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Abstract 

In this work, we present Link-INVENT as an extension to the existing de novo molecular design platform 

REINVENT. We provide illustrative examples on how Link-INVENT can be applied on fragment linking, 

scaffold hopping, and PROTACs design case studies where the desirable molecules should satisfy a 

combination of different criteria. With the help of Reinforcement Learning, the agent used by Link-

INVENT learns to generate favourable linkers connecting molecular subunits that satisfy diverse 

objectives, facilitating practical application of the model for real-world drug discovery projects. We also 



introduce a range of linker-specific objectives in the scoring function of REINVENT.  The code is freely 

available at https://github.com/MolecularAI/Reinvent. 

 

Introduction 

Deep learning (DL) offers potential to accelerate drug design by efficiently traversing chemical space, 

defined as the set of all possible biologically relevant molecules, and estimated to be on the order of 

1023 to 1060.1–3 The task is challenging as candidate drug molecules must satisfy a multi-parameter 

optimization (MPO) objective where parallel optimization of the individual objectives can be difficult. 

Thus, a brute-force molecular search approach is often infeasible. DL-augmented molecular design 

combined with computational oracles to approximate physico-chemical properties has enabled 

candidate drug molecules to be designed in an accelerated manner.4 DL-based approaches to the drug 

design task include deep generative models with reinforcement learning (RL)5–10, learning a molecular 

latent space11, and genetic algorithms12–14, which generate molecular ideas as Simplified Molecular-

Input Line-Entry System (SMILES) strings15 or molecular graphs9,10.  

 Recently, the application of DL-based methods to join two molecular subunits via a chemical 

linker has gained considerable interest.16–19 Generating suitable linkers is important for  fragment-based 

drug discovery (FBDD)20,21 and scaffold hopping22, and fundamental for the design of proteolysis 

targeting chimeras (PROTACs)23–25. The former two techniques are avenues to discover and optimize 

novel small molecule drugs, while the latter is a relatively new therapeutic modality able to achieve 

targeted protein degradation. Therefore, linker design represents a relevant problem in drug discovery. 

 FBDD is an alternative to traditional high-throughput screening (HTS) and virtual screening (VS) 

which screens ‘Lipinski compliant’ small molecules. In contrast, FBDD screens ‘fragments’, typically with 

a molecular weight (MW) under 260 Da. Although ‘fragment’ hits typically exhibit weaker binding 

affinities than small molecules, they often form polar interactions with the receptor and possess 

https://github.com/MolecularAI/Reinvent


favourable lipophilicity, limiting entropically-driven binding.20,21,26 Thus, ‘fragments’ can be an 

advantageous starting point for drug design and techniques to optimize their potency and physico-

chemical properties include fragment growing and fragment linking.20,21,27,28 The latter is of particular 

interest as proper linking of two ‘fragments’ such that the linked molecule does not perturb the 

constituents’ interactions can lead to significant potency gain. This is attributed to favourable entropic 

effects and known as ‘super-additivity’. In practice, fragment linking is challenging and ‘super-additivity’ 

is rarely achieved, owing to incompatible linkers disrupting the fragments’ binding poses.27,28 Thus, 

improvements in linker design are critical to unlock the full potential of FBDD. 

 Scaffold hopping refers to modifying the core structure of a molecule to improve physico-

chemical properties while retaining potency.22 The task can be formulated as a linker design problem if 

the scaffold itself is defined as the linker between two molecular subunits. Scaffold hopping is 

challenging as retaining potency requires 3D structural awareness of the interactions formed between 

the molecule and its receptor. Similar to fragment linking, improvements in linker design can enhance 

the ability to generate novel scaffold ideas. 

 PROTACs are heterobifunctional molecules in which a linker joins a ligand binding to a protein of 

interest (POI), conferring specificity, and an E3 ubiquitin ligase. The formation of the ternary complex 

leads to subsequent ubiquitination, achieving POI degradation and thus, targeted knockdown.23–25 While 

the unique mechanism of action provides promising therapeutic applicability beyond traditional small 

molecules, PROTACs design is challenging. PROTACs are comparably large molecules, typically existing 

beyond ‘Lipinski’s rules’ and thereby posing a design challenge since experience is limited.29–31 

Moreover, linker design is challenging due to the relatively high conformational flexibility present in 

longer linkers and has mostly deferred to empirical structure-activity relationship (SAR) studies, often 

necessitating numerous iterations of design-make-test-analyze (DMTA) cycles.32 Therefore, there is a 

need for improved linker design to improve overall PROTACs design. 



 Previously developed computational tools for linker design involve searching a database, making 

the generalizability of proposed linkers inherently limited.33–36 While success has been demonstrated 

when using these methods combined with filtering steps, one would ideally want to generalize the task 

such that plausible linker ideas can be proposed given any molecular subunits.33–36 Recently, DL-based 

linker design models have been proposed that circumvent database searches.16–19 DeLinker is a graph-

based model proposed by Imrie et al. which explicitly incorporates 3D information via the distance and 

angle between the molecular subunits to augment the feature vector.16 SyntaLinker is a conditional 

transformer model proposed by Yang et al. which treats linker generation as a natural language 

processing (NLP) task using SMILES.15,17 SyntaLinker was further extended by Hu et al. to perform kinase 

scaffold hopping after focusing the model via transfer learning.18 Moreover, Langevin et al. proposed 

the Scaffold Constrained Molecular Generation (SAMOA) algorithm based on recurrent neural networks 

(RNNs) where one of the capabilities of the model is linker generation.19 However, while these models 

are capable of generating linker ideas, a major drawback is the limited support to optimize explicitly for 

desired physico-chemical properties. The current models only allow users to control for the desired 

linker length16–19 and a select number of physico-chemical properties, e.g., number of hydrogen-bond 

donors (HBD).17 To encourage wide adoption of DL-based linker design, increased flexibility to define 

tailored MPO objectives and better generalizability is needed. 

 In this work, we present Link-INVENT as an extension to the existing de novo design platform 

REINVENT.6 The suggested algorithm shares some similarities with the SAMOA algorithm as proposed 

by Langevin et al.19 in that the code builds upon REINVENT’s existing codebase and uses policy-based RL 

for MPO.6 However, our algorithm has three crucial differences compared to earlier work. Firstly, the 

prior trained by Langevin et al. is based on ChEMBL compounds and follows the protocol as reported for 

REINVENT, which was purposed to sample small molecules as SMILES.6,19,37 Consequently, in their linker 

generation solution, linkers are sampled when the “*” token (the model’s internal representation of 

characters in a SMILES string), denoting the attachment point, is reached, and based on the conditional 



probabilities of the SMILES sequence so far. The limitation is that linkers should be generated in the 

context of both molecular subunits. In the extreme case, the SAMOA algorithm may struggle to generate 

plausible linkers if the SMILES sequence was “CC*C…” where the length of the SMILES on the right side 

of the “*” token is greater than the left side, as the conditional probabilities for linker generation would 

only be based on the sequence so far, i.e., “CC”. In contrast, Link-INVENT is trained based on the 

conditional probabilities of observing a linker given both molecular subunits, similar to the SyntaLinker 

model reported by Yang et al.17 Secondly, the data preparation to train the Link-INVENT prior was based 

on reaction-splicing of the ChEMBL compounds similar to the Lib-INVENT library design model we 

reported previously.37,38 Our training set contains linkers that join molecular subunits ranging from a few 

atoms in size to larger moieties with rings. As a result, a single Link-INVENT prior is suited for diverse 

linker generation tasks. Lastly, Link-INVENT was built on the latest version of REINVENT and supports an 

extensive selection of physico-chemical properties that can be optimized through RL. Moreover, we 

have implemented additional linker specific properties that can be optimized (in the form of additional 

scoring function components), ranging from physico-chemical properties to flexibility and rigidity, 

allowing one to explicitly optimize linker properties. We demonstrate the use of Link-INVENT on 

fragment linking, scaffold hopping, and PROTACs design case studies. Through RL, the Link-INVENT agent 

learns to generate favourable linkers connecting molecular subunits that satisfy diverse MPO objectives, 

facilitating practical application of the model for real-world drug discovery projects. The code is freely 

available at https://github.com/MolecularAI/Reinvent. 
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Fig. 1 Link-INVENT training and inference overview. ChEMBL data was processed to generate the training data for Link-INVENT which 

features an encoder-decoder architecture of recurrent neural networks (RNNs). Link-INVENT takes as input a pair of warheads and 

generates output linkers (highlighted green), yielding connected molecules. One crucial capability of Link-INVENT is the flexible Scoring 

Function where diverse multi-parameter optimization (MPO) objectives can be specified. Through reinforcement learning (RL), the agent’s 

policy is iteratively updated to satisfy the target MPO objective and thus generating desirable connected molecules.  

 

Methods 

Model Overview. Link-INVENT takes as input a pair of warheads, i.e., two molecular subunits with exit 

vectors defined, generates a linker, and returns the linked molecule in the SMILES format (Fig. 1).15 The 

model is adapted from Lib-INVENT, our previously reported generative model for library design by 

Fialková et al. which in turn is based on work by Arús-Pous et al.38,39 Specifically, Link-INVENT features 

an encoder-decoder architecture consisting of identical RNNs with embedding size 256 and three hidden 

layers of 512 long short-term memory cells (LSTM).40  



Data Preparation. The training data was generated from ChEMBL via the following steps37: 

 

1. Initial Filtering: Filter the raw ChEMBL data to keep ‘drug-like’ compounds only (see Supporting 

Information for details). Lenient filtering criteria was applied such that the training data is 

effective for PROTACs applications where the warheads can be larger in size compared to 

traditional ‘fragments’.30,31 

 

2. Reaction-based Slicing: Slice the filtered ChEMBL compounds following the protocol from our 

Lib-INVENT work using reaction SMIRKS.38 The result is a dataset of tuples with the structure: 

(linker, warheads pair, full molecule) 

 

3. Sliced Data Filtering: Filter the tuples to remove unrealistic data points, e.g., linkers with 

molecular weight greater than 500 Da. 

 

4. Generate Training and Validation Sets: A validation set containing 287 Bemis-Murcko scaffolds 

was held out.41 

 

5. SMILES Randomization: Data augmentation for the training and validation sets was performed 

via SMILES randomization. At each training epoch, the model is provided with datasets 

comprised of the same sliced tuples (linker, warheads pair, full molecule) but with a different 

SMILES representation. The purpose was to improve chemical space generalizability of the 

generative model as shown by Arús-Pous et al.42 

 

For full details of the data preparation, see the Supporting Information. 

 



Model Training. First, a vocabulary was generated that maps characters present in the training set (and 

validation set) SMILES to tokens (see the Supporting Information for token details). Querying Link-

INVENT requires tokenization of the input warheads by the encoder and the output linker tokens from 

the decoder are then transformed into their SMILES equivalent.15 The initial generative model, denoted 

the prior, was trained by maximizing the likelihood of generating a linker conditioned on the input pair 

of warheads. Teacher forcing was used such that the ground-truth labels were fed back to the model at 

each token sampling step to improve training stability.43 The trained prior is a generative model that has 

learned the SMILES syntax and is thus capable of generating syntactically valid linkers given a pair of 

input warheads. 

 

Model Inference and Multi-Parameter Optimization. Following REINVENT’s protocol, the agent is 

initialized to have the same parameters as the prior and serves two purposes6,44: ensuring the agent is 

also capable of generating syntactically valid linker SMILES and anchoring the sampled linkers to relevant 

chemical space as defined by the training data derived from ChEMBL.15,37 Subsequently, the agent is 

tasked to generate linkers that satisfy MPO objectives, given by the Scoring Function. The Scoring 

Function specifies all components to be optimized and is formulated as a weighted geometric mean in 

this work: 

 

𝑆(𝑥) = (∏ 𝐶𝑖(𝑥)𝑤𝑖𝑛
𝑖=1 )

1

∑ 𝑤𝑖
𝑛
𝑖=1             (1)

         

where 𝑥 is a sampled linked molecule (or linker), 𝑛 is the number of components in the Scoring Function 

𝑆, 𝐶𝑖 is the score for the 𝑖th component, and 𝑤𝑖 is the weight for the 𝑖th component. The weighting 

allows the user to control the relative importance of certain components, where a greater weighting will 

result in a greater contribution of that component to the Scoring Function. One crucial advantage of 



Link-INVENT is the flexibility in components that can be specified in the Scoring Function, ranging from 

physico-chemical properties, structural features, predictive models, and physics-based approximations 

of binding energy (see Supporting Information for a list of all linker components implemented in Link-

INVENT). While the agent is initially identical to the prior, its policy is updated via RL such that the agent 

is steered to generate molecules that increasingly satisfy the desired MPO objective.6 Correspondingly, 

Link-INVENT inference is as follows: 

 

1. Agent Sampling: Generate batch size (128 in this work) number of linkers conditioned on an input 

pair of warheads. Thus, 128 linked molecules were generated at each epoch. 

 

2. Assess Linked Molecules’ Desirability: Combine the warheads and linkers to form the linked 

molecules and compute their desirability based on satisfaction of the Scoring Function. 

 

3. Update Agent Policy: Compute the loss and update the agent’s policy to steer sampling towards 

favourable linkers. The specific loss function used in Link-INVENT was previously introduced by 

Fialková et al. in our Lib-INVENT work and defined as the difference between the augmented and 

posterior likelihoods (DAP).38 Correspondingly, the same loss function was used in this work and 

is constructed by first defining the augmented log likelihood: 

 

𝑙𝑜𝑔 𝜋𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 =  𝑙𝑜𝑔𝜋𝑃𝑟𝑖𝑜𝑟 + 𝜎𝑆(𝑥)          (2) 

 

where 𝜋 denotes a policy, i.e., probabilities of sampling tokens conditioned on observing a token 

sequence, 𝑆(𝑥) is the Scoring Function whose value is computed based on a generated SMILES 

sequence, 𝑥, and 𝜎 is a scalar factor. From equation 2, the augmented log likelihood is comprised 



of the prior log likelihood adjusted by the desirability of a sampled SMILES sequence based on 

the Scoring Function. The loss is then defined as follows: 

 

𝐽(𝜃) =  (𝑙𝑜𝑔𝜋𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 − 𝑙𝑜𝑔𝜋𝐴𝑔𝑒𝑛𝑡)
2          (3) 

 

through RL, the agent policy is updated at each epoch to minimize the loss, 𝐽(𝜃). 

 

Steps 1-3 are repeated until the permitted number of epochs has elapsed. All favourable linkers (and 

the corresponding full molecules) that achieve a total score (computed by aggregating the scores 

achieved on each composite objective defined in the Scoring Function) exceeding a user-defined 

threshold (typically 0.4) are outputted. In this work, the threshold was set to 0 to store all molecules 

generated. The purpose of this was to compare the profiles of molecules generated towards the 

beginning of the experiment and how RL gradually guides the generation of favourable molecules. 

 

Balancing Chemical Space Exploration and Exploitation. Link-INVENT offers full control over chemical 

space exploration and exploitation by leveraging Diversity Filters (DFs) as implemented in REINVENT.6,45 

Buckets can be defined with limited size that keep track of unique scaffolds. Agent sampling of molecules 

containing identical scaffolds populate the same bucket. If a bucket is full, further sampling of the 

scaffold will cause the agent to receive a score of 0, regardless of the corresponding molecule’s 

desirability, as assessed by the Scoring Function. This mechanism encourages agent exploration of 

diverse minima. For more details regarding DFs, see the work by Blaschke et al.6,45 The specific DF used 

in this work features buckets of size 25 and penalizes repeated sampling of Bemis-Murcko scaffolds.41 

We note that as Link-INVENT generates linkers conditioned on a pair of input warheads, the warheads 



themselves are held constant. Thus, the DF effectively penalizes repeated sampling of the Bemis-Murcko 

scaffolds of the linker themselves.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2 Link-INVENT Scoring Function selected linker specific properties. Attachment points are denoted by red asterisks. a. “Linker effective 

length”, “linker maximum graph length”, and “linker length ratio” provide direct control over the distance between attachment atoms in 

a linker and the degree of branching permitted. The maximum graph length bond traversal is highlighted green in the bottom example. b. 

“Linker ratio of rotatable bonds” provides control over the flexibility of proposed linkers. 

 

Scoring Function: Controlling Linker Properties. In addition to the previously supported Scoring 

Function properties in REINVENT that operate on the full molecule, Link-INVENT offers control over the 

linker itself (Fig. 2). One can control the linker length and branching (Fig. 2a) via the following properties: 

 

1. Linker Effective Length: the number of bonds between the attachment atoms  

 

2. Linker Maximum Graph Length: the number of bonds encompassed in the longest molecular 

graph traversal path 

 

3. Linker Length Ratio: the ratio of the “linker effective length” over the “linker maximum graph 

length” 

 

Moreover, one can control linker flexibility through the “linker ratio of rotatable bonds” component 

which is defined as the number of rotatable bonds (as calculated by RDKit46) over the total number of 



bonds (Fig. 2b). We note that this treatment of flexibility is not the only valid definition and inherent 

limitations exist such as being completely agnostic to intra-molecular hydrogen bonds. Furthermore, 

RDKit’s calculation of rotatable bonds does not consider bonds to terminal atoms rotatable as it depends 

on the hybridization of the atom it is attached to. Consequently, bonds to attachment points are always 

considered non-rotatable. This is exemplified in Fig. 2b where the butane linker receives a ratio of 

60/100. Consequently, a linker can never achieve a ratio of rotatable bonds of 100 and to achieve a 

higher ratio, linkers must become increasingly longer which can lead to unrealistic ideas being proposed. 

In practice, this is not a limitation in guiding Link-INVENT towards flexible/rigid linkers as one can 

introduce appropriate score transformations that provide meaningful agent feedback (discussed in the 

Results section). For a full list of properties available in the Link-INVENT Scoring Function, see the 

Supporting Information. 

 

Results 

We demonstrate the application of Link-INVENT by devising the following experiments: 

 

1. Illustrative Example: A simple experiment to illustrate how Link-INVENT gradually learns to 

satisfy MPO objectives. 

 

2. Experiment 1: Fragment Linking: Link two fragment hits and satisfy a molecular docking 

constraint. 

 

3. Experiment 2: Scaffold Hopping: Generate new scaffold ideas to improve physico-chemical 

properties while retaining potency by satisfying a molecular docking constraint. 

 



4. Experiment 3: PROTACs: Demonstrate the flexibility of Link-INVENT to generate linkers with 

diverse properties. The focus in this section is to showcase the linker specific properties 

implemented for the Link-INVENT Scoring Function.  

 
The same prior was used for all the experiments and demonstrates the versatility of the single trained 

generative model in addressing diverse tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 3 Illustrative Example. The experiment was run in triplicate. The curve shows the average score achieved by the batch of molecules 

sampled at a given epoch and the upper and lower bounds of the shaded region represent the maximum and minimum score, respectively. 

The objective is to link two benzene rings while limiting the number of hydrogen bond donors (HBDs) and the linker containing exactly one 

ring. Example structures (linkers highlighted) are superimposed on the plot at various stages of training to illustrate how Link-INVENT 

gradually learns to generate molecules that satisfy the desired MPO objective.  

 

Illustrative Example. As an initial illustrative example, we devise an experiment to link two benzene 

rings with the objective of limiting the number of HBDs and the linker possessing exactly one ring (Fig. 

3). Correspondingly, the Scoring Function contains two components: 

 

1. Linker Number of Hydrogen Bond Donors: maximum reward is given if the linker contains no 

HBDs. See Supporting Information Fig. S1 for the score transformation. 

 

2. Linker Number of Rings: reward is only given if the linker contains exactly one ring. 

 



Fig. 3 shows the Link-INVENT training progress over 20 epochs. The average score over triplicate runs 

shown in the curve is gradually increasing. Example molecules generated over the course of training are 

superimposed on the plot. The first molecule on the left possesses multiple HBDs and the linker does 

not contain a ring. Consequently, this molecule receives low reward. As training progresses, the example 

molecules start to satisfy our MPO objective. Towards the end of the 20 epochs, the example molecule 

not only possesses no HBDs, but the linker also has exactly one ring. The purpose of this experiment was 

to illustrate how the Link-INVENT agent learns via RL to generate molecules that increasingly satisfy the 

target objective. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4 Experiment 1: Fragment linking strategy for casein kinase 2 inhibitors for the alpha catalytic site (CK2α). a. Initial fragment hits. The 

fragment structures are colour-coded: gray fragment PDB ID: 5CSV and green fragment PDB ID: 5CSH.  The gray fragment binds by forming 

hydrogen-bond interactions with Lys68 and Asp175 while the green fragment binds via hydrophobic interactions. The fragment linking 

strategy was to leverage the nitrogen atoms on both fragments to design a linear linker, separated by 9.9 Å. b. Fragment linking led to the 

discovery of the linked molecule, CAM4066 (PDB ID: 5CU4). The constituent fragments are circled in the structure. The linear linker features 

amide bonds that modulate the linker flexibility and rigidity which the authors attribute to its binding potency.47,48 

 

Experiment 1: Fragment Linking. Fusco, Brear, et al. applied a fragment linking strategy (Fig. 4) to design 

casein kinase 2 inhibitors for the alpha catalytic site (CK2α).47,48 CK2 is overexpressed in cancers and 

causes apoptosis evasion, leading to poor cancer prognosis and is therefore a therapeutic target of 

interest.  Fig. 4a shows the fragment linking strategy envisioned by Fusco, Brear, et al. The gray fragment 

binds by forming hydrogen-bond interactions with Lys68 and Asp175 and the green fragment binds 

primarily through hydrophobic interactions (Fig. 4a). The difference in the binding modes of the 

constituent fragments were judged to be suitable for linking. Following this strategy, a potent and 



selective CK2α inhibitor (CAM4066) was discovered that retains the important Lys68 hydrogen-bond 

interaction (Fig. 4b).  CAM4066 was demonstrated to exhibit in vivo efficacy and is thus an example of a 

successful fragment linking campaign.47,48  

In this section, we adopt the fragment linking strategy devised by Fusco, Brear, et al. (Fig. 4a) and 

task Link-INVENT with generating plausible linked molecules that retain the Lys68 hydrogen-bond 

interaction.47,48 Moreover, while Fusco, Brear, et al. exclusively evaluated linear linker ideas, we allow 

Link-INVENT to explore linkers with rings and branching (to a certain extent). Correspondingly, we devise 

a Scoring Function composed of the following components: 

 

1. DockStream: this component is a molecular docking package that is fully compatible with Link-

INVENT. DockStream supports docking using a variety of backends. In this work, we use Glide 

and LigPrep which we previously identified to yield the best average performance over a variety 

of receptor targets.49–54 A docking constraint was enforced to retain the Lys68 hydrogen-bond 

interaction.47,48 See Supporting Information Fig. S2 for the docking score transformation. 

 

2. Linker Length Ratio ≥ 70: this component prevents linkers with branching that is significantly 

longer than the effective length (number of bonds between the linker attachment atoms). See 

Supporting Information Fig. S3 for the Scoring Function transformation. 

 

3. Linker Molecular Weight ≤ 200 Da: this component also prevents linkers with extensive 

branching but more importantly, prevents the Link-INVENT agent in exploiting the weaknesses 

of molecular docking, e.g., generating linkers that possess a large number of HBDs which may 

achieve a favourable docking score but at the expense of limited permeability.55 See Supporting 

Information Fig. S3 for the Scoring Function transformation. 

 



 

Fig. 5 Experiment 1: Fragment Linking Link-INVENT results. The experiment was run in triplicate. The curve shows the average score 

achieved by the batch of molecules sampled at a given epoch and the upper and lower bounds of the shaded region represent the maximum 

and minimum score, respectively. a. Glide LigPrep docking score optimization. The average docking score achieved by the batch of 

compounds generated by Link-INVENT gradually more favourable (lower score in the case of Glide). b. Violin plots showing the distribution 

of docking scores for the triplicate runs. ‘N’ is the number of molecules generated over 100 epochs. The distributions are nearly identical, 

demonstrating reproducible experimental outcome. The black dotted line shows the docking score possessed by the reference ligand 

(CAM4066, -15.20 kcal/mol). c. Venn diagram plots showing the overlap between unique Bemis-Murcko scaffolds in the triplicate runs. d. 



The binding pose of a selected generated molecule (green) superimposed with the reference ligand (gray) and the constituent fragments 

are circled. PDB ID: 5CU4. The structure of the generated molecule is similar to the reference ligand. The yellow and turquoise dotted lines 

show the interactions formed by the reference ligand and generated ligand, respectively. The generated molecule retains the Lys68 

interaction as enforced by the docking constraint and forms the same polar interactions as the reference ligand, largely attributing to the 

extensive overlap between the binding poses and supporting plausibility.  

 

The fragment linking experiment was run in triplicate and the results are shown in Fig. 5 (See Supporting 

Information Fig. S4 for all training plots). Over the course of 100 epochs, the average Glide docking score 

of the batch of molecules generated by Link-INVENT gradually becomes more favourable (Fig. 5a). The 

docking scores distributions of the triplicate runs are essentially identical and demonstrate reproducible 

experimental outcome (Fig. 5b). The relatively few molecules that possess a docking score of 0 do not 

satisfy the docking constraint and were generated towards the beginning of the Link-INVENT run at a 

timestep where the agent has received minimal feedback. Furthermore, some molecules proposed by 

Link-INVENT exhibit a more favourable docking score than the reference ligand (-15.20 kcal/mol, black 

dotted line in Fig. 5b). The majority of the remaining molecules dock similar to the reference ligand 

(approximately -14 kcal/mol) and demonstrates that Link-INVENT at the very least, proposes chemical 

ideas that can satisfy the docking constraint. Subsequently, the interplay between the agent and the DF 

is exemplified in Fig. 5c. The DF encourages balance between agent exploration and exploitation by 

penalizing repeated sampling of identical Bemis-Murcko scaffolds.41 The triplicate runs yield a large 

number of unique scaffolds with minimal overlap, demonstrating diversity in the results and showing 

that replicate experiments explore different areas in chemical space (Fig. 5c). Next, the plausibility of 

generated molecules was investigated by comparing their binding poses with the reference ligand. Fig. 

5d shows the binding pose of an example top scoring molecule (based on satisfaction of the composite 

Scoring Function) superimposed with the reference ligand (See Supporting Information Fig. S5 for more 

examples). Firstly, the proposed linker is similar to the ground-truth linker, differing only by a single 

atom shift of an amide bond and the presence of an additional nitrogen. It is important to note that 



information about the reference ligand was not available to the Link-INVENT agent during the generative 

process. Fusco, Brear, et al. posits that the flexibility and rigidity of the reference ligand linker is crucial 

to its potency.47,48 The similarity in the linker proposed by Link-INVENT suggests that the docking 

constraint implicitly guides the agent towards 3D structural awareness, in agreement with our previous 

results.49 This is further supported by the predicted polar interactions of the generated molecule (Fig. 

5d turquoise dotted lines) being mostly identical to those of the reference ligand (Fig. 5d yellow dotted 

lines) with the only exception being His160. Consequently, the structural similarity between the linkers 

naturally results in significant overlap of the binding poses and is exemplified in the docking score in 

which the generated molecule is predicted to dock more favourably than the reference ligand. Taken 

together, the results in this section demonstrate that Link-INVENT is able to generate plausible chemical 

ideas spanning diverse minima and is easily tuned for bespoke applications via the Scoring Function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6 Experiment 2: Scaffold Hopping strategy for dual leucine zipper kinase (DLK) inhibitor optimization. a. Initial inhibitor possessing poor 

physico-chemical properties causing in vivo high clearance (PDB ID: 5CEO). The two hydrogen-bonds in the hinge region with Cys193 are 

crucial for potency. The goal was to replace the pyridine core while retaining the Cys193 interactions. b. Scaffold hopping led to the 

discovery of a DLK inhibitor with a pyrazole core and with demonstrated in vivo efficacy (PDB ID: 5CEQ).56,57 The retained molecular sub-

units are circled in the structure. 

 

Experiment 2: Scaffold Hopping.  The c-Jun N-terminal kinase (JNK) pathway is implicated in neuronal 

injury and neurodegeneration and is a therapeutic target of interest. Patel et al. aimed to develop a 

small molecule inhibitor to modulate this pathway via targeting dual leucine zipper kinase (DLK) which 

is an upstream JNK regulator. Initial efforts led to the development of a potent and selective inhibitor 

but with high in vivo clearance (Fig. 6a).56,57 Subsequently, in a more recent work, Patel et al. applied a 

scaffold hopping strategy to improve the physico-chemical properties of their initial inhibitor to achieve 

central nervous system (CNS) penetration (Fig. 6b). Scaffold hopping from the pyridine core to a pyrazole 

core led to the discovery of a DLK inhibitor with in vivo efficacy (Fig. 6b).57  

 In this section, we adopt the scaffold hopping strategy devised by Patel et al. and task Link-

INVENT with generated novel core ideas with a focus on improving CNS properties. A docking constraint 

to enforce the Cys193 hydrogen-bond interactions is applied to retain predicted potency and the 



following specific physico-chemical properties, adopted from Patel et al., were enforced57: the number 

of HBDs must be less than 2, the topological polar surface area (tPSA) must be less than 90 Å2, and the 

CNS MPO score must be greater than or equal to 4. The CNS MPO is an algorithm developed from 

analysis of CNS drugs and candidates as a predictor for CNS efficacy and encompasses six physico-

chemical properties (ClogP, ClogD, MW, tPSA, number of HBDs, and pKa).58 In the devised experiment, 

we do not account for all six CNS MPO properties and only enforce logP, MW, tPSA, and number of HBDs. 

Correspondingly, we define the Scoring Function with the following components: 

 

1. DockStream: this component is identical to the usage described in the Fragment Linking section. 

The only exception was that the docking constraint was enforced to retain the Cys193 hydrogen-

bond interactions in the hinge region.57 See Supporting Information Fig. S6 for the docking score 

transformation. 

 

2. Number of Hydrogen Bond Donors < 2: this component is included in the CNS MPO algorithm 

and enforces the overall linked molecule to possess less than two HBDs. This quantity was 

specifically desired by Patel et al.57 See Supporting Information Fig. S7 for the Scoring Function 

transformation. 

 

3. Molecular Weight ≤ 450 Da: this component is included in the CNS MPO algorithm and is 

enforced to be in an interval in agreement with CNS penetration but with some leniency to allow 

more Link-INVENT exploration of chemical space.58 See Supporting Information Fig. S7 for the 

Scoring Function transformation. 

 
 



4. 3 ≤ SlogP ≤ 4: this component is included in the CNS MPO algorithm and is enforced to be in an 

interval in agreement with CNS penetration.58 See Supporting Information Fig. S7 for the Scoring 

Function transformation. 

 

5. tPSA ≤ 90 Å2: this component is included in the CNS MPO algorithm and is enforced to be in an 

interval in agreement with CNS penetration.58 The interval was also specifically desired by Patel 

et al.57 See Supporting Information Fig. S7 for the Scoring Function transformation. 

 
 

6. 1 ≤ Linker Number of Aromatic Rings ≤ 2: this component was specifically desired by Patel et al. 

as the binding site geometry is most compatible with a planar ring present in the core scaffold.57 

See Supporting Information Fig. S7 for the Scoring Function transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 7 Experiment 2: Scaffold Hopping Link-INVENT results. The experiment was run in triplicate. The curve shows the average score 

achieved by the batch of molecules sampled at a given epoch and the upper and lower bounds of the shaded region represent the maximum 

and minimum score, respectively. The analysis is identical to the Fragment Linking experiments. a. Glide LigPrep docking score optimization. 

The average docking score achieved by the batch of compounds generated by Link-INVENT. b. Violin plots showing the distribution of 

docking scores for the triplicate runs. ‘N’ is the number of molecules generated over 100 epochs that satisfy all the CNS criteria. The black 

dotted line shows the docking score possessed by the reference ligand (-11.26 kcal/mol). c. Venn diagram plots showing the overlap 

between unique Bemis-Murcko scaffolds in the triplicate runs. d. The binding pose of a selected generated molecule (green) superimposed 

with the reference ligand (gray) and the retained molecular sub-units are circled. PDB ID: 5CEO. The yellow and turquoise dotted lines 



show the interactions formed by the reference ligand and generated ligand, respectively. The generated molecule retains the Cys193 

interaction as enforced by the docking constraint and is predicted to form an additional hydrogen-bond interaction with Gln195. The 

extensive overlap between the binding poses of the generated ligand and the reference ligand supports plausibility. 

 

The scaffold hopping experiment was run in triplicate and the results are shown in Fig. 7 (see Supporting 

Information Fig. S8 for all training plots). Over the course of 100 epochs, the average Glide docking score 

of the batch of molecules generated by Link-INVENT gradually becomes more favourable (Fig. 7a) and 

the similarity in the docking scores distributions demonstrate reproducible experimental outcome (Fig. 

7b). In contrast to the fragment linking experiment, relatively few molecules possess a more favourable 

docking score than the reference ligand (shown by the black dotted line). Instead, the majority of 

molecules score slightly worse (approximately -9.5 kcal/mol). This is not completely unexpected as the 

MPO objective is significantly more challenging than the previous fragment linking case study. 

Consequently, the solution space is much narrower. It is important to note, however, that the objective 

of the scaffold hopping experiment is not strictly to propose novel cores that dock better than the initial 

inhibitor (Fig. 6a). Patel et al. note that their initial inhibitor, while potent, exhibits high in vivo 

clearance.56,57 Therefore, an inhibitor with sufficient binding affinity and good CNS penetration could 

achieve in vivo efficacy. The narrower solution space in the scaffold hopping experiment is further 

supported by Fig. 7c where the absolute counts of unique Bemis-Murcko scaffolds is less than the 

fragment linking experiment.41 This is not a limitation of Link-INVENT but rather the nature of the MPO 

objective. Nonetheless, the absolute counts for the generated scaffolds is still high and demonstrates 

Link-INVENT samples from diverse minima. Similar to the fragment linking results, minimal overlap 

between replicate runs show that replicate experiments explore different areas in chemical space (Fig. 

7c). The plausibility of the proposed scaffolds was investigated by comparing their binding poses with 

the reference ligand.  Fig. 7d shows the binding pose of an example top scoring molecule (based on 

satisfaction of the composite Scoring Function) superimposed with the reference ligand (see Supporting 



Information Fig. S9 for more examples). Firstly, the proposed scaffold features planar aromatic rings, as 

enforced by the Scoring Function, and as desired by Patel et al.57 Secondly, the Cys193 hydrogen-bond 

interactions are retained, as enforced by the docking constraint. The proposed ligand is predicted to 

form an additional hydrogen-bond with Gln195, owing to the hydrocarbon chain that extends the spatial 

occupancy of the overall molecule (Fig. 7d). This suggests that the application of a docking constraint 

can guide the Link-INVENT agent towards 3D structural awareness, learning to exploit the binding site 

geometry and electronics. Lastly, the binding poses of the generated ligand and the reference ligand 

overlap significantly, supporting plausibility. Taken together, the results in this section demonstrate the 

flexibility of the Link-INVENT Scoring Function to optimize relatively complex MPO objectives and that 

the agent learns to propose plausible chemical ideas. 

 

 

 

 

 

 



 

 

Fig. 8 Experiment 3: PROTACs strategy for Bcl-2 and Mcl-1 dual degradation. a. Molecular dynamics (MD) simulated ternary complex of 

one of the developed PROTACs binding to Mcl-1 (orange) and cereblon (CRBN, blue). The ternary complex is stabilized by protein-protein 

interactions (PPIs). The linker is an alkyl chain and is circled in the structure. Mcl-1 PDB ID: 2PQK and CRBN PDB ID: 4TZ4. b. The 

naphthalimide-based μM inhibitor which was linked with pomalidomide to form the ternary complex. The red asterisks denote the linker 

attachment points. The two linkers that achieved potent and selective in vitro degradation are shown.  

 

Experiment 3: PROTACs.  B-cell lymphoma 2 (Bcl-2) and myeloid leukemia 1 (Mcl-1) are anti-apoptotic 

proteins which can inhibit intrinsic apoptosis, i.e., induced by mitochondrial stress, and are therapeutic 

targets of interests. Wang et al. designed linkers between a naphthalimide-based μM inhibitor with 

pomalidomide which is a cereblon (CRBN) binding ligand (Fig. 8).59 The resulting ternary complex would 

undergo ubiquitination and lead to targeted dual degradation of Bcl-2 and Mcl-1. Due to challenges in 

obtaining crystal structures as a basis to form hypotheses on optimal linker lengths, PROTACs linker 



design has mostly been empirical.32 Wang et al. adopt an iterative SAR approach to investigate the effect 

of linker length on Bcl-2 and Mcl-1 dual degradation, whereby a linker too short would cause steric clash 

and prevent the formation of the stable ternary complex and a linker too long could result in too much 

conformational entropy to overcome.32,59 Following this approach, Wang et al. successfully transform a 

low-affinity and non-selective ligand for Bcl-2 and Mcl-1 into PROTACs stabilized via protein-protein 

interactions (PPIs) and show potent and selective dual degradation in vitro.59 Fig. 8a and 8b show the 

molecular dynamics (MD) simulated ternary complex of one of the discovered PROTACs performed by 

Wang et al. and the general linking strategy envisioned, respectively.59 

 In this section, we use the PROTACs design strategy by Wang et al. to demonstrate Link-INVENT’s 

linker specific components for the Scoring Function. In select experiments, a fixed set of physico-

chemical properties was enforced and based on observed values from compiled PROTACs databases.30,31 

Correspondingly, we define the Scoring Function with the following components (see Supporting 

Information Fig. S10 for the Scoring Function Transformations): 

 

1. tPSA ≤ 250 Å2 

 

2. 3.5 ≤ logP ≤ 6.0 

 

3. Number of Hydrogen Bond Acceptors ≤ 16 

 
 

4. Number of Hydrogen Bond Donors ≤ 6 

 

5. Number of Rotatable Bonds < 25 

 
 



We demonstrate control over the properties of generated linkers while keeping physico-chemical 

properties of the PROTAC within the specified intervals described above. Subsequently, we devise three 

Sub-Experiments: 

 

1. Sub-Experiment 1: Fix physico-chemical properties and control linker length. We show that Link-

INVENT can generate linkers within a specified narrow length interval. In addition to including 

the physico-chemical properties listed above, the Scoring Function contains the following 

components: 

 

1) Linker Effective Length = [4,6], [7,9], [10,12], or [13,15]: this component enforces linkers to 

possess an effective length within the specified intervals. See Supporting Information S11 for 

the Scoring Function transformation. 

 

2) Linker Length Ratio = 100 this component prevents linker branching. 

 
 

The combination of components 1 and 2 enforce Link-INVENT to generate linkers without 

branching. 

 

2. Sub-Experiment 2: Fix physico-chemical properties, linker length within the interval [7,9], and 

control linker linearity, i.e., linkers with and without rings. We show that Link-INVENT can 

generate linkers within a specified narrow length interval and control for the presence of rings. 

In addition to including the physico-chemical properties listed above, the Scoring Function 

contains the following component (see Supporting Information Fig. S17 for the Scoring Function 

Transformations): 



 

1) Linker Effective Length = [7,9]: this component enforces linkers to possess an effective length 

within the specified interval of [7,9]. 

 

2) Linker Length Ratio = 100 this component prevents linker branching. 

 

3) Linker Number of Rings = 0 this component enforces linkers to possess no rings, i.e., the 

linker is linear. In the experiment where we want to generate linkers with rings, we simply 

omit this component in the Scoring Function. 

 

Similar to Sub-Experiment 1, components 1 and 2 enforce Link-INVENT to generate linkers without 

branching.  

 

3. Sub-Experiment 3: In this Sub-Experiment, no length or physico-chemical properties are 

enforced. Instead, we task Link-INVENT with generating linkers with variable flexibility which is 

defined by the “linker ratio of rotatable bonds” component, i.e., ratio between the number of 

rotatable bonds over total number of bonds. Correspondingly, the Scoring Function contains only 

one component: 

 

1) Linker Ratio of Rotatable Bonds = [0,30], [40,60], [70,100]: the defined intervals correspond 

to “Low”, “Moderate”, and “High” flexibility (see Supporting Information S21 for the Scoring 

Function transformation). 

 

 

 



 

Fig. 9 Experiment 3:  PROTACs Link-INVENT results. The experiments were run in triplicate. The curve in c. shows the average score achieved 

by the batch of molecules sampled at a given epoch and the upper and lower bounds of the shaded region represent the maximum and 

minimum score, respectively. a. Experiment that fixes physico-chemical properties and tasks Link-INVENT with generating linkers with 

effective length within the specified intervals: [4,6], [7,9], [10,12], and [13,15]. The baseline experiment does not enforce linker length. 

Consequently, the effective linker lengths resemble a broad distribution. The generated linkers from the triplicate runs which also satisfy 

all the physico-chemical properties criteria are aggregated in the plot. b. Experiment that fixes physico-chemical properties and effective 

linker length within the interval [7-9]. Link-INVENT is tasked with generating linear and cyclic linkers. The baseline experiment does not 

enforce linker linearity and approximately a 1:2 ratio of linear:cyclic is observed. The generated linkers from the triplicate runs which also 

satisfy all the physico-chemical properties criteria are aggregated in the plot. c. Experiment that tasks Link-INVENT with generating linkers 

containing ratio of rotatable bonds within the specified intervals: “Low” [0, 30], “Moderate” [40,60], “High” [70,100]. The agent implicitly 



learns that linkers containing rings and sp2 hybridized atoms achieve a low ratio of rotatable bonds. Conversely, linear linkers with sp3 

hybridized atoms achieve a high ratio of rotatable bonds.  

 

PROTACs Sub-Experiment 1: Controlling Linker Length. Link-INVENT was tasked with generating linker 

ideas of variable length while keeping physico-chemical properties within a specified range (Fig. 9a, see 

Supporting Information Fig. S12-16 for all training plots). The baseline experiment does not enforce a 

specific effective linker length interval and the distribution of lengths span a large range (Fig. 9a). In 

contrast, one can enforce the Link-INVENT agent to explore effective linker lengths within a certain 

interval, as shown by the enrichments observed in Fig. 9a, e.g., the ‘enforce 4-6’ experiment enforced 

effective linker lengths in the interval [4-6] and the corresponding bar is enriched relative to other 

lengths. The purpose of this Sub-Experiment is to show the ease in which one can control effective linker 

length exploration, mimicking a real-world PROTAC linker design campaign.32,59 

 

PROTACs Sub-Experiment 2: Controlling Linker Linearity. Link-INVENT was tasked with generating linker 

ideas with effective length in the interval [7,9] while keeping physico-chemical properties within a 

specified range and controlling linearity (Fig. 9b, see Supporting Information Fig. S18-20 for all training 

plots). The baseline experiment does not enforce linearity and the resulting ratio of linear linkers to 

cyclic linkers, i.e., linkers containing at least one ring, is approximately 1:2. In contrast, one can enforce 

the Link-INVENT agent to explore linear linkers or cyclic linkers, shown by the enrichments observed in 

Fig. 9b. The purpose of this Sub-Experiment is to further showcase the user flexibility in specifying 

desired linker properties. 

 

PROTACs Sub-Experiment 3: Controlling Linker Flexibility. This Sub-Experiment showcases Link-

INVENT’s “linker ratio of rotatable bonds” component which can be specified in the Scoring Function. 

We note that while the component itself is meant to be a descriptor of linker flexibility, inherent 



limitations exist, e.g., not accounting for intra-molecular hydrogen-bonding interactions which would 

rigidify the linker. Link-INVENT was tasked with generating linker ideas with variable ratios of rotatable 

bonds where we define ‘Low’, ‘Moderate’, and ‘High’ as the intervals [0,30], [40,60], and [70,100], 

respectively (Fig. 9c, see Supporting Information Fig. S22 for all training plots). Examples of linkers 

possessing variable degrees of flexibility are shown in Fig. 9c. The agent implicitly learns that linkers 

containing rings and sp2 hybridized atoms are more rigid. A clear transition from “Low” flexibility to 

“High” flexibility is marked by increasing linearity and sp3 hybridized atoms. Without enforcing any 

length constraints, proposed linkers become increasingly longer to achieve a high “linker ratio of 

rotatable bonds” value. This is exemplified in the example linker in the “High” experiment (Fig. 9c). 

Naturally, the linker shown is likely unrealistic and this Sub-Experiment was an extreme example to 

showcase the flexibility of Link-INVENT’s Scoring Function. In practice, one could constrain the linker 

length within a specified interval as was done in Sub-Experiments 1 and 2 and explore variable flexibility. 

In this regard, the “linker ratio of rotatable bonds” provides some control over the conformational 

entropy of proposed linker ideas.  

 

Conclusions 

In this work, we introduced Link-INVENT as an extension to the de novo design platform, REINVENT.6 

Link-INVENT is a recurrent neural network (RNN)-based generative model trained to propose linker ideas 

given two input molecular subunits. In contrast to previous methods for linker design involving database 

searching which are inherently limited to a pre-defined collection of chemical ideas33–36, Link-INVENT 

builds linkers at the token level, proposing linkers as SMILES and can generalize in chemical space.15,42 

Moreover, Link-INVENT’s Scoring Function provides users with the ability to optimize bespoke multi-

parameter optimization (MPO) objectives via reinforcement learning (RL), offering control that is not 

present in existing deep learning (DL)-based approaches to linker generation.16–19 A vast number of 



molecular properties can be optimized, ranging from previously implemented components available in 

REINVENT that operate on the entire molecule to newly implemented linker specific components which 

provide  control over linker properties.  

We demonstrate the application of Link-INVENT on three case studies encompassing fragment 

linking20,21, scaffold hopping22, and PROTACs design23–25. The Scoring Functions for the experiments were 

devised based from the corresponding fragment linking47,48, scaffold hopping56,57, and PROTACs design59 

works. We illustrate the practical adoption of Link-INVENT to real-world drug discovery projects by 

showcasing how to translate experimental insights into an informative Scoring Function for Link-INVENT. 

Subsequently, the agent learned to satisfy the desired MPO objective via RL. Specifically, in the fragment 

linking experiment47,48, we showed that Link-INVENT can propose plausible linker ideas that satisfy a 

molecular docking constraint with additional constraint over the permitted linker spatial occupancy by 

controlling for branching. More than 5000 unique Bemis-Murcko scaffolds were generated by the Link-

INVENT agent, demonstrating that diverse linker ideas were explored.41 In the scaffold hopping 

experiment56,57, we showed that Link-INVENT can simultaneously optimize a relatively complex MPO 

objective encompassing a molecular docking constraint and favourable central nervous system (CNS) 

compatible physico-chemical properties. In this experiment, Link-INVENT navigated a narrow solution 

space and proposed plausible scaffold ideas which satisfy all desired properties and are diverse as shown 

by the number of unique Bemis-Murcko scaffolds.41 In the PROTACs experiment59, we further showed 

Link-INVENT’s extensive user control on the linker properties. We demonstrated the ability to enforce 

the Link-INVENT agent to explore effective linker lengths within a specified interval while keeping 

physico-chemical properties within a specified range. Moreover, linker linearity can be controlled, 

enforcing the agent to explore only linear linkers or linkers containing rings. Finally, we prove that linker 

flexibility can be controlled via the “linker ratio of rotatable bonds” component which provides users 

with the ability to modulate the conformational entropy of proposed linker ideas. These series of 



PROTACs Sub-Experiments mimic real-world PROTACs linker design which typically investigate linkers of 

variable length and flexibility.32,59 

Link-INVENT is a ready-to-use generative model for linker design with the capability to optimize 

bespoke MPO objectives via the flexible Scoring Function. The case studies in this work show how Link-

INVENT can be applied to real-world drug discovery projects and that the agent proposes plausible and 

diverse linker ideas. The code is freely available at https://github.com/MolecularAI/Reinvent. 

 

Associated Content 

Supporting Information  

• Details related to the data preparation 

• Details on the vocabulary of the Link-INVENT model 

• Details on the new linker specific components implemented in Link-INVENT 

• Details on the docking protocol used including parameters 

• Hardware information and experiment computation times 

• All training plots for the experiments presented in this work 

• More example binding poses for experiments 1 and 2 
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