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Abstract 24 

Endocrine Disruptor Chemicals are synthetic or natural molecules in the environment that 25 

promote adverse modifications of endogenous hormone regulation in humans and/or in 26 

animals. In the present research, we have applied two-dimensional quantitative structure-27 

activity relationship (2D-QSAR) modeling to analyze the structural features of these 28 

chemicals responsible for binding to the androgen receptors (logRBA) in rats. We have 29 

collected the receptor binding data from the EDKB database (https://www.fda.gov/science-30 

research/endocrine-disruptor-knowledge-base/accessing-edkb-database) and then employed 31 

the DTC-QSAR tool, available from https://dtclab.webs.com/software-tools, for dataset 32 

division, feature selection, and model development. The final partial least squares was 33 

evaluated using various stringent validation criteria. From the model, we interpreted that 34 

hydrophobicity, steroidal nucleus, bulkiness and a hyrdrogen bond donor at an appropriate 35 

position contribute to the receptor binding affinity, while presence of electron rich features 36 

like aromaticity and polar groups decrease the receptor binding affinity.  Additionally we 37 

have also performed chemical Read-Across predictions using Read-Across-v3.1 available 38 

from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, and the results for 39 

the external validation metrics were found to be better than the QSAR-derived predictions. 40 

To explore the essential features responsible for the receptor binding, pharmacophore 41 

mapping, molecular docking along with molecular dynamics simulation were also performed, 42 

and the results are in accordance with the QSAR findings.  43 

 44 

Keywords: Endocrine disruptors; Androgen receptor binding affinity; QSAR; Read-across; 45 

docking; Pharmacophore  46 

 47 

 48 

https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database
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1. Introduction 49 

It is fascinating that our brain is responsible for almost every physiological function that our 50 

body performs. The hypothalamus, also known as our “built-in thermostat” is the control 51 

centre for the endocrine system, which comprises various ductless chemical messengers 52 

commonly termed as hormones. In nature, there is existence of molecules which can 53 

potentially mimic these chemical messengers and bring about “disruption” in the normal 54 

physiological functioning of the body. Such compounds are classified as Endocrine 55 

Disrupting Chemicals (EDCs) as they mimic the natural hormones, bind to the specific 56 

receptors and bring about endocrine disruption in humans and wildlife [1-4]. In 2011, Schug 57 

et al. [5] reported that EDCs show various neurological, reproductive and cardiovascular 58 

adverse effects by interfering with the synthesis, transport, metabolism and release of 59 

hormones. However, it has also been observed that EDCs can act on transcriptional 60 

coactivators, synthesis and metabolism of steroids, non-steroidal receptors and various other 61 

mechanisms that ultimately converge to endocrine and reproductive systems [5]. The 62 

complexity in the mechanism of disruption in endocrine functions and activation of signaling 63 

pathways probably explains the reason for the lack of experimental toxicity data of EDCs [6]. 64 

As compared to estrogenic mode of disruption, little is known about how EDCs adversely 65 

affect the androgen receptors and hinders the male reproductive tract health [7]. Among 66 

various other targets, chemicals like DDTs, industrial chemical phthalates, organophosphate 67 

insecticides like parathion and herbicides of phenylurea derivatives like linuron can 68 

potentially bind to the androgen receptor and bring about disruption thus resulting in the 69 

toxicity [1].   70 

Development and maintenance of male sexual characteristics is controlled by Androgen 71 

Receptors (AR), a class of ligand-activated transcriptional regulatory protein [8]. Most 72 

androgenic EDCs perform activation of transcription through receptor mediated mechanism 73 
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[9]. Using this information, it is possible to identify the potential EDCs through the 74 

competitive binding assay at the AR. Figure S1 (Supplementary Material SI-1) represents 75 

the potential of EDCs in inhibition of the androgen receptor inside the mammalian cell.  76 

 77 

The Organization for Economic Co-operation and Development (OECD) promotes the use of 78 

in silico approaches wherever applicable. As the resources are limited, it is highly impractical 79 

to perform toxicity assessment of all EDCs against all possible end points in the exploration 80 

of different disruption mechanisms experimentally [6]. Thus, with the aim of data gap filling, 81 

efficient in silico approaches with scientifically well defined algorithms are adopted. In 82 

recent times, there has been an increase in non-testing methods which comply with the 3Rs 83 

(Reduction, Replacement and Refinement in animal experiments) in scientific 84 

experimentations [10]. Among various other non-testing methods, Quantitative Structure- 85 

Activity Relationship (QSAR) and Chemical Read-Across are two of the most widely used 86 

methods for prediction of toxicity associated with chemicals [10-11]. The advantages 87 

associated with in silico approaches in general are: a) they reduce experimental time, cost and 88 

b) they speed up obtaining the desired results. The basic concept behind regression-based 89 

QSAR lies in the development of a model consisting of the dependent variable (response) and 90 

one or more features in the molecules (independent variables) which contribute to the 91 

response values either positively or negatively and is expressed in numerical terms. Read-92 

Across, on the other hand, is performed by extrapolating the outcome of hazard identification 93 

from certain source chemicals to one or more target chemicals based on “similarity” between 94 

the source compound(s) and the target compound [11] and it does not involve the 95 

development of supervised learning models.  Both of these approaches are mainly used for 96 

two purposes: 1) to predict end point values of a completely new set of chemicals for the 97 

purpose of filling data gaps (predictive models) and 2) mechanistic and physicochemical 98 
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interpretation of the structural features in a molecule which are responsible to elicit the 99 

response [12].  100 

In the recent past, efforts have been made to predict the binding affinity of various EDCs to 101 

the androgen receptors using computational approach. Hong et al. [13] in 2003 studied the 102 

binding affinity of natural, synthetic and environmental chemicals to the androgen receptor 103 

by Comparative Molecular Field Analysis (CoMFA) (a 3D-QSAR approach), and they 104 

inferred that the steric and electronic properties of the training compounds are essential in 105 

describing the binding affinity of EDCs to the androgen receptor. In 2002, Serafimova et al. 106 

[14] studied the active formulation ingredients of pesticides and their ability to bind to the 107 

androgen receptor and performed their evaluation using COREPA method. They have 108 

utilized stereochemical properties like the inter-atomic distances between the nucleophilic 109 

sites and their charges and used them to predict the binding affinity in terms of pKi.  Piir et 110 

al. [15] in 2020 performed binary and multi-class classifications for antagonists, agonists and 111 

binders to the AR by implementing random forest classification models. They stated that the 112 

accuracy obtained in their multi-class classification was good considering the large size of the 113 

training set that they have utilized.  114 

3D-QSAR methods involve computational complexity of conformational analysis and 115 

alignment and inherit the property of being non-reproducible in nature. The novelty of the 116 

current work is predicting the binding affinity of endocrine disruptors to the androgen 117 

receptors in a quantitative and reproducible manner. The data was obtained from Endocrine 118 

Disruptor Knowledge Base (EDKB) database (https://www.fda.gov/science-119 

research/bioinformatics-tools/endocrine-disruptor-knowledge-base) thus avoiding personal, 120 

systemic or instrumental error in data collection. It was then divided into a modeling set and a 121 

validation set based on the availability of experimental response values in terms of log RBA, 122 

where RBA stands for Receptor Binding Affinity. A regression-based 2D-QSAR model was 123 

https://www.fda.gov/science-research/bioinformatics-tools/endocrine-disruptor-knowledge-base
https://www.fda.gov/science-research/bioinformatics-tools/endocrine-disruptor-knowledge-base
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generated using the modeling set, and subsequently similarity-based chemical Read-Across 124 

was also performed.  The reliability of both of the approaches was evaluated using various 125 

strict validation metrics. The physicochemical interpretation of different possible mechanisms 126 

influencing the binding of EDCs to the androgen receptor were also discussed and reported 127 

which can ultimately help a chemist recognize the features in a molecule that has potential to 128 

cause androgen receptor toxicity. In support of this theory, pharmacophore mapping was also 129 

performed to serve the purpose of screening of the features in a molecule which contribute to 130 

AR binding affinity. Analysis of the binding of the ligand to the various amino acid residues 131 

in the receptor was also done with the help of molecular docking and the stability of such 132 

binding was evaluated using molecular dynamics (MD) simulation at 100 ns.  133 

 134 

2. Materials and methods 135 

2.1 Collection of Androgen Receptor Binding Affinity data of EDCs and curation of their 136 

structures 137 

The androgen Receptor Binding Affinity (RBA) data of various EDCs were collected from 138 

the Endocrine Disruptor Knowledge Base (EDKB) database (https://www.fda.gov/science-139 

research/bioinformatics-tools/endocrine-disruptor-knowledge-base) obeying the strict OECD 140 

guidelines. The chemical structures downloaded from PubChem database 141 

(https://pubchem.ncbi.nlm.nih.gov/) in .sdf format were represented in Marvin Sketch  142 

(https://chemaxon.com/products/marvin) software. Chemical curation of our compounds was 143 

performed by the application of a KNIME workflow (https://sites.google.com/site/dtclabdc/) 144 

taking the single .sdf file as input. Further details are available in Supplementary Material 145 

SI-1. 146 

 147 

2.2 Calculation of molecular descriptors and data pre-treatment 148 

https://www.fda.gov/science-research/bioinformatics-tools/endocrine-disruptor-knowledge-base
https://www.fda.gov/science-research/bioinformatics-tools/endocrine-disruptor-knowledge-base
https://pubchem.ncbi.nlm.nih.gov/
https://chemaxon.com/products/marvin
https://sites.google.com/site/dtclabdc/
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Descriptors are certain properties in a molecule encoded in numerical terms which can be 149 

handled statistically. Two molecules are said to be “identical” or 100% similar if they have 150 

identical set of descriptor values. The descriptors for our curated compounds were calculated 151 

using alvaDesc v2.0.6 [16]. To enhance simplicity in the interpretation of the developed 152 

model, we have used only selected classes of descriptors (Supplementary Material SI-1). 153 

The inter-correlated descriptors having correlation values >0.95 and variance cut-off 0.00001 154 

were removed using the Java-based tool Data Pretreatment GUI 1.2 available from 155 

https://dtclab.webs.com/software-tools.  156 

 157 

2.3 Dataset division and model development 158 

Dataset division into training and test sets during a QSAR model development ensures the 159 

models’ predictive ability. In the present study, the available data set was segregated into two 160 

classes: 1) the modeling set which comprises the compounds having reported response values 161 

in terms of log RBA and 2) the validation set consisting of compounds for which the response 162 

values were not reported. We have eliminated six compounds from our modeling set due to 163 

their aberrant nature of activity. The reduced modeling set was taken as an input for the java-164 

based software tool DTC-QSAR v1.0.5 (https://dtclab.webs.com/software-tools), where we 165 

performed division into training and test sets in 70:30 ratios based on Euclidean Distance 166 

method [17], and feature selection was done by employing Genetic Algorithm technique [18]. 167 

The descriptors obtained from the set of GA-MLR models were then pooled and the best 168 

descriptor combinations from all possible models were obtained by using Best Subset 169 

Selection (BSS) v2.1 available from https://dtclab.webs.com/software-tools. The Best Subset 170 

Selection tool generates models based on all possible combination of descriptors, and one can 171 

select the best models based on validation metrics like 𝑟2, 𝑄𝐿𝑂𝑂
2 , 𝑀𝐴𝐸95%, 𝑄𝐹1

2  and 𝑄𝐹2
2 . To 172 

nullify the inter-correlation among descriptors, the final Partial Least Squares (PLS) 173 

https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
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regression model was obtained with the best descriptor combination taking three latent 174 

variables, and various internationally accepted validation metrics were calculated [19-20] 175 

(Supplementary Material SI-1).  176 

 177 

2.4 DModX Applicability Domain Plots 178 

The Applicability Domain can be termed as a theoretical region in chemical space which 179 

surrounds both the descriptors and response [21]. The distance to model in X-space (DModX) 180 

approach was implemented to check the applicability domain of the model. 181 

  182 

2.5 Similarity based Read-Across prediction 183 

What differentiates Read-Across approach from classical QSAR is that Read-Across is 184 

entirely a similarity-based approach which does not involve the development of a statitstical 185 

model. QSAR models become statistically unreliable when there are limited number of data 186 

points [11] and contrastingly, read-across approach not being a hardcore statistical approach 187 

tends to yield better results even for small datasets and thus can be aimed for data gap filling. 188 

In the present work, after performing feature selection, we have divided the training set 189 

compounds into sub-training and sub-test sets based on Euclidean distance-based division. 190 

These sets were further used for hyperparameter optimisation in the Read-Across-v3.1 191 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) tool. The optimised 192 

hyperparameters were then used for the original training and test set files as input.  193 

 194 

2.6 3D-Pharmacophore mapping 195 

In this investigation, 3D-Pharmacophore mapping was implemented to explore the potential 196 

features that are crucial for the interaction at the active site of the androgen receptor. The 197 

receptor binding affinity (RBA) expressed as logRBA was used as the dependent variable to 198 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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develop the pharmacophore models. Molecules prepared for the 2D-QSAR model 199 

development were used for this study. The dataset was rationally divided into training (30 200 

compounds for hypothesis development) and test (115 compounds for validation) sets based 201 

on the logRBA values spanning four orders of magnitude. 3D-Pharmacophore modeling was 202 

performed using HypoGen algorithm as embedded in Biovia Discovery Studio Client 4.1 203 

client [22] following the protocol as discussed by Kumar et al. [23]. Details of the protocol 204 

performed for 3D-Pharmacophore modeling is provided in Supplementary Material SI-1. 205 

Validation of the obtained models was executed using different parameters such as cost 206 

analysis, the Fischer randomization test (F-test), and test set prediction to evaluate the 207 

robustness and predictive ability of models as discussed by Kumar et al. 2020 [23]. 208 

 209 

2.7 Molecular docking study 210 

Molecular docking study was performed to predict the potential of complex formation and 211 

explore the binding mode of the compounds showing the highest and lowest binding affinity 212 

to the androgen receptor. The crystal structure of the protein was extracted from the protein 213 

databank by the PDB ID: 3G0W [24] (available from https://www.rcsb.org/structure/3G0W). 214 

A rigid docking approach was applied using the CDOCKER with a grid-based protocol [25] 215 

for the aim of the receptor-ligand interaction, as prompted in Biovia Discovery Studio Client 216 

4.1 client [22] following the protocol as discussed by Kumar et al. [23]. Details of the 217 

protocol performed for molecular docking is provided in Supplementary Material SI-1. 218 

After molecular docking, the docked inclusion complexes with the best ranked CDOCKER 219 

interaction energy and bond formation between compounds and active amino acid residues 220 

were chosen for the detailed interpretation and correlation. We have also validated the 221 

docking protocol by redocking the bound ligand at the protein's active site (Figure S2) 222 

(Supplementary material SI-1) and calculating the RMSD (Figure S3) (Supplementary 223 

https://www.rcsb.org/structure/3G0W
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material SI-1) with the bound ligand and the redocked ligand. The ligplot shows the number 224 

of interactions and active amino acids responsible for the important interaction in the crystal 225 

structure of androgen receptor and with their bound ligand. 226 

 227 

2.8 Molecular dynamics (MD) simulation and MM/GBSA-Binding energy calculation 228 

Further to study the stability of ligand-receptor complex at biological conditions, molecular 229 

dynamics simulation at 100ns was performed [26-29], and receptor binding affinity using 230 

MM/GBSA [30] method was calculated. 231 

 232 

The whole workflow of multiple cheminformatic applications applied to the ARB data set has 233 

been depicted pictorially in Figure 1. 234 

 235 

Figure 1. Schematic representation of the workflow of cheminformatic applications used in 236 

this study. 237 

 238 

3. Results & Discussion 239 

3.1 2D-QSAR analysis 240 
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The modeling data set has been provided in an Excel sheet in the Supplementary Material 241 

SI-2. The training set comprises 103 EDCs that were used for model development while the 242 

test set comprises 44 EDCs that were used for prediction and external validation. The final 243 

PLS equation with three Latent Variables is shown in Eq. (1). The descriptors have been 244 

mentioned in the descending order of importance as per the Variable Importance Plot (Figure 245 

2). 246 

 247 

𝐿𝑜𝑔𝑅𝐵𝐴 = −3.23 + 0.49 × 𝑆𝑠𝑠𝑠𝐶𝐻 − 0.41 × 𝑀𝑎𝑥𝑎𝑎𝐶𝐻 + 0.23 × 𝑛𝐶𝑐𝑜𝑛𝑗 + 0.35 ×248 

𝐿𝑜𝑔𝑃99 − 0.17 × 𝐹10[𝐶 − 𝑂] + 0.06 × 𝑚𝑖𝑛𝑠𝑂𝐻 + 0.06 × 𝑁% + 0.67 × 𝐹08[𝑂 − 𝐹]                                                                    249 

                                                                                                                                       (1) 250 

𝑅(𝑇𝑅𝐴𝐼𝑁)
2 = 0.74, 𝑄(𝐿𝑂𝑂)

2 = 0.68, 𝑄𝐹1
2 = 0.58, 𝑄𝐹2

2 = 0.58 251 

 𝑆𝑐𝑎𝑙𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑚
2(𝑇𝑟𝑎𝑖𝑛) = 0.57, 𝑆𝑐𝑎𝑙𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑚

2(𝑇𝑒𝑠𝑡) = 0.50 252 

 𝑆𝑐𝑎𝑙𝑒𝑑 𝑑𝑒𝑙𝑡𝑎 𝑟𝑚
2(𝑇𝑟𝑎𝑖𝑛) = 0.18, 𝑆𝑐𝑎𝑙𝑒𝑑 𝑑𝑒𝑙𝑡𝑎 𝑟𝑚

2(𝑇𝑒𝑠𝑡) = 0.07 253 

 𝑀𝐴𝐸(𝑇𝑅𝐴𝐼𝑁) = 0.46, 𝑀𝐴𝐸(𝑇𝐸𝑆𝑇) = 0.54, 𝑛(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 103, 𝑛(𝑇𝑒𝑠𝑡) = 44 254 

 255 

The statistical quality and internal and external validation metric values of the QSAR model 256 

are satisfactory considering the diversity and heterogeneity of the data set. The descriptors 257 

selected in the QSAR model are detailed below (Figure S4 in Supplementary Materials SI-258 

1). The different plots [10] related to the PLS model are provided in Figures S5-S9 in 259 

Supplementary Materials SI-1. 260 

 261 

3.1.1 Descriptors contributing to Hydrophobicity 262 

In the final PLS model, we have obtained a total set of 6 descriptors contributing positively to 263 

the response out of which some are responsible for directly influencing the hydrophobic 264 

properties of the molecules (e.g., LOGP99, SsssCH, nCconj, F08[O-F]) while some induce 265 
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hydrophobicity indirectly (e.g., minsOH). The SsssCH descriptor stands for sum of E-states 266 

of sssCH (tertiary carbon atoms) [31]. In this data set, the compounds containing a sterioidal 267 

(cyclopentanoperhydrophenathrene) nucleus shows higher values for this descriptor. This 268 

suggests that for a higher receptor binding affinity, presence of the steroidal nucleus is 269 

preferred. The present dataset includes 5α-Androstan-17β-ol (23) which has a higher SsssCH 270 

descriptor value and shows a higher receptor binding affinity, as compared to 4-271 

Hydroxybiphenyl (148) which is devoid of tertiary carbon atoms (Figure 2). The nCconj 272 

descriptor signifies the number of non-aromatic conjugated carbons (sp2), and it positively 273 

correlates with the response values as in the case of Trenbolone (157), which has a higher 274 

number of non-aromatic conjugated carbon atoms (sp2) thus resulting in enhanced receptor 275 

binding affinity while in case of Aldrin (No. 176), where the sp2 carbons are not in 276 

conjugation, exhibit a much lower receptor binding affinity. In the steroidal structures of the 277 

data set, the descriptor nCconj actually signifies the importance of the conjugated enone 278 

moiety in ring A (like 67), as the keto group at 3 position serves as an hydrogen bond 279 

acceptor (see molecular docking in a later section). The descriptor LOGP99 stands for 280 

Wildmann-Crippen octanol-water partition coefficient, and it positively contributes to the 281 

response values, as an increase in the o/w partition coefficient value increases the lipid 282 

solubility. For instance, Dihydrotestosterone benzoate (134) has a high LOGP99 value, and 283 

thus has a higher receptor binding affinity compared to Diethyl phthalate (34) which has a 284 

lower partition coefficient value. The descriptor minsOH stands for minimum E-state of the 285 

sOH hydroxyl group [31]. This can be attributed to the inherent property of the hydroxyl 286 

groups to be able to form hydrogen bond interactions with the receptor residues in an 287 

appropriate location [32] and thus contributes to the enhancement in the receptor binding 288 

affinity of the molecule. A higher minsOH value also signifies that there is a large 289 

hydrophobic moiety attached to the hydroxyl group, thus bulkiness of the structure also 290 
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contributes to the overall hydrophobic property. The presence of OH group at a desired 291 

location as well as its attachment to a bulky moiety in Norgestrel (67) is the reason for its 292 

high receptor binding affinity whereas the molecule Aldrin (176) lacks the hydroxyl group 293 

and results in lower receptor binding affinity. N% denotes the percentage of nitrogen present 294 

in the molecular structure, and it shows a positive contribution to the response. In a previous 295 

work, Zhou et al. stated that nitrogen in the form of primary amino group can be 296 

accommodated in the same location as the hydroxyl group (probably due to the bio-isosteric 297 

nature of O and NH) and thus can actively participate in hydrogen bonding with the receptor 298 

residues like Asn705 [33] resulting in enhanced receptor binding affinity, as also 299 

demonstrated in our model. Due to the presence of Nitrogen in Carbaryl (72), it exhibits 300 

slightly higher receptor binding affinity than Bis(n-octyl) phthalate (114) which is devoid of 301 

nitrogen atoms. The descriptor F08[O-F] stands for frequency of O and F atoms at the 302 

topological distance of 8. The presence of F atoms can induce polarity, but the presence of O 303 

at the topological distance of 8 suggests that the compounds are bulky in nature, thus 304 

overshadowing the polar effects with the hydrophobic properties contributed due to bulkiness 305 

of the structure. Presence of a lipophilic -CF3 group in Hydroxyflutamide (187) ensures 306 

higher receptor binding affinity while 17α-Estradiol (7) is devoid of CF3 atoms and does not 307 

tend to bind well to the receptor.   308 

 309 

3.1.2 Descriptors contributing to Polarity and Electron Richness 310 

Out of the total 8 descriptors obtained in our model, two of them correlate negatively to the 311 

response values and induce polarity and electron richness to the molecules. One of the 312 

descriptors is MaxaaCH, which stands for maximum E-state of aaCH (aromatic CH groups) 313 

[31]. This is probably due to the fact that aromatic compounds are comparatively more polar 314 

than their alicyclic counterparts. This can be observed in 3-methyl-estriol (102) with an 315 
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aromatic ring showing reduced receptor binding affinity as compared to 3β-Androstanediol 316 

(183) which is devoid of any aromatic ring and thus exhibiting higher receptor binding 317 

affinity. The other descriptor is F10[C-O] which stands for frequency of C and O at the 318 

topological distance 10. This descriptor depicts the presence of polar functionalities like 319 

hydroxyl, ether or ester groups. It is to be noted that the hydroxyl group as minsOH 320 

contributes positively to the receptor binding affinity due to its ability to form a hydrogen 321 

bond at a desired location while attached to a bulky scaffold. Therefore, it can be concluded 322 

that F10[C-O] descriptor actually acts to compensate that effect with the polar effects of OH 323 

and this can be confirmed with the near-equal and opposite values of the standardized 324 

coefficients of both these descriptors in our PLS model. Our dataset contains Dexamethasone 325 

(75) which shows lower receptor binding affinity than Triphenylethylene (4) as the latter 326 

lacks polar functionalities like hydroxy, ether or ester groups.  The hydrogen bond donor 327 

group should be present at a specific position like 17 position of the steroidal nucleus as in 328 

5α-Androstan-17β-ol (23) to participate in the hydrogen bonding interaction with the receptor 329 

functionalities (see Molecular Docking in a later section). Presence of polar functionality at 330 

any other locations decrease the RBA. 331 

 332 

 333 

 334 

 335 

 336 

 337 
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 338 

 339 

Figure 2. Variable Importance Plot. Structures of representative compounds having higher 340 

and lower values of individual descriptors are also shown 341 

 342 

3.1.3 Predictions for the validation set  343 

Prediction of the receptor binding affinities for the compounds which constitute the validation 344 

set was performed using a java-based software tool Prediction Reliability Indicator (PLS 345 

Version) [34] available from https://dtclab.webs.com/software-tools. The results obtained 346 

https://dtclab.webs.com/software-tools
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depicts that out of the 55 compounds, 12 were outside the applicability domain with 347 

Bad/Unreliable prediction quality and among the remaining 43 compounds, two of them have 348 

moderate prediction quality and the others have good prediction quality. The results of this 349 

prediction is provided in an Excel sheet in the Supplementary Material SI-2. 350 

 351 

3.2 Chemical Read-Across results 352 

After QSAR model development, the same training and test set compounds were taken as 353 

inputs for quantitative Read-Across-based predictions using the same input features as 354 

descriptors, while implementing three different similarity functions: the Euclidean Distance-355 

based, the Gaussian Kernel Similarity-based and the Laplacean Kernel Similarity-based 356 

predictions, and after optimization of the hyper-parameters, it was found that the external 357 

validation results obtained from quantitative Read-Across algorithm using Gaussian Kernel 358 

Similarity-based functions were better compared to the results obtained using QSAR and also 359 

the other two read-across approaches (Figure S10) (Supplementary Material SI-1). The 360 

higher values of 𝑄𝐹1
2  (0.64), 𝑄𝐹2

2  (0.64) and lower 𝑀𝐴𝐸(𝑇𝐸𝑆𝑇)(0.47) in Read-Across suggest 361 

that predictive ability of the Read-Across algorithm was even better for predictions as 362 

compared to the classical QSAR approach. It appears that the local similarity-based approach 363 

gives better predictions over model-derived predictions obtained from the whole training data 364 

set. The results of this prediction is provided in an Excel sheet in the Supplementary 365 

Material SI-2. 366 

 367 

3.3 Comparison of present 2D-QSAR and Read-Across with previous models 368 

We have developed here an easily reproducible and transferable 2D-QSAR model using 369 

simple interpretable descriptors. Hong et al. [13] employed Comparative Molecular Field 370 

Analysis (CoMFA) (a 3D-QSAR approach) by taking similar number of data points and the 371 
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corresponding quality and validation metrics were 𝑟2 = 0.902 and 𝑞2 = 0.571 which 372 

suggests that their model is less robust due to a high difference between 𝑟2 and 𝑞2 values. 373 

Also it is important to note that CoMFA methodology requires conformation analysis and 374 

alignment of the molecules making the results less reproducible. Piir et al. [15] applied 375 

binary and multi-class classification techniques generating only qualitative results whereas 376 

our model generates quantitative predictions. Thus, it can be concluded that our model is 377 

robust, predictive (due to acceptable values of the external validation metrics) and 378 

reproducible. Table 1 depicts how our QSAR model and Read-Across based predictions 379 

supersedes the previous results in the quantitative prediction quality. 380 

 381 

Table 1: Comparison with the previous studies 382 

Authors Method 𝒏(𝑻𝒓𝒂𝒊𝒏) 𝒏(𝑻𝒆𝒔𝒕) End 

Point 

𝑹𝟐 𝑸𝟐 𝑸𝑭𝟏
𝟐  𝑸𝑭𝟐

𝟐  Inference 

Hong et 

al. [13] 

3D-QSAR 

(CoMFA) 

(Regression) 

146 8 logRBA 0.90 0.57 - - Less robust, 

non-

reproducible 

Piir et al. 

[15] 

Classification-

based QSAR 

1688 5273 AR 

Activity 

- - - - Graded 

predictions 

only 

Our 

work 

2D-QSAR 

(Regression) 

103 44 logRBA 0.74 0.68 0.58 0.58 Robust, 

Predictive, 

Reproducible 

Our 

work 

Quantitative 

Read-Across 

103 44 logRBA - - 0.64 0.64 Predictive, 

Reproducible 

 383 
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3.4 3D Pharmacophore modeling analysis 384 

In this analysis, we have developed ten different 3D- pharmacophore hypotheses from a 385 

training set of 30 compounds. The robustness of the generated models in terms of fitness, 386 

stability, classical fitness metrics, and predictability was examined using stringent validation 387 

metrics. In terms of internal validation, all the developed models were showing excellent 388 

results, thus for the selection of the best hypothesis, we have checked the performance on the 389 

test set. External validation of the developed models was implemented by mapping the test 390 

set compounds with the same settings applied for the pharmacophore generation by the FAST 391 

method. After analysis (Table S1) (Supplementary Material SI-1), Hypo-8 was found to be 392 

the best one among the ten hypotheses with one Hydrogen bond acceptor (HBA), two 393 

Hydrophobic (HYD), and one Hydrogen bond donor (HBD) features (Figure S11) 394 

(Supplementary Material SI-1). In terms of internal validation, the best pharmacophore 395 

model (Hypo 8) was obtained (Table S1) (Supplementary Material SI-1) in the cost 396 

analysis with a higher correlation coefficient (R: 0. 757), total cost (329.866), maximum fit 397 

(10.809), configuration cost (12.097) and higher cost difference (287.88). These values stated 398 

that the selected model was appropriate in terms of internal quality metrics. After mapping, 399 

we found that 27 compounds from the data set were correctly mapped and predicted, whereas 400 

88 compounds were not mapped due to the absence of features found in the select 401 

pharmacophore model. Out of these 88 compounds, 79 compounds have the ARB affinity 402 

lower than the training set mean suggesting that these are low affinity compounds due 403 

absence of the required pharmacophoric features (and hence not mapped).  The observed and 404 

predicted values of the training and test set molecules obtained from the analysis using Hypo-405 

8 are given in Sheets 2 and 3 (Supplementary Material SI-3). We have developed a Java-406 

based software tool Klassification1.0 for calculating the classification metrics and the tool is 407 

now made available online at https://sites.google.com/jadavpuruniversity.in/dtc-lab-408 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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software/home. The test set statistics are based only on the mapped compounds.  The Fisher 409 

validation test confirms the non-randomness of the selected pharmacophore (Hypo-8) model. 410 

The total correlation and cost values obtained from the original and randomized models of the 411 

hypothesis for the Fisher validation test are stated in Sheets 4 and 5 in the Supplementary 412 

Material SI-3. Additionally, the validated pharmacophore model was used to estimate the 413 

affinity of the external dataset of 55 compounds, with no quantitative observed response 414 

values in the source file. After prediction, we have found that only 13 compounds were 415 

correctly mapped and predicted, whereas 42 compounds were not mapped due to the absence 416 

of features found in the select pharmacophore model, out of the listed 55 compounds (see 417 

Sheet 6 in Supplementary Material SI-3). We have also predicted the 6 compounds omitted 418 

from the original dataset because of their outlier behavior in the initial modeling (2D-QSAR) 419 

exercises. After prediction, we have found that only 4 compounds were properly mapped and 420 

estimated and whereas 2 compounds were not mapped due to the absence of features found in 421 

the select pharmacophore model (see Sheet 7 in Supplementary Material SI-3).  422 

 423 

3.5 Molecular docking analysis 424 

3.5.1 Molecular docking analysis of the compounds with the highest and lowest binding 425 

affinities from the dataset 426 

We have implemented the molecular docking using the three compounds with the highest 427 

ARB (compound 157, 193, and 207) and three compounds with the lowest ARB (compound 428 

34, 87, and 114) from the whole dataset, to explore the potential interactions at the active 429 

pocket of androgen receptor. The detailed information of docking interactions, CDOCKER 430 

interaction energy, and their correlation with the features derived from the developed best 431 

2D-QSAR model are illustrated in Table S2 in Supplementary Material SI-1.  432 

 433 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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3.5.1.1 Molecular docking analysis of the compounds with the highest binding affinity 434 

from the dataset 435 

One of the highest ARB compounds from the dataset is compound 157, which interacted with 436 

the active site pocket of the receptor (Figure 3) via hydrogen bonding with the amino acid 437 

residues ASN A: 705, ARG A: 752 in the distance of 1.95, 2.79 and 2.20 Å respectively, π-438 

alkyl hydrophobic bond with amino acid residue PHE A: 764 in the distance of 5.34 Å, and 439 

alkyl hydrophobic bonding with the amino acid residues LEU A: 704, MET A: 742, MET A: 440 

745, LEU A: 873 in the distance of 4.81, 4.73, 5.21, 5.36, 4.40, 5.11, 5.10 Å respectively. 441 
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 442 

Figure 3. Molecular docking interactions and correlation with pharmacophore model of the 443 

compound with the highest binding affinity (Compound 157, 193, 207) from the dataset. 444 
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 445 

The next highest ARB compound in this series from the dataset is compound 193, which 446 

interacted with the active site pocket of the receptor (Figure 3) via hydrogen bonding with 447 

the amino acid residues ARG A: 752, ASN A: 705, LEU A: 701 in the distance of 2.02, 2, 448 

3.08 Å respectively, π-alkyl hydrophobic bond with amino acid residue PHE A: 764 in the 449 

distance of 4.92, 4.59 Å, and alkyl hydrophobic bonding with the amino acid residues MET 450 

A: 742, MET A: 745, MET A: 787, MET A: 780, LEU A: 873, LEU A: 704 in the distance of 451 

5.14, 4.67, 5.49, 5.26, 5.02, 5.09, 4.48, 5.27, 4.63, 5.28, 4.32, 4.19 Å respectively.  452 

 453 

The third highest ARB compound from the dataset is 207, which interacted with the active 454 

site pocket of the receptor (Figure 3) via hydrogen bonding with the amino acid residues 455 

ASN A: 705, ARG A: 752 in the distance of 2.82, 2.23 Å respectively, π-alkyl hydrophobic 456 

bond with amino acid residue PHE A: 764 in the distance of 5.39 Å, and alkyl hydrophobic 457 

bonding with the amino acid residues LEU A: 704, MET A: 780, MET A: 745, LEU A: 873, 458 

MET A: 742 in the distance of 3.14, 4.76, 5.45, 5.12, 4.40, 4.65, 4.93, 5.43, 5.28 Å 459 

respectively.  460 

 461 

The molecular docking analysis of the compounds with the lowest binding affinity from the 462 

data set is given in Figures S12-S14 in Supplementary Material SI-1. The results of 463 

molecular dynamic simulation are also given in Supplementary Material SI-1.  464 

 465 

3.6 Correlation of the 3D-pharmacophore model with the molecular docking analysis, 466 

2D QSAR, and Read-across models 467 

We have mapped the highest and least ARB compounds from the data set using the selected 468 

pharmacophore model (Hypo 8) and superimposed the mapped highest ARB compounds in 469 
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the pharmacophore with its docking interaction showing important amino acids (Figure 3). 470 

From Figures S15 and S16 (Supplementary Material SI-1) we can see that the highest 471 

ARB compounds of the dataset set 157 (logRBA: 2.05) and 193 (logRBA: 2.27) mapped 472 

entirely on Hypo-8 with all of the three features appearing in the model. From Figures S15, 473 

S16, and 3 we can see that B and C rings of the steroid nucleus lie in the hydrophobic region 474 

and interact with hydrophobic amino acids (MET A: 745, PHE A: 764, MET A: 742, LEU A: 475 

704) via alkyl and π-alkyl bonding (hydrophobic bond), ketone group is in the hydrogen bond 476 

acceptor region, interacting with the ARG A: 752 amino acid by hydrogen bond and hydroxy 477 

group lies in the hydrogen bond donor region, interacting with ASN A: 705, LEU A: 701 478 

amino acids via hydrogen bond. These features are well corroborated with the SsssCH, 479 

nCconj, LOGP99, and minsOH descriptors of the 2D-QSAR models and Read-across 480 

hypotheses. On the other hand, the least ARB compounds of the dataset set do not map 481 

entirely due to the lack of hydrogen bond donor feature in the case of compound 34 (logRBA: 482 

-3.44) (Figure S17 in Supplementary Materials SI-1) and hydrogen bond acceptor in case 483 

of compound 92 (logRBA: -3.15) (Figure S18 in Supplementary Materials SI-1). Thus, we 484 

can conclude from the above discussion that the absence of any of these three features in 485 

compounds reduces the receptor binding affinity against androgen receptor. 486 

 487 

 488 

 489 

. 490 

 491 

 492 

 493 

 494 
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4. Overview and Conclusion 495 

This study reports a highly robust, reproducible, easily interpretable and sufficiently 496 

predictive regression-based 2D-QSAR model which is developed in accordance to the OECD 497 

guidelines. This model predicts that various structural features like o/w partition coefficient, 498 

bulkiness of the structure, presence of a steroid (cyclopentanoperhydrophenanthrene) 499 

nucleus, number of non-aromatic conjugated carbon (sp2) and hydrogen bonding to the 500 

specific receptor residues contribute positively to the receptor binding affinity leading to the 501 

toxicity while features like aromaticity in a molecule and presence of polar functionalities 502 

like hydroxyl, ether or ester groups at additional locations in the structures lower receptor 503 

binding affinity. The similarity-based Quantitative Read-Across approach was also 504 

implemented according to the Gaussian-kernel similarity function using an java-based 505 

software tool, and it was found that the predictive ability of the Read-Across approach 506 

supersedes that of the QSAR approach as the external validation metrics were slightly better 507 

in the Read-Across based predictions. The response values of our validation set were 508 

calculated using the Prediction Reliability Indicator tool (https://dtclab.webs.com/software-509 

tools) thus making a successful attempt to data gap filling. Pharmacophore mapping was done 510 

to screen the essential features, and it was found that a hydrogen bond acceptor, two 511 

hydrophobic and one hydrogen bond donor features are essential for receptor binding affinity. 512 

This information was supported by performing molecular docking analysis and it was found 513 

that the molecules having highest receptor binding affinity possess all the three different 514 

features that our pharmacophore hypothesis suggested. Furthermore, the docking results 515 

explained the possible amino acid residues present at the surface of the androgen receptor 516 

interacting with the compounds resulting in greater receptor binding affinity of the ligand. 517 

Additionally, to demonstrate the receptor binding at the biological conditions, Molecular 518 

Dynamics Simulation was performed. We believe that our developed QSAR model and read-519 

https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
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across approach will be useful in the screening of compounds with lower androgen receptor 520 

binding affinity and will possibly tend to reduce environmental hazards.  521 
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