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Abstract 

Chemical space is a powerful, general, and practical conceptual framework in drug discovery and other 

areas in chemistry that addresses the diversity of molecules and it has various applications. Moreover, 

chemical space is a cornerstone of chemoinformatics as a scientific discipline. In response to the 

increase in the set of chemical compounds in databases, generators of chemical structures, and tools to 

calculate molecular descriptors, novel approaches to generate visual representations of chemical space 

in low dimensions are emerging and evolving. Such approaches include a wide range of commercial and 

free applications, software, and open-source methods. Herein, the current state of chemical space in 

drug design and discovery is reviewed. The topics discussed herein include advances for efficient 

navigation in chemical space, the use of this concept in assessing the diversity of different data sets, 

exploring structure-property/activity relationships for one or multiple endpoints, and compound library 

design. Recent advances in methodologies for generating visual representations of chemical space have 

been highlighted, thereby emphasizing open-source methods. It is concluded that quantitative and 

qualitative generation and analysis of chemical space require novel approaches for handling the 

increasing number of molecules and their information available in chemical databases (including 

emerging ultra-large libraries). In addition, it is of utmost importance to note that chemical space is a 

conceptual framework that goes beyond visual representation in low dimensions. However, the graphical 

representation of chemical space has several practical applications in drug discovery and beyond.  
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List of abbreviations: 2D, two-dimensional; 3D, three-dimensional; AI, artificial intelligence; CLNs, 

chemical library networks; ECFPs, extended connectivity fingerprints; MACCS, molecular access 

system; ML, machine learning; MQN, molecular quantum number; NPs, natural products; PCA, principal 

component analysis; SOM, self-organizing map; SP(A)R, structure-property (activity) relationships; t-

SNE, t-distributed stochastic neighbor embedding. 

 

1. Introduction  

Chemical space occasionally referred to in the literature as the “chemical universe” [1] is a concept that 

has become significant in chemoinformatics as an independent theoretical discipline [2]. Chemical space 

refers to all possible molecules and multi-dimensional conceptual spaces representing their structural 

and functional properties. In other words, chemical space is a contraction of the "chemical descriptor 

vector space" defined by the numerical vector D encoding molecular structure and/or property aspects as 

elements of the descriptor vector D. Therefore, and in contrast to cosmic space, chemical space is not a 

physical space and is not unique, because anyone is free to customize its vector space based on 

structural and functional properties.  Indeed, structural and functional representation is arguably the most 

relevant feature in virtually all chemoinformatics or computational studies [3]. 

Applications of chemical space concept have progressed from drug discovery to other areas in 

chemistry, including organic synthesis, food chemistry, and material sciences, to name a few examples 

reviewed in the literature [4–6]. A key distinction between the different types of the systematic 

representations of chemical spaces in compound datasets lies in the type of properties or descriptors 

that are used to represent the compounds of interest. For instance, the nature of the descriptors used to 

represent small organic molecules is typically different from that describing chemicals with applications in 

material sciences. In some instances, the qualitative concept of chemical space is actively used to guide 

drug discovery projects; however, developing a consistent method to visually represent chemical space 

remains elusive because of the challenge in generating a consistent manner of representing chemical 

structures. A typical method employed in this area includes analyzing the chemical space of metal-

containing compounds [7]. 

Initially, in drug discovery, chemical space concept proved useful to understand and generate 

knowledge of the pharmacokinetic properties and molecular diversity of biologically relevant compounds 

[8,9]. As the number of chemical compounds and their information in databases increased, more 
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sophisticated molecular descriptors and visualization techniques were developed to expand their 

applications. For instance, explorations of chemical space have considerably improved our 

comprehension of biology and led to the development of several tools for investigating structure-property 

and structure-activity relationships (SPR, SAR, and SP(A)R) [10]. In addition, this concept has raised 

interesting questions regarding the estimated size of chemical space, and has motivated several 

research groups to enumerate large libraries of virtual compounds [11,12]. Recently, the availability of 

software libraries and the rise of artificial intelligence (AI) [13] have led to the emergence of several tools 

that integrate machine learning (ML) methods as versatile tools to design, generate, and visualize the 

chemical space of small molecules [14]. 

Most chemoinformatics tools use two discrete procedures to represent chemical space: (i) calculation 

of molecular descriptors and (ii) projection from descriptor space into a two-dimensional (2D) plane or 

three-dimensional (3D) volume using one of the several known techniques [15]. The descriptors can be 

selected from the structure (constitution, configuration, and conformation) or properties (physical, 

chemical, and biological) of the molecules present. The types of descriptors guide the interpretations and 

predictions that can be made [16]. Therefore, descriptors based on physicochemical properties have 

been widely used to encode absorption, distribution, metabolism, and excretion properties that play an 

important role in determining the characteristics of therapeutic agents, such as absorption, solubility, and 

permeability through the membrane [17]. Other commonly used molecular representations are 

fingerprint-based descriptors in which the Molecular Access System (MACCS) Keys [18] and Extended 

Connectivity Fingerprints (ECFPs) [19] are among the most widely used methods to assess the structural 

diversity of small organic molecules. To improve the visual representation of chemical space and expand 

its application to larger compounds such as peptides, oligonucleotides, and complex carbohydrates, 

Capecchi et al. recently proposed the MAP4 (MinHashed Atom-Pair fingerprint up to four bonds) 

molecular fingerprint that, in principle, can encode compounds of virtually any size [20]. MAP4 combines 

substructure and atom-pair concepts to capture global and specific characteristics of the molecular size 

and shape, which are captured by the bond distance information encoded into the MAP4. 

To generate graphical representations of chemical space, coordinate- [16] and cell-based [21] 

approaches have been developed. Recently, molecular networks have been recommended for 
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https://paperpile.com/c/14zs76/Z57c8
https://paperpile.com/c/14zs76/gQ653
https://paperpile.com/c/14zs76/gsnvT
https://paperpile.com/c/14zs76/Ui0bL
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https://paperpile.com/c/14zs76/Z57c8
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addressing the dimensionality problem [22,23]. Because it is complicated to visualize multidimensional 

spaces, coordinate-based approaches usually rely on dimensionality reduction techniques to transform 

high-dimensional data into two or three dimensions. Over the past two decades, several research groups 

have implemented different dimensionality reduction techniques to analyze chemical space. Such 

advances were extensively reviewed in a previous study [16]. The most common techniques include 

principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) [24], and self-

organizing map (SOM) [25]. Previous studies have discussed the exploration of SPR in the context of 

chemical spaces [10]. 

The objective of this manuscript is to review recent advances in methodologies for generating low-

dimensional visual representations of chemical spaces. We emphasize on freely available and open-

source methods. Despite the concept of chemical space having broad applicability in several areas of 

chemistry, including in organic and  inorganic molecules (for instance, metallodrugs used in drug 

discovery [7]), this review focuses on the development and applications of chemical space to small 

organic compounds. It is expected that some of these methods can be extended or adapted to explore 

chemical space of other types of compounds. Using an analogy with the concept of a multiverse in 

cosmology, regions in the universe detached from one another exhibit distinct properties [26], and the 

systematic description of different types of chemical compounds with varying properties (metal-

containing molecules, larger chemical compounds relevant in polymers, material science, and 

biochemistry) can be increased to chemical multiverses. 

 

2. State-of-the-art applications of chemical space  

The concept of chemical space has several practical applications. In this study, we organized the 

applications into four categories: selection of molecules from existing compound libraries, analysis of 

molecular diversity, SP(A)R, and library design (i.e., to assist the expansion of the chemical libraries). 

 

2.1. Navigation of chemical space: selection of compounds from existing libraries  

The identification of biologically relevant starting points within a vast chemical space is a particularly 

relevant task in designing compound collections and selecting compounds from existing libraries for 

computational and/or experimental screening. Although it is not an easy task, it is possible to utilize the 
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fact that the physicochemical and biological properties of molecules are associated with their molecular 

structures. This is known as “chemical similarity principle,” which states that if two molecules share 

similar structures, then they will likely have similar bioactivities. Thus, the distribution of the compounds 

in chemical space guides the search for compounds with a specific set of properties. The choice of 

descriptors to define chemical space is crucial, however, it is not unique; different from cosmic space, 

chemical space is not invariant. Therefore, molecular representation is the cornerstone of chemical 

space (and basically any other computational approach). 

In this context, different cartographic methods have been proposed to efficiently navigate chemical 

spaces once a set of descriptors has been selected [27]. Most navigation methods involve positioning a 

reference query molecule and scanning a large database to identify the adjacent molecules, which are 

molecules with properties significantly similar to those of the reference structures. Notably, the adjacent 

molecules to the reference compound can be identified using the full set of descriptors that define 

chemical space, and this can be performed independently of the visualization method to project the full-

dimensional space into a 2D/3D graph. 

ChemGPS-NP was one of the first chemographic models used to comprehensively describe 

chemical space of natural products (NPs) using physicochemical properties and has proven to be useful 

in various applications [28]. ChemGPS-NP is a PCA-based model of physicochemical properties, defined 

by a training set of carefully selected compounds that act as "satellites" or reference structures with 

extreme properties. ChemGPS-NP projects or “positions” new molecules into the chemical space by 

comparing their physicochemical properties with those of the reference structures. Although PCA-based 

mapping is fast and easy to compute, it omits nonlinear interactions and some map regions are 

overloaded with data. 

Some non-linear algorithms that have been implemented for chemical space visualization are t-SNE 

[24], and more recently, uniform manifold approximation and projection (UMAP) [29]. These types of 

algorithms effectively visualize clusters or groups of data points and their relative proximities. Another 

frequently used method is SOM [30], a grid-based method that has been used to support lead discovery 

efforts and target prediction. Examples of the latter include SOM-based prediction of drug equivalence 

relationships  [31] and target inference generator [32]. 

https://paperpile.com/c/14zs76/Ksls6
https://paperpile.com/c/14zs76/WFWeD
https://paperpile.com/c/14zs76/7kvkL
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Generative topographic mapping (GTM) represents a probabilistic alternative to SOMs [33]. This 

approach has been applied to visualize, analyze and model large collections of data sets for drug design 

and was also successfully used for large-scale SAR scanning [34]. 

As discussed in the Introduction section, within non-coordinate-based approaches, chemical space 

networks (CSNs) were proposed by Bajorath et al. to address the problem of dimensionality [22,23]. 

CSNs transform a multidimensional chemical space into a graph with the nodes representing chemical 

compounds and edges connecting compounds within a specific similarity boundary. These graphs 

provide immediate visualization that can be easily interpreted. CSNs can also be adequately 

characterized and compared using generally applicable statistical measures from network science. 

However, visualization becomes increasingly difficult as the number of compounds increases. Therefore, 

this method is not directly designed for diversity analysis. Recently, networks have been used as the 

basis for developing chemical library networks (CLNs) that can be used to explore the diversity of large 

and ultralarge molecular libraries. In general, representations of a tree-like nature, such as Tree MAP 

(TMAP), are more suitable for analyzing and interpreting large datasets [35].  

To navigate through chemical and biological spaces more intuitively, several researchers have 

developed methods that seek to improve the interpretation by representing molecules beyond individual 

data points. An example is the scaffold tree approach that graphically represents chemical space as a 

tree, where the leaves represent individual chemical compounds and the intermediate nodes represent 

scaffolds and sub-scaffolds [36]. These representations allow a more consistent scaffold analysis in an 

SAR/SPR context and facilitate the identification of analog collections [37]. To facilitate the visualization 

of large analog series Constellation plots have been proposed (see section 2.3) [38]. 

 

2.2. Molecular diversity 

In drug design, the concept of chemical similarity (or chemical diversity) has been addressed using 

different approaches, and its applications are mainly found in ligand-based design, for instance, in 

identifying bioactive compounds when some active compounds are known. Similarly, chemical 

similarity/diversity analysis provides useful information for projects that seek to prioritize the selection of 

potentially active compounds for experimental evaluation. Another application is the profiling and 

selection of compound collections with chemically diverse structures to increase the probability of 

https://paperpile.com/c/14zs76/ZuJkN
https://paperpile.com/c/14zs76/htEQ7
https://paperpile.com/c/14zs76/CwsoS+8CWMM
https://paperpile.com/c/14zs76/7kvkL+htEQ7+0pYc9
https://paperpile.com/c/14zs76/e1OL5
https://paperpile.com/c/14zs76/QTBQC
https://paperpile.com/c/14zs76/8T5WP
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identifying new scaffolds that can lead to specific biological targets [39]. Similarity and diversity analyses 

have also been integrated into de novo design strategies to evaluate the structural and molecular novelty 

of chemical libraries, which play an important role in fairly comparing generative approaches [40].  

Several studies reported thus far focus on the use of chemical space as an approach to assess the 

diversity of different datasets and explore the relationships between compound collections, from which 

valuable conclusions or interpretations have been obtained. For instance, the chemical space of natural 

compounds has been compared with other collections of compounds such as drugs approved for clinical 

use, synthetic molecules, and food chemicals [41]. In general, NPs are characterized by covering a 

region of chemical space more extensively than synthetic compounds and approved drugs, and they also 

populate areas in the chemical space that are generally not synthetically accessible [41–43]. The 

structural uniqueness and complexity of NPs have encouraged the continued use of these compounds to 

identify bioactive compounds for further development, optimization, or inspire the synthesis of 

compounds with unique scaffolds [44,45]. 

Recent representative molecular diversity studies include the analysis of novel libraries, such as 

compounds applied in the food industry [5,46], peptides [47], focused libraries [48], de novo virtual 

libraries [49], and commercially available fragments libraries for medicinal chemistry [50]. The results are 

summarized in Table 1. For these analyses, new molecular representations and visualization techniques 

were implemented. For instance, the chemical space of food compounds stored in FooDB was analyzed 

using ChemMaps, an approach based on reference or “satellite” compounds, that is, molecules whose 

distance (or similarity) to all other molecules in the chemical space yield sufficient information to produce 

a visual representation of the space [51,52]. In principle, it is possible to generate a 3D visual 

representation of chemical space using satellite structures. 

TMAP was used in the global analysis of the peptide chemical space, whereas MAP4 was employed 

as the molecular representation of peptides [47]. A similar approach was used to visualize the chemical 

space of NPs in the public domain [53]. 

 

 

 

https://paperpile.com/c/14zs76/iCZbM
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https://paperpile.com/c/14zs76/fof7N+MAdOt
https://paperpile.com/c/14zs76/rwWIC+fmzjU
https://paperpile.com/c/14zs76/LJaZg
https://paperpile.com/c/14zs76/Tyoqf
https://paperpile.com/c/14zs76/xRjix
https://paperpile.com/c/14zs76/Qrjr
https://paperpile.com/c/14zs76/5cbf2+KA7pd
https://paperpile.com/c/14zs76/LJaZg
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Table 1.  Recent and representative studies of chemical space. 

Libraries Molecular 

representation 

Visualization 

technique  

Application Reference 

133 Natural compounds 

with TAS2R activity. 

Molecular 

fingerprints 

t-SNE Investigation of chemical similarity of 

bitter food compounds and 

identification of associations within the 

chemical space (chemistry-driven 

and/or receptor-driven). 

[46] 

40,531 peptides. MAP4 molecular 

fingerprint 

TMAP Overview of the established peptide 

chemical space in the form of an 

interactive map. 

[47]  

11 Commercial libraries 

focused on epigenetic 

targets (53,443 

compounds in total). 

 

RDKit fingerprints 

Constellation 

plots and 

CLNs 

Select compound libraries for further 

virtual screening or compound 

acquisition. 

[48] 

130 Million stratified 

sample of GDB-13. 

42-D MQN   PCA Rapid inspection of the generated 

molecules. 

[49] 

Nearly 24,000 food 

chemicals stored in 

FooDB. 

Physicochemical 

properties, 

molecular 

complexity, and 

scaffold content 

ChemMaps Quantification of the diversity and 

chemical complexity of the chemical 

compounds stored in FooDB. 

[51] 

 

To assist the processes of decision-making and selecting compound libraries for further virtual 

screening or compound acquisition for high- or medium-throughput screening for epigenetic drug 

discovery, Flores-Padilla et al. reported a comprehensive analysis of 11 commercial libraries of varying 

sizes focused on epigenetic targets (with 53,443 compounds in total) [48]. Analysis of the chemical 

diversity and coverage of chemical space was conducted with Constellation plots based on the chemical 

core scaffolds and CLNs [54]. The latter is based on structural fingerprints and facilitates the visual 

representation of the chemical space of compound datasets with a significant number (millions) of 

compounds in an efficient manner. The analysis highlighted a commercial library with an extensive 

coverage of chemical space (despite low intra-molecular diversity) and identified compound collections 

that cover unique regions of the chemical space not populated by other epigenetic-focused libraries.  

https://paperpile.com/c/GBIEUn/Lwia
https://paperpile.com/c/GBIEUn/pUOC
https://paperpile.com/c/GBIEUn/mVdY
https://paperpile.com/c/GBIEUn/B4W1
https://paperpile.com/c/GBIEUn/3lAE
https://paperpile.com/c/14zs76/Tyoqf
https://paperpile.com/c/14zs76/rYZqo
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As previously discussed, diversity analysis of chemical space can be used to evaluate and compare 

different generative approaches. For instance, Arús-Pous et al. used PCA plots of molecular quantum 

number (MQN) fingerprints to assess the quality of the training process in generative models [49]. In that 

study, MQN PCA plots allowed the following up and improvement of the comprehension  of the varying 

architectures of molecular generative models. Another recent and representative example of the use of 

chemical space to analyze diversity was performed with more than 400,000 purchasable building blocks 

(PBBs) provided by eMolecules (Zabolotna et al. 2021).  Visualization of the chemical space of these 

PBBs using GTM allowed the identification of the most represented and underrepresented classes of 

PBBs. The results can be focused to improve PBB libraries in a way that allows efficient synthesis in a 

relevant medicinal chemistry space.  

 

2.3. Structure-property (activity) relationships 

As mentioned in the Introduction section, one of the major practical applications of visual representation 

of chemical space in drug discovery is SAR analysis [55] where the concept of chemical space provides 

a solid and consistent framework for representing the structural data. When activity data are added (e.g., 

mapped) into a visual representation of chemical space, it is possible to navigate through the chemical 

space and exploring (qualitatively or quantitatively) variations in activity upon changes in chemical 

structures. The massive amount of data stored in chemical databases, including incomplete 

chemogenomic data or activity data obtained at single concentrations, makes visualization SAR difficult; 

however, is can be aided by the power of visualization tools. Previous studies highlighted advances in 

methodologies that explore SAR of compound data sets and screening collections [10,55].  

Recent developments in analyzing SP(A)R include constellation plots. Briefly, constellation plots are 

2D graphs that combine the clustering of compound datasets based on chemical scaffolds (in particular, 

analog series) and the distributions or mutual relationships of analog series based on fingerprint 

representations. Recently constellation plots were used to analyze the SAR of a large dataset of small 

molecules tested in a panel of cell lines using high-throughput screening. The authors identified a 

consistent cell-selective analog series of chemical compounds and proposed statistics to quantify cell 

promiscuity and consistency [56]. 

https://paperpile.com/c/14zs76/xRjix
https://paperpile.com/c/FNHt6G/Eu4r
https://paperpile.com/c/14zs76/DWRNG
https://paperpile.com/c/14zs76/DWRNG+hG50Z
https://paperpile.com/c/14zs76/PlElG
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In a separate and recent analysis, constellation plots were used to uncover a promising analog series 

of inhibitors of tubulin-microtubules. In that study [57], the authors analyzed the SAR of a curated dataset 

of 851 compounds with anticancer activity targeting tubulin-microtubules. In particular, the constellation 

plots identified at least six analog series of compounds with high average activity (known as “bright 

regions” in chemical space). The plot also indicates an analog series with predominantly inactive 

molecules (“dark regions” in chemical space). In recent developments, constellation plots have been 

implemented in DataWarrior [58] such that the user can explore the chemical space interactively. 

Another recent example of the application of chemical space to SP(A)R analysis lies at the interface 

of drug discovery and food chemistry [46]. Bayer et al. explored the associations between the chemical 

structures of 133 compounds with known biological activities and extra-oral bitter taste receptors, which 

belong to the superfamily of G-protein-coupled receptors. As part of the analysis, the authors 

represented the chemical space of the compounds using t-SNE as a visualization tool; the compounds 

were represented using MACCS key fingerprints. It was observed that the visual representation of 

chemical space grouped chemical compounds with similar functional groups, even though the 

compounds can belong to different classes (depending on the type of receptors they are related to). 

 

2.4. Compound library design  

Over the last few decades, medicinal chemistry has made major breakthroughs in increasing the 

accessible chemical space, which is estimated to contain approximately 1063 molecules [11,59]. In this 

context, having access to more regions of the chemical space can, in principle, augment the probability 

of finding something “interesting” and valuable. Thus, algorithms and methods to augment and search 

these spaces can focus on the generation of new molecules to compounds with desirable properties for 

drug design or discovery projects. In this regard, it remains to determine the medicinally relevant 

chemical space as the number of therapeutic targets is evolving [60]. A related challenge is to establish 

the intersection of chemical space with the biological space. These questions are being addressed by 

computational chemogenomics and have been noted as one of the major challenges in computer-aided 

drug design [61]. 

Computational approaches to facilitate the design of functional molecules include the development of 

de novo algorithms that explore chemical spaces to generate new compounds. For instance, the de novo 

https://paperpile.com/c/14zs76/NqdeU
https://paperpile.com/c/14zs76/0HKH9
https://paperpile.com/c/14zs76/fmzjU
https://paperpile.com/c/14zs76/tidmL+ggxR8
https://paperpile.com/c/14zs76/Lztnv
https://paperpile.com/c/14zs76/iGuTh
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design algorithm for exploring chemical space scans the space and generates structures in a specific 

area on a user-selected pane [62]. Similarly, Capecchi et al. developed the peptide design genetic 

algorithm (PDGA), a computational tool that generates highly-similarity analogs of bioactive peptides with 

various peptide chain topologies in a chemical space defined by the macromolecule extended atom pair 

fingerprint [63]. Recently, Aspuru et al. proposed the superfast traversal, optimization, novelty, 

exploration, and discovery (STONED) algorithm to perform exploration and interpolation in chemical 

space to obtain novel molecules [64]. STONED uses self-referencing embedded strings [65], a molecular 

representation that is more suitable for ML. This algorithm reduces the long training times, large 

datasets, and handcrafted rules. 

In general, deep generative models can operate over large spaces of molecular structures and 

embed the chemical properties of these structures into a vector space. These models can generate new 

and previously unidentified chemical compounds by decoding from this ’latent’ space of chemical 

structures. Recent reviews of the de novo design have examined progress in generative model 

architecture and evaluated their efficiency with reference to experimentally validated test cases in the 

literature [66–68]. 

 

3. Novel approaches 

3.1. Meta-analysis of applications of chemical space  

To understand the evolution of the concept of chemical space and its applications, a meta-analysis of the 

literature has been performed using the search terms “chemical space” and “drug design” in PubMed 

(https://pubmed.ncbi.nlm.nih.gov/). In total, the search yielded 1538 articles (November 2021) that were 

analyzed using VOSviewer [69]. The results of the meta-analysis indicated that the main concurrent 

terms associated with the keywords used were  SAR analysis and small-molecule library design (Figure 

1a). Visualization of chemical space has been used frequently to support the analysis of antineoplastic 

agents (76 articles), protein kinase inhibitors (60), antibacterials (51), antimalarials (28), and antiviral 

compounds (21). Similarly, a notable number of articles related to the concept of chemical space are 

associated with drug repurposing (20). In particular, using network-based representations to predict drug-

https://paperpile.com/c/14zs76/414hx
https://paperpile.com/c/14zs76/9TIDw
https://paperpile.com/c/14zs76/c4QC7
https://paperpile.com/c/14zs76/zmQ2q
https://paperpile.com/c/14zs76/00sdx+ZmbDd+BJVWR
https://paperpile.com/c/14zs76/WYuhZ
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target interactions and more complex interactions, including drug-disease, protein-disease, and drug-side 

effect associations, to name a few [70].  

According to the author's keywords (Figure 1b), the most recent articles (see color scale) are focused 

on ML methods such as deep learning. It is also highlighted that the concept of chemical space has had 

recent applications in Alzheimer's disease and in emerging diseases such as COVID-19. Particularly for 

COVID-19, chemical space visualization proved to be a fast way to analyze and describe the huge 

chemical space of known antiviral compounds [71,72]. For instance, GTM is one of the methods used to 

represent the chemical space of compounds obtained from medicinal chemistry efforts against 

coronaviruses (CoVs) [72]. In particular, GTMs helped highlight the structural relationship between 

antivirals of different categories, predict their polypharmacological profiles, and emphasize frequently 

encountered chemotypes. Similarly, chemical space concept was very helpful in finding attractive 

compounds for repositioning [73] and guiding the identification of potent and selective scaffolds with anti-

COVID activity [74]. 

 

 

Figure 1. Meta-analysis of the literature: network analysis that reveals the main concurrent terms related 

with  the keywords “chemical space” and “drug discovery” in PubMed (1538 results). The network maps 

were constructed on VOSviewer [69]. a) Network analysis based on all results (occurrence > 20, number 

of keywords selected: 90) and b) network analysis based on the keywords of the study (occurrence > 5, 

number of keywords selected: 35). 

 

Advances in AI and availability of software libraries have resulted in ML methods, such as deep 

learning and versatile tools for exploring chemical space for drug discovery applications [14]. Table 2 

https://paperpile.com/c/14zs76/9WZt4
https://paperpile.com/c/14zs76/a9qDS+QPGzd
https://paperpile.com/c/14zs76/QPGzd
https://paperpile.com/c/14zs76/BSQW2
https://paperpile.com/c/14zs76/hx61q
https://paperpile.com/c/14zs76/WYuhZ
https://paperpile.com/c/14zs76/yRdiU
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summarizes the novel approaches using ML methods, some of which have been mentioned previously. 

Recent advances have focused in identifying molecules with desirable properties in large chemical 

spaces. To this end, genetic algorithms (GAs) [75,76], methods using variational autoencoders (VAEs) 

[77,78], recurrent neural networks (RNNs) [79,80], and generative antagonistic networks (GANs) [81,82] 

have been developed. In several instances, these algorithms are associated with the generation of new 

molecules and have exhibited the ability to traverse chemical space more effectively, reaching optimal 

chemical solutions while considering fewer molecules than allowed by the brute-force screening of large 

chemical libraries. Similarly, several evolutionary and RNN selection mechanisms have proven 

successful in multi-objective optimization problems [83,84]. Emerging approaches in chemical 

enumeration incorporate chemical reactions into ML-based generation to design novel compounds in a 

synthetically accessible chemical space [85].  

As mentioned, similarity-based compound networks such as CSNs allow the visualization of SAR 

patterns. To increase the number of practical applications of network-based chemical space 

representations and decrease biases in ML, it is necessary to incorporate amounts of data from chemical 

interactomes. In this regard, it is also necessary to improve network visualization to obtain reasonable 

representations of networks containing thousands of nodes. Addressing these difficulties will be useful in 

SAR analysis and drug repurposing. 

Another application of the field of neural networks has been to solve address problems related to big 

data and visual representation of datasets with a large number of compounds [54]. It is anticipated that 

more researchers will integrate ML methods to speed up chemical space analysis and realize more 

efficient outcomes. 

 
Table 2. Novel approaches using machine learning methods. 

Application Novel approaches using ML methods Reference(s) 

Navigation of chemical space: Selection 
of compounds from existing libraries  

● GAs, VAEs, RNN and GAN  as  search 
algorithms 

[71-78] 

Chemical diversity ● Dimensionality reduction methods (t-SNE, 
TMAP, and GTM) 

 
● Chemical library networks (CLN) 

 [24,34,35] 
 
 

[54] 

Structure-property/activity relationships ● Chemical space networks (CSNs) [22,23] 

https://paperpile.com/c/14zs76/F5voX+ggUff
https://paperpile.com/c/14zs76/x8N2P+mu74e
https://paperpile.com/c/14zs76/Zqbr3+oKXWx
https://paperpile.com/c/14zs76/p9apB+z7aZ5
https://paperpile.com/c/14zs76/gUcxe+JkTy6
https://paperpile.com/c/14zs76/F0zC6
https://paperpile.com/c/14zs76/rYZqo
https://paperpile.com/c/14zs76/7kvkL+htEQ7+0pYc9
https://paperpile.com/c/14zs76/rYZqo
https://paperpile.com/c/14zs76/CwsoS+8CWMM
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● Constellation plots 

 
[38] 

Design novel compound libraries ● Chemical reactions in ML-based generation 
 
● Multi-objective optimization algorithms 

[12,85] 
 

[83,84] 

 

3.2. Novel implementations for visualization 

The interactive visualization of 2D and 3D representations of chemical spaces, in particular of large and 

ultra-large data sets, has been an active area of investigation. The interactive visualization of chemical 

space was performed using an open-source code and is freely available on websites.  

Web servers available in the public domain for enabling interactive visualization of chemical spaces 

have been reviewed recently [10]. This review includes classical and early developments such as Chem-

GPS (vide supra), a significant set of public tools developed by Reymond et al. such as Ferun, and PDB 

Explorer. In the past few months, progress has been made in the interactive analysis of chemical space. 

A notable example is the “magic rings” developed by Ertl: a freely available web page with an interactive 

clustering of rings and Bemis-Murcko scaffolds present in compounds in ChEMBL [86] (28 release) with 

a biological activity value of 10 microM [87]. The interactive clustering available at https://bit.ly/magicrings 

enables users to quickly identify the main substructures of the major target classes of relevance in drug 

discovery. 

Another recent development is the NP navigator [88], which further bridges the application of 

cheminformatics in NP research [89,90]. The NP navigator, publicly available at 

https://infochm.chimie.unistra.fr/npnav/chematlas_userspace/, is an implementation of the visualization 

algorithm GTM maps that explores interactively the chemical space of COCONUT (Collection of Open 

Natural Products database)  [91] (currently the largest collection of NPs in the public domain), bioactive 

molecules in ChEMBL, and purchasable compounds from the ZINC database [92]. Interactive navigation 

can be used to explore chemical compounds based on different representations such as 

physicochemical properties, scaffold distribution, commercial availability, and biological activity. 

In a recent study, Chávez-Hernández et al. implemented an interactive visualization of the chemical 

space of a newly generated library of HIV-1 viral protease inhibitors assembled from NP fragments. 

Visual representation of the chemical space was based on TMAPs [20] and molecular fingerprints. The 

https://paperpile.com/c/14zs76/8T5WP
https://paperpile.com/c/14zs76/F0zC6+RLtJj
https://paperpile.com/c/14zs76/gUcxe+JkTy6
https://paperpile.com/c/14zs76/hG50Z
https://paperpile.com/c/14zs76/VYPqR
https://paperpile.com/c/14zs76/Lhxym
https://bit.ly/magicrings
https://paperpile.com/c/14zs76/6QwaG
https://paperpile.com/c/14zs76/l1UoF+ySJMb
https://infochm.chimie.unistra.fr/npnav/chematlas_userspace/
https://paperpile.com/c/14zs76/RN5q2
https://paperpile.com/c/14zs76/2nmkt
https://paperpile.com/c/14zs76/z9g2H
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interactive representation of the chemical space enables the user to navigate through a synthetic 

compound library of pseudo-NPs [93] designed de novo.  

Figure 2 illustrates examples of visual representations of chemical space using freely available online 

resources. Figure 2a shows a TMAP with antidiabetic compounds of different origins: 38 approved drugs 

from DrugBank, 337 antidiabetic compounds from medicinal plants (DiaNAT DB) [94], 201 compounds 

from ChEMBL with experimental evaluation of DMT2, and 20 compounds designed and synthesized by 

Navarrete-Vazquez et al. [95–99]. It is observed that, structurally, the compounds tend to group 

according to the database to which they belong, with the DiaNAT database being the most diverse. In 

this graph, it is also possible to identify antidiabetic approved drugs and compounds from DiaNAT and 

ChEMBL, similar to those designed by Navarrete-Vazquez et al. This supports the molecular design 

employed and, in turn, may help expand this collection of compounds. Figure 2b was obtained from the 

NP navigator and projects NPs from DiaNAT (right) and the compounds synthesized by Navarrete-

Vazquez et al. (left) onto a comparative landscape, where the black colored background of the map 

corresponds to the library (libraries) that were selected as a basis of the landscape (black regions 

correspond to the NPs, red regions correspond to the NP-like ZINC compounds, and white areas 

correspond to the empty regions of chemical space). The NP-Umap illustrates the preferential locations 

of the compounds in the DiaNAT database in regions corresponding to NPs and the antidiabetic 

compounds from synthesis in regions of ZINC compounds.  Furthermore, it is possible to perform further 

structural analyses based on the maximum common substructures (MCS) to identify NP and NP-like 

analogs of selected compounds. 

 

https://paperpile.com/c/14zs76/3Bqpy
https://paperpile.com/c/14zs76/k1f7E
https://paperpile.com/c/14zs76/weIBe+k08Vg+6kSJz+LWOld+XDgSX
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Figure 2. Examples of visual representations of chemical space using freely available online resources. 

a) Chemical space visualization of antidiabetic compounds using TMAP based on molecular fingerprints. 

Compound libraries represented in colors: FDA-approved drugs (red), DiaNAT DB (green), compounds 

from ChEMBL (blue), and compounds designed and synthesized by Navarrete-Vazquez et al. (purple). b) 

NPs from DiaNAT (right) and compounds synthesized in Navarrete-Vazquez's group (left) projected onto 

class landscape comparing COCONUT natural products (black) with NP-like ZINC compounds (red). 

Maximum common substructures (MCS) found in COCONUT and NP-like ZINC of selected molecules 

are illustrated. 
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Expert opinion 

Chemical space is a core concept in chemoinformatics with several practical applications in drug 

discovery and other areas in chemistry. Typically, chemical space is used for selecting specific sets of 

compounds for further computational or experimental screening, diversity, and SP(A)R analysis, and to 

guide the design of novel molecules. The latter application is intended such that the newly generated 

compounds are at the intersection of the biologically relevant chemical space. In any application, 

compound representation is a key variable in qualitative or quantitative chemical space analysis 

(including visual representation); it has to be in line with the objective of the study as it will guide the 

interpretation of the analysis. 

Currently, ML methodologies continue to open new possibilities for generating hundreds and 

thousands of new molecules from an exhaustive search in chemical space. To perform the search in the 

chemical space faster and more efficiently, in particular for large data sets, the visualization methods 

should scale well with the number of molecules (“haystack size”); find the most relevant compounds 

(e.g., find the “needle,” irrespective of the size of the haystack); and be affordable to run on standard 

hardware.  

In recent years, with a significant an increasing number of molecules to be analyzed, novel methods 

to generate visual representations of chemical space have been developed. While interpreting such 

visualizations, one should consider that they are approximations and that the “true” chemical space is 

defined by the complete set of descriptors used. Because it is challenging to select the appropriate 

method according to the expected qualities of the visualization, it is advisable to complement the visual 

(e.g., qualitative) analysis of chemical space with a quantitative analysis considering the entire 

multidimensional space. In this regard, it is advisable to consider consensus approaches: multiple 

representations of chemical space (at least more than one), because each visualization will capture part 

of the “true” chemical space. 

As part of the progress in method development, there have been notable developments in the 

implementation of freely available online resources. In this manner, the user can interactively explore the 

chemical space of compound datasets. 
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There are still challenges in exploring the chemical space for drug discovery, such as developing 

consistent representations of metal-containing compounds. Other challenges include consistently 

representing the chemical space of non-traditional small- and medium-sized biologically relevant 

compounds such as peptides, macrocycles, and metal-containing clinical candidates. 
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