoretical and experimental investigations have been carried out for R1 to investigate 

its mechanisms and kinetics over a wide range of temperatures and pressures.4, 6, 10-24 Interestingly, 

it has been found that the rate coefficients of R1, denoted hereafter as k1 (in the unit of 

cm3molecule-1s-1 if not specified otherwise), show a minimum around 700-800 K. Further, the 

effect of pressure on k1 is significant at low temperatures, but vanishes at temperatures above 600 

K.  

The aforementioned unique temperature- and pressure-dependent behaviors are related to the 

properties of R1 potential energy surface (PES), which governs the reaction mechanism, kinetics, 

and dynamics. Indeed, there exists a relatively stable intermediate between the two HO2 radicals, 

namely the H2O4 intermediate (the HO2 radical dimer) on the triplet state surface, whose energetics 

and spectroscopic characterization have also been scrutinized extensively by theory and 

experiment.25-32 As shown in Figure 1, our calculations show that another high-energy pathway 

via H2OO + O2 leads to the same products H2O2 + O2. To the best of our knowledge, it is the first 
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time that this reaction path is reported. All these features make the PES of R1 complicated. There 

is no PES for the title reaction, which limits our understanding for its kinetics and dynamics. 

The PES, as a central role in physical chemistry, governs the nuclear dynamics that is related to 

molecular spectroscopy, energy transfer, chemical reactivity, and many other properties. Thanks 

to the advance in computing power and quantum chemistry, it is now possible to carry out ab initio 

calculations at the “gold standard” CCSD(T) (or MRCI) level for tens to hundreds of thousands of 

configurations for complicated systems of reasonable size. Recent years have witnessed great 

success in developing high-fidelity potential energy surfaces (PESs) by the machine-learning 

methods,33 such as the permutationally invariant polynomial (PIP),34 the neural network (NN),35 

or their combination PIP-NN,36, 37 nonredundant PIP-NN,38 and fundamental invariant (FI)-NN.39 

Thanks to the universal approximator NN, the use of the PIPs, nonredundant PIPs, or FIs as the 

NN input can guarantee not only the high fidelity but also the rigorous symmetry property of the 

molecular system with respect to the permutation of like atoms. Recent reported examples include 

F/Cl/H + CH3OH,40-42 OH +CH4,
43 etc., for each more than 100000 UCCSD(T)-F12a/AVTZ 

energies were computed. The root-mean-squared error (RMSE) is generally smaller than 0.23 kcal 

mol-1 (10 meV), namely, well within the highly coveted chemical accuracy, 1 kcal mol-1. 
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Figure 1. Schematic reaction path for the title reaction on the lowest triplet state surface. Energies 

are in kcal mol-1 and relative to the reactant asymptote: PESH, UCCSD(T)-F12a/AVTZ, 

UCCSD(T)-F12a/AVDZ, CASPT2/AVTZ/CBS,44 and CCSD(T)/AVTZ/CBS,44 from top to 

bottom. PESH denotes the final PIP-NN PES based on high-level energies as discussed below. 

In order to develop PESs of large molecular systems accurately and efficiently, several 

approaches have been proposed. One promising strategy is to “correct and improve” the PES 

obtained at a low-level of electronic structure theory by adding the difference between low-level 

(LL) and some target high-level (HL) calculations. In 2008, Fu, Xu and Zhang have proposed a 

hierarchical construction (HC) scheme for developing accurate PESs efficiently. The target high 

accurate PES (VHL) was expressed as a sum of a low-level PES (VLL) based on dense ab initio data 

points and an energy difference PES (ΔVHL-LL) between high- and low-level methods based on 

sparse data points. Namely,  

HL LL HL LL.V V V −= +                                                   (1) 
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Thus, calculation cost can be significantly saved.45 For the F + H2 reaction, they sampled 15000 

symmetry-unique points by a grid approach and calculated their energies by the low-accuracy 

UCCSD(T)/AVQZ method. Then they reduced grid density on every coordinate by roughly a 

factor of 2. Consequently, 1400 points were chosen from 15000 symmetry-unique points and were 

computed at the high-accuracy UCCSD(T)/AV5Z method. The cubic spline method was used to 

construct both VLL and ΔVHL-LL.45 Similarly, the Δ-machine learning (ML) approach seeks to add 

a correction, defined as the difference between high-level and low-level calculation, to some 

properties (not only limited to the PES) obtained at a low-level and efficient method.46 Transfer 

learning (TL) relies on the fact that knowledge gained from solving a related problem can be used 

to solve an unknown problem. TL is valuable to bypass the high computational cost of high-level 

(generally, the higher, the more accurate) electronic structure calculations. For developing PESs, 

a large number of low-level data (efficient to obtain) is used to first optimize a pre-trained neural 

network (NN), which can then be refined by a smaller number of high-level data.47 Most TL and 

Δ-ML studies focused on developing general transferable force fields for thermochemistry and for 

molecular dynamics simulations at room temperatures or so.46-52 In these cases, only regions 

around the equilibrium need be considered.  

For example, Meuwly and coworkers employed the TL approach to improve a low-level MP2 

NN PESs for malonaldehyde, acetoacetaldehyde, and acetylacetone (AcAc) to a high level of 

theory using the pair natural orbitals (PNO)-LCCSD(T)-F12 method.47 The resulting PESs were 

successfully employed to reproduce finite-temperature infrared spectrum and hydrogen transfer 

rates. More recently, Bowman and coworkers proposed and tested a Δ-learning approach53, 54 using 

PIP.34 Specifically, they expressed the PES also as Eq. (1). However, VLL denotes a PES by PIP 

fitting to the low-level dataset, ΔVHL-LL is the correction PES also fitted by PIP fitting, and VHL is 
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the final corrected PES of the target high quality. For CH4, H3O
+, and N-methylacetamide, the 

low-level data include DFT energies and gradients.53 For acetylacetone, MP2 energies and 

gradients were used to fit VLL.54 ΔVHL-LL is also a PIP fit to a much smaller database of difference 

between CCSD(T) and DFT or MP2 energies, as the difference PES is not sensitive as VLL with 

respect to the change of nuclear configurations. Both efficacy and reliability of this PIP-based Δ-

learning approach have been demonstrated by reproducing properties around the equilibrium of 

the stationary points or around the minimum energy paths (MEPs).53, 54  

In this work, we propose a new strategy based on the idea of Δ-ML and HC. First,  VLL, the low-

level PES, is fitted by the nonlinear PIP-neural network (PIP-NN) method.33 Second, ΔVHL-LL, the 

correction PES, is also learned by the PIP-NN approach.33 Third, for each configuration, the final 

PES is not expressed as Eq. (1) as a sum of two functions.45, 53, 54 In the new strategy, ΔVHL-LL, 

based on a much smaller dataset, is employed to predict the energies of the remaining points used 

in VLL. This is due to that ΔVHL-LL spans a very small energy range and shows a “flat topography”. 

Then for each point in the dynamically relevant configuration space, ΔVHL-LL can be used to bring 

its potential energy to a target high level from efficient low-level calculations. Finally, these points 

with high-level energies are used to fit the final PES, which is again expressed as a single PIP-NN 

function, resulting an efficient evaluation of the PES during dynamics simulations. Essentially, 

this new Δ-ML approach is used to efficiently obtain the high-level energies for a large number of 

configurations.  

The new PIP-NN based Δ-ML approach is used to develop the globally accurate full-

dimensional (12D) PES of the self-reaction of HO2 (HO2 + HO2) at the leading triplet electronic 

state. The PES of the bimolecular reaction HO2 + HO2 covers much wide ranges in both energy 

and configuration spaces. Both the asymptotic and the strongly interacting regions need be well 
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described as the scattering results are highly sensitive to the details of the PES, particularly for the 

title reaction, for which its reactant channel is complicated by the long-range interaction and its 

leading transition state (TS) is submerged.  

Ab initio calculations. The reaction profile of the title reaction is illustrated in Figure 1. The 

corresponding structural parameters and harmonic frequencies of the stationary points are provided 

in Figure S1 and Table S1, respectively. In general, the current calculations are consistent with 

the recent high-level theoretical results, but apparent discrepancies do exist for TS1, as discussed 

below. 

There are two different pathways from the reactants HO2 + HO2 to the same products H2O2 + 

O2. One first forms the oxywater (H2OO) and O2 via the transition state TS2, which is 15.11 kcal 

mol-1 higher than the reactant asymptote at the UCCSD(T)-F12a/AVTZ level. Then H2OO, not 

stable, can convert to its isomer H2O2 easily with an isomerization barrier (TS3) of 6.64 kcal mol-

1. This isomerization process has been reported at various theoretical levels.55-57 This channel (via 

TS2, H2OO, TS3 to H2O2) has never been reported in the literature, although it is negligible due 

to its much high barrier even at temperatures up to 2000 K. The dominant channel is barrierless. 

At the UCCSD(T)-F12a/AVTZ level, a doubly hydrogen-bonded complex well (RC, -12.29 kcal 

mol-1) is formed before reaching a hydrogen abstraction transition state (TS1, -0.30 kcal mol-1). 

RC and TS1 have been calculated at various levels.6, 18, 44 Here only the recent high-level results 

by Zhou et al.44 are included for comparison. The energies of RC and TS1 were -12.77 and -4.21 

kcal mol-1, respectively, at CASPT2/AVTZ/CBS.44 The characteristics of RC by Zhou et al.44 were 

similar to the current computations. For TS1, the energy deviation between the two methods is 

quite large, -3.91 kcal mol-1, due to the significant differences in the TS1 geometries. For example, 

the forming and breaking bond distances, respectively, are 1.340 and 1.088 Å at the UCCSD(T)-
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F12a/AVTZ level, compared to 1.266 and 1.132 Å by Zhou et al.44 In addition, as shown in Table 

S1, the imaginary frequency of TS1 is i1884 cm-1, significantly lower in magnitude than i2548 cm-

1 calculated at the level of CASPT2/AVTZ,44 an indication of the difference in the vicinity of the 

PES near TS1 between the two levels. There also exists another TS (trans-like form of TS1) along 

R1 at other levels of theory,6, 18, 44 but it was not successfully located at the UCCSD(T)-F12a/AVTZ 

level. 

The reaction is highly exothermic, -38.89 (-37.79 with the zero-point vibrational energy ZPE 

correction) kcal mol-1 at the UCCSD(T)-F12a/AVTZ level. They are in line with the 

CASPT2/AVTZ/CBS values,44 -39.23 (38.15) kcal mol-1 and the experimental value of -38.3 ± 

0.10 kcal mol-1.2 

Potential energy surface. About 75300 points were calculated at the UM06-2X/AVTZ level 

(note that this DFT method was selected after tests, as discussed below and shown in SI). Their 

energies range from -40 to 120 kcal mol-1, relative to the reactant asymptote. These points were 

labeled as “the entire dataset” and were fitted by the PIP-NN method. This low-level DFT PES is 

denoted as PESL hereafter. Then, according to the strategy described above, ca. 10700 points 

(labeled as “the training dataset”) were selected from the DFT entire dataset and calculated at the 

UCCSD(T)-F12a/AVTZ level to develop the correction PES, ΔVHL-LL. At the UCCSD(T)-

F12a/AVTZ level, these 10700 points fall into the energy range from -40 to 120 kcal mol-1, the 

same as the energy range of the DFT entire dataset. The fitted correction PES was used to bring 

the remaining DFT points (namely, the entire dataset without the training dataset) to the 

UCCSD(T)-F12a/AVTZ quality, according to Eq. (3) in Method. The final PIP-NN PES (denoted 

as PESH hereafter) is a fit to ca. 75300 high-level energies, which is composed of 10700 

UCCSD(T)-F12a/AVTZ points and 64600 corrected points by the correction PES.  
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Figures 2a and 2b display the distributions of the training dataset and the entire dataset, 

respectively, along the two reactive bond distances RO'H and ROH up to 15 Å. The details near TS1 

are shown in the insert plots. The comparison between Figure 2a and Figure 2b shows that 1) the 

two datasets have similar distributions and all key regions were well sampled; 2) the training 

dataset (for the correction PES) is relatively sparse and dispersed. In addition, much denser 

distributions around RC, TS1, and TS2 are shown in both panels and are necessary for the high-

quality description around these regions.   

It should be stressed that the performance of the low-level DFT method is essential. The 

smaller the difference between the low-level DFT and the high-level CCSD(T)-F12a, the 

cheaper the cost to develop the correction PES. Hence, we carried out tests on various DFT 

methods and the corresponding results were summarized in Table S2. First, the selected low-

level DFT method should cover the same configuration space as the high level. Or else, the entire 

dataset, sampled according to the DFT level, may be not sufficient for the final PES at the target 

level. Second, the difference between the DFT method and the CCSD(T)-F12a should have the 

same trend throughout for the entire data. Or else, the correction model may be not fitted well 

due to the rugged differences. Further, some high-energy regions may be not readily included in 

common PIP-NN PESs, but are important for quantum dynamics (QD) calculations. Within the 

current strategy, these regions can be easily patched up by low-level computations. 
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Figure 2. Distribution of the training dataset (a) and entire dataset (b) along the two reactive bond 

lengths up to 15 Å. The insert plots show the details near the transition state. 

After a set of tests, the two hidden layers of NN were chosen to be 20 and 80, respectively, for 

fitting PESL, ΔVHL-LL, and PESH, each with 5641 fitting parameters. To minimize the random 

errors, the correction PES and the final PESH were chosen as the average of four and two best 

fittings, respectively. The RMSEs for PESL, ΔVHL-LL, and PESH are 0.20, 0.13, and 0.17 kcal mol-

1, respectively. The fitting errors of PESL are shown in Figure S2a as a function of the DFT energy. 

As seen, the fitting errors are evenly distributed in the energy up to 120 kcal mol-1, and roughly 

80% of the points have very low fitting errors that are less than 0.1 kcal mol-1. The distribution of 

the DFT dataset as a function of the DFT energy is given in Figure S2b. 

Figure S3a displays the fitting errors of ΔVHL-LL as a function of the target, namely, the energy 

difference, UCCSD(T)-F12a minus M06-2X, HL-LL. The small fitting errors are evenly 

distributed along the energy range from -20 to 10 kcal mol-1, which is far less than the DFT energy 
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range. Most errors (80%) are less than 0.1 kcal mol-1, an encouraging fitting performance. Figure 

S3b presents the histogram of the 10700 training points used to build ΔVHL-LL. As can be seen, 

most absolute energy differences (85%) are less than 5 kcal mol-1. A small portion of differences 

are larger than 10 kcal mol-1. Most of these configurations are highly distorted and thus lead to 

large differences between UCCSD(T)-F12a/AVTZ and M06-2X/AVTZ. However, these 

configurations are necessary to obtain convergence of the dynamic calculations. Figure S3c shows 

the DFT energies versus the energy differences for the training points. There is no clear correlation 

between them. The energy range of ΔVHL-LL, roughly 30 kcal mol-1, is much smaller than the DFT 

energy range of 160 kcal mol-1, which ensures that only a small number of training points are 

needed to correct the DFT dataset, as mentioned above.  

Figures S4a and S4c display the fitting errors of PESH for the training and entire dataset with 

respect to their corresponding high-level energies. Thanks to the ultraflexible PIP-NN approach, 

energies are well reproduced by the fitting for a large energy range. The distributions of the training 

and entire dataset as a function of the UCCSD(T)-F12/AVTZ energy are shown in Figures S4b 

and S4d, respectively. As seen, the two distributions have a similar shape. Most points are 

concentrated in the range of 0 to 30 kcal mol-1. 

The comparison in Figures 2 and S4 show that the training dataset spans nearly the same energy 

and configuration ranges to the entire dataset but with less dense sampling, guaranteeing that the 

difference PES is globally reliable. Overall, we can confidently state that the approach developed 

in this work can improve the PES efficiently from the low-level accuracy to the accuracy of the 

target high level, in this work, from UM06-2X/AVTZ to UCCSD(T)-F12a/AVTZ. 

Next, we make some comments on the newly fitted PESH. As shown in Figure S1 and Table 

S1, the energies, geometries, and harmonic frequencies of all stationary points are well reproduced 
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by PESL and PESH, compared with their targets, UM06-2X/AVTZ and UCCSD(T)-F12a/AVTZ, 

respectively. Further, to check the convergence of PESH with respect to the number of training 

points, 600 points were randomly selected from the QCT trajectories and then added to the training 

dataset after the UCCSD(T)-F12a/AVTZ calculations. The aforementioned fitting process was 

repeated to obtain another PES, denoted as PESH'. Then the QCT calculations were carried out on 

PESH and PESH' to yield reaction probabilities. As shown in Figure 3a, the two PESs yield almost 

identical reaction probabilities for the title reaction, indicating that PESH is well converged with 

respect to the number of training points. Indeed, these additional out-of-sample points have been 

well described by the PESH, as shown in Figure 3b. Figure 3c shows the target high-level energies 

versus energies from PESH and PESL for these 600 points. As seen, the PESH already reproduced 

well the target high-level energies. The deviations between target high-level energies and energies 

from PESH and PESL are shown in this figure. Most important, only about 14% of the DFT data 

points were needed to make PESH converge. For the computation time on the clusters with Intel 

Xeon CPU E5-2680 v3 @ 2.50 GHz processors, computing 75300 UM06-2X/AVTZ points needed 

about 3140 hours and the CPU time for 10700 UCCSD(T)-F12a/AVTZ points was 16050 hours. 

Consequently, building PESH only takes roughly 17% of CPU time for calculating 75300 

UCCSD(T)-F12a/AVTZ points directly.  
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Figure 3. Testing the quality of PESH and ΔVHL-LL. (a) The reaction probability for the HO2 + 

HO2 → H2O2 + O2 reaction on PESH and PESH' (fitted with 600 more points). (b) The energy 

differences (in kcal mol-1) from ΔVHL-LL vs (HL - LL) ones for the 600 points randomly selected 

from the QCT trajectories. (c) The target high-level energies vs energies from PESH and PESL. 

Figure 4 depicts the contour plot for the dominant reaction channel R1 on PESH as a function 

of the two reactive bonds RO'H and ROH (up to 4 Å for clarity) with other degrees of freedom relaxed. 

RC, TS1, and PC are clearly shown. The potentials along the minimum energy path (MEP) on 

PESH and PESL and the corresponding energy difference between them are also shown in the 

inset of the same figure. As seen, PESL, PESH, and their differences are in excellent agreement 
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with those from the direct electronic structure calculations. With the zero of the energy as the 

reactant asymptote, the energy difference is quite large near the TS region along the MEP. This 

can be further verified in Figure 5, which depicts the contour of the correction PES along the two 

reactive coordinates. To clearly visualize the topography of PESH, the corresponding three-

dimensional contour plots for R1 and the high-energy channel on the PESH are shown in Figures 

S5 and S6, respectively. 

 

Figure 4. Contour plot for R1 on PESH as functions of the two reactive bonds RO'H and ROH with 

other coordinates optimized, the energy in kcal mol-1. The inset plot shows the corresponding 

MEPs on PESH and PESL, respectively, and determined directly by electronic structure 

calculations. The energy differences between UCCSD(T)-F12a/AVTZ and DFT energies and the 

corresponding energies on the correction PES ΔVHL-LL along the MEP are also shown in the plot.  
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Figure 5. The contour plot of the correction PES as functions of the two reactive bonds RO'H and 

ROH. The energy in kcal mol-1. 

Dynamics. Depositing energy in some reactant modes can enhance the reactivity, while others 

with additional energy have little effect on the reaction, and even inhibit the reaction. This so called 

mode specificity is of great importance in chemistry,58 because it sheds light on how to control 

chemical processes. Thus, it has been extensively investigated in various gaseous reactions59-63 

and reactions at gas−solid interfaces.64, 65 In the title reaction, the two same reactants HO2 can 

abstract hydrogen from each other. In order to conveniently explore the mode specificity of the 

title reaction, the reaction HO2 + HO2 → H2O2 + O2 was divided into two channels. One is  

HOO' (v1, v2, v3) + HOO (GS) → OO' + H2O2                            (R1a) 

and the other is  

HOO' (v1, v2, v3) + HOO (GS) → HOO'H + O2                          (R1b) 

The initial vibrational states of one reactant HOO' are set as the ground state (GS, all v=0), v1 = 1, 

v2 = 1, and v3 = 1, respectively, without rotational energies. v1, v2, and v3 represent the vibrational 

quanta of OO' stretch, bending, and HO stretch motion of HO2, respectively. The other reactant 
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HOO was kept at the ground vibrational state, without rotational energies. Experimentally, R1a 

and R1b can be distinguished by the oxygen isotopic substitution: HO18O + HOO → O18O + H2O2 

or HO18OH + O2. 

Figures 6a and 6b present the QCT integral cross sections (ICSs) for R1a and R1b, respectively, 

with different vibrational states of HOO' as a function of collision energy Ec. The relative ICSs 

(defined as ICS(v)/ICS(v = 0) are shown in the inset of Figures 6a and 6b for comparison. The 

ICS, at each state, drops sharply from 0.5 to 5.0 kcal mol-1 and then levels off, indicating the 

characteristic of the barrierless reaction. At low Ec, R1 is a complex-forming reaction and is 

dominated by the doubly hydrogen-bonded RC intermediate, which results in the rapid decrease 

of ICS. This can be also borne out by the b-weighted opacity functions of R1a and R1b, as shown 

in Figures 7a and 7b, respectively. As seen, the accessible impact parameter b increases 

significantly with the decrease of Ec, confirming that the reaction is dominated by the capture of 

reactants at low Ec. Figures 8a and 8b show the QCT differential cross sections (DCSs) of R1a 

and R1b at different Ec (in kcal mol-1), respectively. At low Ec, the DCS is characterized with 

backward-forward symmetric shape, which can be attributed to the relatively long lifetime of the 

deep complex RC. While the backward and sideway scattering emerge with Ec, suggesting direct 

rebound and/or stripping mechanisms. At high Ec, the reaction is activated due to the reaction 

bottleneck, resulting in the slight change of ICSs with respect to Ec.  
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Figure 6. QCT ICSs as a function of collision energy for R1a and R1b. (a) R1a: HOO' (v1, v2, v3) 

+ HOO → OO' + H2O2. (b) R1b: HOO' (v1, v2, v3) + HOO → HOO'H + O2. The relative ICSs 

(ICS(v)/ICS(v = 0) are shown in the inset. 

 

Figure 7. (a) QCT opacity functions for several initial conditions at different Ec (in kcal mol-1) for 

R1a. (b) Similar to (a), but for R1b. The probabilities have been normalized to one. 
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Figure 8. (a) QCT calculated DCSs at different Ec (in kcal mol-1) for R1a. (b) Similar to (a), but 

for R1b. Both DCSs have been normalized to one and are for reactants being at the ground 

vibrational state. 

Figure 9 presents the potential energies along two representative trajectories: Figure 9a for the 

direct mechanism and Figure 9b for the complex-forming mechanism. In the direct mechanism, 

the system undergoes a barrier and the product is formed via a direct hydrogen abstraction 

mechanism in a very short time. However, in the complex-forming mechanism, the strong 

attraction between reactants leads to a much longer residence time around RC than that in the direct 

one, particularly at low Ec. Thus, the system has enough time to adjust the relative orientation 

between reactants until the reaction occurs. Consequently, the reactivity is higher. In addition, one 

can see that the energies of PESH are in excellent agreement with the direct ab initio calculations 

for these points along the two trajectories. 
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Figure 9. Direct and complex-forming mechanisms. Snapshots of representative trajectories 

showing the (a) direct mechanism of R1 at Ec = 20 kcal mol-1 and (b) complex-forming mechanism 

of R1 at Ec = 0.5 kcal mol-1, respectively. The potential energies as a function of the QCT elapsed 

time were obtained from the PESH and ab initio calculations. Some key configurations are also 

shown in this figure. 

Returning to the discussion of mode-specificity, as shown in Figure 6a, the excited HO stretch 

(v3) of HOO' can significantly enhance the reactivity of R1a in the entire energy range. This is 

because v3 has a strong coupling with the reaction coordinate at TS1, and depositing energy directly 

into the breaking bond is beneficial for the transfer of the H atom. The excitations of OO' stretch 

(v1) and HOO bend (v2) show negligible influence on the reactivity of R1a. This is not surprising. 

In R1a or R1b, v1 and v2 are both spectator modes, which are not involved in hydrogen abstraction 

and thus have no effects on R1a. However, a counterexample occurs in R1b. As shown in Figure 

6b, the fundamentally excited v3 (a spectator mode in R1b) has significant enhancement effects on 

the reactivity of R1b at Ec < 5.0 kcal mol-1. Enhancing the reactivity by exciting a spectator mode 

was first observed in our previous work on the radical-radical reaction OH + HO2 → H2O + O2. 

We attributed the special mechanism to increased dipole caused by the excited OH, which makes 
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the attraction between OH and HO2 stronger.63 Recently, Tian et al. reported a novel dynamical 

behavior that the excited low-frequency umbrella bending mode of ammonia has enhancement 

effects on reactivity of F(2P) + NH3 → HF + NH2 reaction, much more efficiently than the high-

frequency stretching modes in the entire energy range of Ec, which is related to the stronger 

attraction induced by the excited bending mode.66 

These unexpected results indicate that the interaction between reactants plays a significant role 

in the barrierless reaction, and may lead to some unique mode-specific dynamics. Figure 10a 

shows the interaction potential at different H–O (in HOO') bond distances. Clearly, the attractive 

interaction increases with the elongation of the H–O (in HOO') bond distance. At RHO = 1.19 Å 

(corresponds to the outer turning point of v3 = 1), the depth of the well is increased by roughly 3.0 

and 5.6 kcal mol-1 relative to that at RHO = 1.08 Å (v1 = 0) and RHO = 0.97 Å (equilibrium bond 

distance), respectively. The deepening of the RC well increases the chance of capturing the 

reactants and thus enhances the reactivity of R1b. This can be proved by Figures 8a and 8b, in 

which the long-lived RC complex results in the forward-backward symmetric DCSs at low Ec. In 

addition, the RC complex tends to channel the flux to TS1 due to the fact that the barrier is below 

the reactant asymptote. The interaction potential at different O–O' (in HOO') bond distances and 

HOO' bond angles are plotted in Figures 10b and 10c, respectively. As seen, the depth of the well 

is not increased with the increase of the bond distance or angle, even slightly decreased. Hence, 

exciting the two modes has no significant enhancement effects on the reactivity of R1b. 

Note that, the QCT approach can’t consider the quantum effects, such as tunneling, zero-point 

energy conservation, and resonances. However, our previous quantum dynamics (QD) calculations 

yielded similar kinetics and dynamics results to the QCT calculated ones for a similar radical-

radical reaction OH + HO2 → H2O + O2.
63, 67 
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Figure 10. Intramolecular geometry-dependent interaction potentials. (a) Interaction potential 

between the two reactants as a function of O'H (O' in HOO' and H in HOO) distance with other 

degrees of freedom relaxed for several H‒O bond lengths of HOO'. The H‒O bond lengths of 

0.9719, 1.0847, and 1.1921 Å are corresponding to the equilibrium bond distance , v3 = 0, and v3 

= 1, respectively. (b) Similar to (a), but for O‒O' bond lengths of HOO'. (c) Similar to (a), but for 

angle HOO'. 

In summary, the performance of any PES reaches at most the same level of accuracy as the 

underlying reference data. Various density functional theory (DFT) methods have found wide 

successful and efficient applications for chemistry, physics, and materials related fields. However, 

the DFT accuracy can’t be guaranteed generally, particularly for molecular systems.68 Thus, 

accurate theories, such as the “gold standard” CCSD(T) or MRCI with a large basis set, are 

necessary. Unfortunately, it is still prohibitive to determine energies of a large data set for 

complicated systems. Further, our tests have shown that for the title reaction, CCSD(T) method 
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may easily run into convergence issues or predict a wrong-state energy, particularly for regions of 

multireference nature, as found also in another important reaction in combustion and atmosphere, 

OH + HO2 → H2O + O2.
69 The newly proposed Δ-machine learning approach is efficient to obtain 

high-level energies for a large number of points. 

Indeed, the newly proposed approach is, to some extent, similar to the composite approach 

proposed and developed by Pople and other pioneering theorists. The chemical accuracy can be 

efficiently reached at the computationally cost of combinations of these models.51 Briefly, the 

target high-level energy can be obtained by adding various corrections, which were crafted to 

determine efficiently, 

1 2 1HL LL IL LL IL IL HL ILi
E E E E E− − −= +  +  + +                              (2) 

with LL for low level, ILi for the intermediate level i, and HL for target high level. Given an 

appropriate low-level calculation, the problem then becomes how to determine accurate and 

efficient estimation for ΔEs. Consequently, one can determine the energies for a large number of 

configurations efficiently within the hierarchy scheme.45 Further, one can improve previous PESs 

by adding more and more corrections gradually,45 which is invaluable for the science community 

of developing PESs and related fields. 

However, how to efficiently sample points from the low-level dataset is a key issue, as the 

computational cost is directly determined by the sampling size. Therefore, we propose in this work 

an NN-based Δ-machine learning approach for developing full-dimensional accurate PES. Taking 

advantage of the uncertainty of the NN potentials, we can efficiently select points from the low-

level dataset. To test the effectiveness of this approach, we construct the first accurate full-

dimensional ground triplet state PES for the HO2 + HO2 → H2O2 + O2 reaction. Finally, only about 

14% (10700) of the DFT data points (75300) are used to accurately bring the DFT PES of this 
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system to UCCSD(T)-F12a/AVTZ level. This newly fitted PIP-NN based Δ-machine learning 

approach will be used to build PESs of larger systems in our future work. Note, other NN 

approaches can be also used to replace PIP-NN to train the correction PES. 

Based on the newly fitted PES, the QCT calculations are carried out to study the dynamics of 

the title reaction. We find a special mode-specificity dynamics, namely, exciting the spectator HO 

stretch mode of HOO' can significantly enhance the reactivity of the title reaction at low collision 

energy, which was first reported in our previous work of the OH + HO2 → H2O + O2 reaction.63 

Unlike the conventional mode specificity, this special mechanism can be attributed to increased 

attraction potential caused by the excited OH. As pointed out earlier by us, such special mode 

specificity effect may be prevalent in combustion and atmospheric reactions.63 More interesting 

dynamics will be expected in various complicated reactions once their full-dimensional accurate 

PESs are developed, for instance, by the present efficient approach.  

PIP-NN based Δ-ML method. For the PES of the title system, the first step is to construct a 

low-level DFT PES at the selected UM06-2X/AVTZ level. Developing PESs of reactive systems 

has been detailed in our previous work,33, 70 and thus is not repeated here. Overall, the PES was 

gradually improved until all relevant dynamical results were converged and key properties, 

including geometries, frequencies, and energies of the stationary points, were well reproduced, 

compared to the direct UM06-2X/AVTZ calculations. In addition, some points were selected by 

the grid approach, which may sample configurations of high energy. These points are necessary 

for future quantum dynamical calculations, although these points may be not relevant by QCT. 

The next step is building a correction PES to correct the UM06-2X/AVTZ dataset. Specifically, 

the UM06-2X/AVTZ dataset was partitioned into two parts. One small subset was the training 

dataset, whose energies were re-calculated at the level of UCCSD(T)-F12a/AVTZ. Then the 
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differences between UCCSD(T)-F12a/AVTZ and M06-2X/AVTZ energies for this small subset 

were used to train the correction PES ΔVHL-LL. This correction PES can be used to predict the 

energy differences of the remaining points of the UM06-2X/AVTZ dataset for the low-level PES. 

Namely, their energies were not calculated by the direct and expensive UCCSD(T)-F12a/AVTZ 

calculations, but were corrected according to the following equation: 

  HL LL HL LLE E E ，−= +                                                       (3) 

where ELL is the DFT energy, ΔEHL-LL is the correction part predicted by ΔVHL-LL, and ΔEHL is the 

final energy of the high-level accuracy. Then the final PES of the title system was refitted to the 

high-level dataset. Clearly, our strategy is different from Bowman and co-workers’ approach53, 54 

in which the final Δ-learning PIP PES was described as the sum of the DFT PES and correction 

PES ΔVHL-LL. For the subset used to train the correction PES, its error might be enlarged by fitting 

twice, in comparison to our strategy, in which for the subset used to train the correction PES ΔVHL-

LL , their UCCSD(T)-F12a/AVTZ energies were directly employed in the final fitting. Further, the 

present approach is free of the additional evaluation cost of the correction PES in the dynamic 

calculations, as the correction PES is only used to predict the energy difference between low- and 

high-level computations. 

It’s crucial to sample configurations efficiently from the DFT dataset, as the computational cost 

is directly determined by the sampling size. In the HC scheme, the grid approach was used to 

sample points from the low-level dataset. This method is efficient for the tri-atom F + H2 system, 

but is unfeasible for larger systems due to the exponential growth of the number of data points 

with the system size. Bowman and co-workers used root mean square (RMS) bond difference 

between two configurations as the criterion to select points near the equilibrium of stationary 

points and chose a random integer that indicated their position on a list of the remaining points to 
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select points in other regions, which produced a subset that spans the same range of configurations 

as the original DFT dataset.54 A small number of configurations were needed to reproduce the key 

properties around the equilibrium of the stationary points or along the MEP.53, 54 However, this 

sampling method is prohibitively expensive for the title reaction with a large configuration space 

and it’s desirable to sample points efficiently to make the correction PES ΔVHL-LL converged with 

fewer high-level energies. 

It’s well known that the NN-based potentials are represented by nonlinear “non-physical” 

functions and have limited extrapolation capabilities. Therefore, in principle, if some regions were 

not covered well, namely, lacking points, different NN potentials would have large uncertainty for 

configurations of these regions. Based on this fact, Behler and co-workers exploited the high 

flexibility of the NN to search the poorly sampled regions of the configuration space.71 Namely, if 

some points possess large energy deviations between two NN fits, they were added to the training 

set. Recently, Lin et al. proposed a trajectory-free active learning method,72 based on this idea, to 

iteratively add new data points for sampling. It has been demonstrated that an accurate PES can be 

developed with much fewer points than the trajectory-based methods.  

In this work, we also utilize the limited extrapolation capabilities of NN potential to select points 

from the DFT dataset. First, 1500 points were chosen from the DFT dataset and then calculated to 

obtain their electronic energies at the UCCSD(T)-F12a/AVTZ level. For these 1500 points, 500 

geometries were selected near the equilibrium of the stationary points, and another 1000 were well 

dispersed along the MEP from reactants to products. Note that a larger Euclidean distance 

 ( )
15

2

i i i

i

r r r = −  defined in terms of the internuclear distances between two points,   ir and  ir , 

in the data set was used in this step than that used in the development of the DFT PES because 

only a smaller number of points were needed for the construction of the corrections PES.  
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Then the PIP-NN fitting was carried out to obtain the preliminary correction PES. To minimize 

the random error of NN fit, according to the NN ensemble approach, four best NN fittings were 

chosen to calculate the average energy difference among them, namely, 

4

HL-LL HL-LL

< 
,

6

i j

i j

V V

D

 − 

=


                                                                  (4) 

where HL LL

iV −  and HL LL

jV −  are the ith and jth correction PES, respectively. The energy differences 

of each remaining point in the DFT dataset were calculated. Then the first 300 points with the 

biggest energy deviations were added to the training dataset for the correction PES. Note that the 

generalized Euclidean distance was again used to exclude points that are close to each other. The 

procedure mentioned above was iterated to gradually improve the correction PES until the final 

PES can provide converged dynamical results and reproduce the key properties, such as geometries, 

frequencies, and energies of all stationary points, compared to the target high-level UCCSD(T)-

F12a/AVTZ calculation. 
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