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Abstract:
Nowadays, many chemical investigations can be supported the-
oretically by routine molecular structure calculations, conformer
ensembles, reaction energies, barrier heights, and predicted spec-
troscopic properties. Such standard computational chemistry ap-
plications are most often conducted with density functional the-
ory (DFT) and atom-centered atomic orbital basis sets imple-
mented in many standard quantum chemistry software packages.
This work aims to provide general guidance on the various tech-
nical and methodological aspects of DFT calculations for molec-
ular systems, and how to achieve an optimal balance between
accuracy, robustness, and computational efficiency through multi-
level approaches. The main points discussed are the density func-
tional, the atomic orbital basis sets, and the computational proto-
col to describe and predict experimental behavior properly. This is
done in three main parts: Firstly, in the form of a step-by-step de-
cision tree to guide the overall computational approach depend-
ing on the problem; secondly, using a recommendation matrix
that addresses the most critical aspects regarding the functional
and basis set depending on the computational task at hand (struc-
ture optimization, reaction energy calculations etc.); and thirdly,
by applying all steps to some representative examples to illustrate
the recommended protocols and effect of methodological choices.

Introduction
Chemistry and chemical synthesis are indispensable tools for hu-
mankind in addressing the most urgent current and future chal-
lenges, such as efficient energy storage and conversion, sustain-
able food supply, and affordable medication and health care. In
all of these examples, a rational design of molecules and ma-
terials, e.g., new catalysts, electrolytes for batteries, hosts and
emitters for organic electronics, and new drugs, takes a central
role. Here, it is crucial to understand matter at the atomic and
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electronic-structure level, which is possible only through chem-
ical synthesis, spectroscopy, and quantum chemical calculation.
The latter of these three, computational chemistry and specifi-
cally Kohn-Sham density functional theory (DFT), has firmly con-
solidated its position as a third work-horse besides synthesis and
spectroscopy in recent decades. We argue that the general impor-
tance of computational chemistry and DFT, in particular, stems
from its outstanding effort-to-insight and cost-to-accuracy ratios
compared to related approaches, in other words, their efficiency
(vide infra).

From a more fundamental perspective, DFT is a formally ex-
act but practically empirical "first-principles" electronic-structure
approach to solve the fermionic many-electron problem that un-
derlies most of chemistry and large parts of biology and physics.
When applied together with a mixed quantum-classical treatment
for the nuclei using molecular dynamics (MD) or harmonic ap-
proximations for the potential energy surface (PES), DFT can ad-
dress many problems in (bio)chemistry and physics with suffi-
cient accuracy to derive meaningful insight. The subtle theoret-
ical and technical details of DFT are well understood and have
recently been discussed in an extensive open discussion type of
review1. This open review addresses all more detailed and theo-
retical questions about DFT which are raised here but whose an-
swer is beyond the scope of this practically-oriented work. For a
recent discussion of the grand challenges in theoretical and com-
putational chemistry, see Refs. 2,3.

DFT offers an excellent compromise between required com-
putation time and the quality of the results in comparison to
the alternatives, which are less accurate and robust but much
faster semi-empirical quantum mechanics4–6 (often termed SQM)
on the one hand, and on the other more accurate and robust
but slower wavefunction theory (WFT) based approaches such
as coupled-cluster, (see Fig. 1). Further, human and power
resources are spared. Moreover, and just as important, DFT
can be considered a robust theory in that a breakdown in the
form of entirely wrong results is scarce, even when applied
to challenging molecules or exotic chemistry. This contrasts
semi-empirical quantum mechanics and other, even empirical
approaches, which require much more careful sanity-checking,
which typically means a comparison to DFT. These properties
grant DFT the role of a black-box method that non-experts can
apply to many chemical problems. Such applications typically
involve sanity checking suggested structures and reaction mech-
anisms by synthetic chemists or visualizing the frontier orbitals
and HOMO and LUMO energies to interpret electrochemical or
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optical experiments in materials science.
Nevertheless, the choice of a reasonable, efficient yet accurate

quantum chemistry treatment for a wide range of chemical prob-
lems is still a challenging task, even for experienced computa-
tional chemists. This is also due to a vast number of available
method combinations that have been developed and presented
in recent years. Already for the fundamental choice of the den-
sity functional/atomic orbital basis set combination, hundreds or
even thousands of combinations are possible in typical programs,
many of which are in common use. While this is uncritical for
a small molecule where one can use a "sledgehammer to crack
a nut" (that is, use expensive double-hybrid density functionals
and large atomic orbital basis sets), the treatment of systems with
50-100 atoms or many relevant low-energy conformers demands
critical compromises in methodological choices in order to keep
the computational cost manageable.

Unfortunately, in some QM programs, the default methods
are outdated, which may tempt inexperienced users to apply
no longer recommended methods to circumvent these compli-
cations. A prominent example is the popular B3LYP7,8/6-31G*
functional/atomic orbital basis set combination that is still fre-
quently used even though it is known to perform poorly even
for simple cases.9–11 The knowledge that B3LYP/6-31G* suffers
from severe inherent errors, namely missing London dispersion
effects ("over-repulsiveness") and strong basis set superposition
error (BSSE), seems to "diffuse" exceptionally slowly from the the-
oretical to the computational chemist community. In the last 10-
20 years, the availability of better functionals,12,13 standardized
dispersion corrections,14 and empirical corrections for BSSE15,16

made B3LYP/6-31G* computations obsolete. Today, much more
accurate, robust, and sometimes even computationally cheaper
alternatives exist, e.g., in the form of composite methods like
B3LYP-3c17, r2SCAN-3c18, B3LYP-D3-DCP19, or B97M-V/def2-
SVPD/DFT-C16 to name just a few. Such methods use new de-
velopments to eliminate the systematic errors of B3LYP/6-31G*
without increasing the computational cost. Fig. 1 illustrates the
relative computational demands of the discussed approaches, and
section 3.2 compares some of them to B3LYP/6-31G* for a non-
covalently bound complex. The main goal of this work is to in-
troduce these new methods and developments to interested non-
experts and chemists with some background in theory.

To this end, best practice recommendations are provided for
the most common workflows encountered in typical applications,
i.e., structure and ensemble determination, computation of re-
action energies, barriers, free energies and solvation effects are
illustrated with a few typical examples or case studies. We will
also briefly discuss the "embedding" of properly conducted DFT
calculations into multi-level workflows to determine solvated and
thermally averaged conformer, protomer, or tautomer ensembles.
However, due to quantum chemistry’s broad range and complex-
ity, some interesting but less common topics like theoretical spec-
troscopy, excited states, periodic systems, or heavy element chem-
istry are not considered here or touched only very briefly. Another
important area not covered here is the analysis and understand-
ing of atomic and fragment interactions by, e.g., energy decompo-
sition analysis,20,21, or wavefunction composition, e.g., by orbital

interactions in the natural bonding orbital (NBO)22 framework.
The conclusions herein are based on more than 25 years of ex-

perience in the field of DFT and functional development, ther-
mochemical benchmarking, as well as hundreds of collabora-
tive chemical applications in mechanistic or spectroscopic studies.
Our recommendations are mostly based on hard evidence, that is,
they rely on large-scale comparisons of approximate DFT results
for a wide range of chemical properties with those from experi-
ments or highly accurate and robust coupled-cluster theory, the
so-called gold-standard in computational chemistry (benchmark-
ing). However, some conclusions for the performance of a model,
basis set or particular density functional are numerically and sta-
tistically challenging to quantify. Hence, our recommendations
include a personal experience-based flavor. In this context, we
put more emphasis on the robustness of a method than its "peak-
performance" reflected, for example, in the ranking in standard
thermochemical benchmark sets such as the GMTKN5523. This
is because in our experience in predictive applications, robust-
ness and reliability, that is, avoiding large and unexpected er-
rors, is more important than getting the numbers right to the last
kcal·mol−1.

Finally, we want to point out that in computational chemistry,
the wording "thermochemistry" also includes the calculation of
reaction barrier heights, although they might be considered sepa-
rately under the common term chemical kinetics.

1 General considerations

Decision making in computational chemistry

Defining a suitable set of theoretical methods is the key to accu-
rately describing a chemical system. This includes not only the
selection of a quantum chemistry model for the basic electronic
structure but also the choice of an appropriate model system to
describe the physico-chemical totality of the problem. Generally,
these choices comprise a complex set of fundamental decisions.
An exemplary flowchart that illustrates this decision making and
is applicable to a large part of typical quantum chemical applica-
tions is shown in Fig. 2.

Electronic Structure

The possibly most fundamental aspect that decides if common
DFT is applicable is whether the system under consideration is
well-represented by a single-determinant wavefunction and thus
has single-reference character, or if multiple determinants are re-
quired and the system has multi-reference character. Luckily, the
most common examples fall into the first category. These sys-
tems possess a single-reference electronic structure and are thus
readily describable by the common DFT methods discussed in this
work. This holds true in particular for diamagnetic closed-shell
(organic) molecules, the vast majority of which possess single-
reference character. The few exceptions, such as biradicals, often
have low-lying triplet states, which can be checked with an unre-
stricted broken-symmetry27,28 DFT calculation.

Systems where multi-reference character should be expected
are radicals, 3d transition metal complexes, low band-gap
systems (see below), and transition states of open-shell dis-
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Figure 1 Accuracy in typical thermochemical applications vs. computa-
tion time (logarithmic scale) for common quantum chemistry methods.
Wavefunction based coupled-cluster (CC) methods like CCSD(T) (possi-
bly in combination with local approximations) provide benchmark quality
results of better than 1 kcal·mol−1 for common chemical energy changes
of almost any well-behaved single-reference system (for details see text).
Lower rungs of the DFT hierarchy of methods from small basis set com-
posite approaches 24–26 (e.g., r2SCAN-3c 18), to meta-GGA or hybrid
functionals provide systematically improved results when coupled with
large atomic orbital basis sets. The most sophisticated double-hybrid
functionals often yield results close to a coupled-cluster reference level.
See the "Choice of functional" section for a more detailed discussion of
the density functional classes. SQM = semi-empirical quantum mechan-
ical method.

sociation processes. In all of these, multiple near-degenerate
electronic configurations (with different orbital occupations) can
be present, leading to complicated electronic states. Accordingly,
for these cases, it should be checked in advance whether a
so-called multi-reference case is present. While this test is
generally rather complicated, there are simple hints that allow an
initial yet often sufficient assessment of possible multi-reference
character. For example, a very small gap between the highest
occupied and lowest unoccupied molecular orbitals, the so-called
HOMO-LUMO gap, of <0.5-1 eV in a test GGA calculation (see
below) and exceptionally slow self-consistent field convergence
already give a first indication of unusual electronic complexity. If
this first crude hint emerges, more sophisticated measures should
be considered. Most available approaches are wavefunction
theory based29–33 and thus limited in their applicability to
small molecules. The alternative fractional-occupation-number-
weighted density (FOD)34–36 represents an easily applicable
DFT-based estimate. Here, a moderate artificial increase in the
electronic temperature can be used to populate and visualize
low-lying, possibly problematic electronic states. With any
indication of a significant multi-reference character, application
of standard DFT methods is not recommended and experts for
sophisticated multi-reference theory should be consulted. For

a discussion of multi-reference vs. related multi-determinantal
cases appearing in low-spin open-shell systems see Ref. 37.

Recommendations:

• Check for multi-reference character through simple indi-
cators (HOMO-LUMO gap, fractional-occupation-number-
weighted density).

• Be more careful with open-shell systems (low-spin in partic-
ular).

• Do not apply single-reference methods like DFT to multi-
reference systems.

Solvation
The next fundamental question is that of the present state of ag-
gregation or in which form of a substance mixture the molecule
to be examined is present. The neighboring molecules in a solid
or for a solute in solution can have drastic effects on the struc-
ture and properties of the entire system. Accordingly, for con-
densed phase chemistry, a suitable solvent model should be ap-
plied in any case. The most common approach in a DFT con-
text is to use continuum solvation models that include interac-
tion of the molecule with the solvent implicitly via an effective
potential in the Hamiltonian. This means that no actual solvent
molecules are present in the calculation. Prominent representa-
tives of this class include the conductor-like polarizable contin-
uum model (CPCM)38, the solvation model based on the molecu-
lar electron density (SMD)39, the conductor-like screening model
(COSMO)40, the conductor-like screening model for real solvents
(COSMO-RS)41, and the direct conductor-like screening model
for real solvents (DCOSMO-RS)42. The mentioned methods dif-
fer in various aspects. CPCM und COSMO are purely electro-
static models, lacking contributions from cavity creation that cost
energy in the solvent, and attractive van-der-Waals interactions
with the solvent, which lead to substantial errors if the solvent-
accessible surface area is changing significantly. SMD, COSMO-
RS, and DCOSMO-RS include such contributions and are thus rec-
ommended (cf. Section 3.2). Nevertheless, it should be noted
that COSMO-RS cannot be used in geometry optimizations or fre-
quency calculations and has to be replaced by DCOSMO-RS for
this purpose. Further noteworthy implicit solvation methods that
can also be used with semi-empirical quantum mechanical and
force-field methods are the generalized Born model with solvent
accessible surface area (GBSA)43,44 and the analytical linearized
Poisson-Boltzmann model (ALPB)45,46.

Nevertheless, for specific cases, the inclusion of explicit solvent
molecules may be necessary and implicit solvation models
become insufficient.47 In micro-solvation approaches, actual
solvent molecules are placed at important, most strongly bound,
positions of a system.48 However, explicit solvation also has
its caveats as it can be very difficult to converge properties
with the number of explicit solvent molecules. Moreover, the
potential-energy surface of explicitly solvated systems is often
times flat and peppered with local minima of different solvent
structures, making optimizations lengthy and tedious. Therefore,
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Figure 2 Conceptual flowchart of decision making in elementary steps in typical computational chemistry calculations.

explicit solvation should be used with care. Neglecting solvation
effects, specifically for polar or charged molecules, can result
in large deviations in thermochemical calculations, and even
fundamentally wrong electronic structures, e.g., for zwitter-ions.

Recommendations:

• Choose a model/state of aggregation close to the experi-
ment.

• Apply implicit solvation models for a molecule in solution.
Best use physically complete models, such as COSMO-RS or
SMD.

• Be careful with charged systems where continuum models
may be inaccurate (the higher the charge density the more
inaccurate).

• Consider explicit solvation if necessary.

Molecular Flexibility

Another important aspect is the structural flexibility of the
system. For highly flexible structures, a molecular property, such
as energy, nuclear magnetic resonance spectra or optical rotation
values, may not be sufficiently described by a single structure.
At finite temperatures, various conformers are populated and
the overall property must be described as thermal average over
the unique property values of each conformer. Accordingly, it is
recommended to evaluate the flexibility and the accessibility of
relevant conformers for any given system. The flexibility of a
molecule may be roughly categorized by the number of conform-
ers in an energy window of 3 kcal·mol−1, which corresponds to
five times the thermal at room temperature, 5×RT , with respect
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to the lowest energy conformer. Systems with few conformers
(≈ 1-3) in this window may be considered relatively rigid, those
with dozens as intermediate cases, and with hundreds as very
flexible. In any case, finding the overall lowest conformer (global
minimum) in the given chemical environment is important.49

For example, a conformer found in the solid, e.g., determined
by X-ray crystallography, may not be the most favorable one in
solution or gas-phase.50 In general, even for only medium sized
molecules (30-50 atoms), a sophisticated conformational search
is not trivial, computationally demanding, and usually prohibitive
at a pure DFT level. Hence, multi-level approaches (see section
5) involving efficient semi-empirical quantum mechanical or
force-field (FF) methods are necessary. The CREST51/CENSO52

approach represents a valuable, easily applicable tool for semi-
automated conformation sampling and subsequent energetic
ranking of conformer-rotamer ensembles (CREs). Further, the
flexibility index given by the CREST program can be used as
additional indicator for the molecular flexibility. Besides CREST,
alternative, less general conformer generation procedures are
described in the literature.53–59

Recommendations:

• Check for the role of structural flexibility/conformations.

• Apply automated conformation search algorithms, e.g.,
CREST.

• Try to find and verify the lowest energy conformer.

• Consider Boltzmann-averaged property calculations.

Choice of Functional

A critical issue in DFT is the choice of the basic exchange-
correlation energy functional, often simplistically called func-
tional. It aims to absorb all extremely complicated many-particle
correlation and fermionic (exchange) effects into a seemingly
simple but formally exact and theoretically existing mean-field
electronic energy and potential. During the last decades, hun-
dreds of different functionals were constructed which vary in their
conception, target application, and their overall quality.12 Ac-
cordingly, there are general-purpose as well as task-specific func-
tionals, highly parameterized and fundamental first-principle-
based ones. A detailed discussion of those aspects is beyond
the scope of this work as we focus on the suitability for appli-
cations in thermochemical calculations. The most prominent at-
tempt to categorize density functionals based on their physical
ingredients represents Perdew’s “Jacob’s ladder” (Fig. 3).60 Here,
functionals are ranked according to their degree of approximation
as measured by the included electron density descriptors for the
exchange-correlation term (occupied orbitals via the density, first
derivative of the density, second derivative, occupied orbitals via
Fock exchange, virtual orbitals via MP2, ...) and thus the expected
accuracy. The most relevant categories ordered by increasing ac-
curacy include the generalized-gradient-approximations- (GGA),
meta-GGA- (mGGA), hybrid-, and double-hybrid functionals.
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Figure 3 Functional categorization according to Perdew’s “Jacob’s lad-
der”. ρ = electron density, τ = kinetic energy density, φ = molecular or-
bital, Fock-exc. = Fock exchange.

Even though these categories are based on fundamental theo-
retical aspects, the functionals within each rung can vary strongly
in accuracy. Accordingly, comprehensive benchmark studies that
assess the performance of any functional with respect to the de-
sired target property are indispensable. Nevertheless, the Jacob’s
ladder categorization allows a crude estimation of some system-
atic functional errors. Moreover, it allows to categorize function-
als by their numerical efficiency. In this regard, the perhaps most
important distinction is made based on the inclusion of Fock ex-
change, also termed non-local or exact exchange. The (meta-
)GGA functionals of up to rung 3 do not include Fock exchange
and are called local or semi-local functionals, whereas (double-
)hybrid functionals on rungs 4 and 5 include Fock-exchange.
Since the calculation of Fock-exchange is a computational bot-
tleneck, semi-local functionals are generally more efficient than
hybrid functionals (see below).

Two of the most critical and thus prominent errors in actual
DFT approximations are the so called self-interaction error (SIE),
and missing long-range correlation effects that give rise to Lon-
don dispersion. Although the lacking description of long-range
correlation is a fundamental shortcoming of DFT, it can nowa-
days easily be fixed by including one of several available proven
dispersion corrections (we recommend D4, D3, or VV10).14 We
argue that nowadays, this is indispensable in any DFT treatment,
and do not see any context in which the dispersion correction
should be left out. See section 2.7 for a discussion and example
3.2 and some illustrative numbers.

The SIE61–63 results from an artificial interaction of an electron
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with its own mean electric field by the approximate exchange-
correlation functional and is more difficult to repair. In con-
trast, Hartree-Fock theory is SIE-free, because of an exact math-
ematical relation between the integrals describing the Coulomb-
and (exact) exchange interaction: The two exactly cancel each
other when an electron formally interacts with itself. In prac-
tice, SIE in DFT typically results in an over-delocalization of the
electron density and artificial energy stabilization for delocalized
electronic situations (with bond stretched H+

2 as prime example).
The SIE is present in all semi-local (m)GGA functionals (rungs 1-
3, e.g., PBE64). Hybrid functionals attempt to reduce the SIE by
replacing a fraction of approximate DFT exchange with SIE-free
Fock exchange (e.g., B3LYP7,8 with 20% and PBE065 with 25%).
However, this only reduces the error but does not eliminate it,
such that functionals employing small fractions of Fock exchange
are still prone to SIE. Nevertheless, simply employing 100% of
Fock exchange also leads to a very poor performance. One way
around this dilemma is provided by range-separated hybrid func-
tionals, which do not admix a constant amount of Fock exchange,
but make the admixture dependent on the inter-electronic dis-
tance.66,67 In general, Fock exchange admixtures of 5-20% are
typically considered small, 20-30% moderate, and >30% high.
The SIE can be viewed as a special form of the more general
delocalization error of semi-local functionals resulting from the
incorrect description of regions in a molecule with (effectively)
fractional charges.63,68,69 Regarding the understanding of these
problems, some progress has been achieved recently by distin-
guishing density driven errors caused by the erroneous (m)GGA
exchange-correlation potential and inherent, usually smaller er-
rors of the energy functional.70

Double-hybrid functionals71–73 represent the highest rung and
additionally introduce a wavefunction-theory-based correction to
the correlation energy. This is most commonly achieved by per-
turbation theory methods74 such as second order Møller-Plesset
theory (MP2)75 or its DFT variant74. Their typically very high
amounts of Fock exchange (>50%), make them particularly re-
silient towards SIE and negative influences of large Fock exchange
admixtures are balanced by the explicit, virtual orbital dependent
correlation treatment. Nevertheless, these methods have an in-
creased computational cost and further introduce some restric-
tions in their general applicability. For example, the vulnerability
of the MP2 part for small gap systems may also be problematic
in MP2 based double-hybrid functionals and hence, treating such
systems in this way requires some caution.

Opposing the expected higher accuracy for fourth-rung hybrid
and fifth-rung double-hybrid functionals, their increased compu-
tational cost and less favorable scaling are important criteria,
specifically for large systems. (m)GGA treatments formally scale
with the system size (N) as N3 if the resolution of the identity
(RI) approximation, also known as density-fitting,76 is applied.
For local (m)GGA functionals, RI can yield speedups by a fac-
tor of 5-30, depending on system and basis set. Hybrids already
scale with N4 and MP2 based double-hybrids with N5 and accord-
ingly, some higher rung functionals become unfeasible for large
systems (>200-300 atoms) on common hardware. Hybrid calcu-
lations do not profit from RI as much since it cannot be applied ef-

ficiently to Fock exchange, which thus dominates the calculation
time. However, there are semi-numerical integration techniques
such as chain-of-spheres-exchange (COSX)77 that also enable sig-
nificant speedups in hybrid calculations for basis sets of TZ quality
or larger (factor of 3-10) if combined with RI. Thus, we strongly
recommend to use both RI and COSX if available (e.g., in ORCA
as RIJCOSX and TURBOMOLE as SENEX78). The RI technique
also speeds up the MP2 calculation part in double-hybrid calcu-
lations which then become only slightly more costly than hybrids
and hence this safe approximation is strongly recommended. In
any case, consistency checks of the chosen functional are recom-
mended by comparing the results of a few functionals from each
class for a representative model system.

A note on Minnesota functionals – Beginning in 2005 a series
of functionals was developed by the Truhlar group in Minnesota,
which are typically termed MXX-Y where XX stands for the
year and Y informs about the purpose (e.g., HF for 100% Fock
exchange, "2X" for twice the Fock exchange, "L" for local).79–83

These functionals are widely used and perform very well on large
main-group benchmark sets like the GMTKN55, where M06-2X
and M05-2X are actually some of the best-performing global
hybrids, and M06-L is one of the best meta-GGAs. These methods
represent a significant step forward in functional development
compared to B3LYP, and solve some complicated electron corre-
lation problems in DFT such as alkane branching.84 However,
we do not explicitly recommend them for several reasons: Firstly
and perhaps most importantly, these functionals are not as
robust and black-box as others and thus require the user to pay
attention to technical details. This is because they are often very
sensitive to the size of the integration grid and the basis set,85

which may lead to discontinuities in potential energy surfaces
and, in turn, problems with geometry optimizations86. Secondly,
their performance strongly depends on the chemical system. This
is because their very good performance for typical main-group
chemistry relies on a quite extensive parameterization, which
may lead to problems for less common systems reflected in the
"mindless" benchmark,23 or for transition-metal chemistry.36,87

Thirdly, these functionals can be problematic for noncovalent
interactions. Although they are designed to include dispersion
effects at an electronic level, and do, in fact, work quite well for
weakly bound systems at their equilibrium distances (see exam-
ple 3.2), they cannot recover the correct asymptotic behaviour
of London dispersion in the long intermolecular distance regime.
To mitigate this, a dispersion correction needs to be added in
certain situations, which, however, can also result in overbinding
in others.88

Recommendations:

• Choose a functional with caution based on the chemical sys-
tem under investigation and the task at hand and not based
on popularity.

• Always include a dispersion correction.

• Check for reliable cost-benefit-combinations and consider
(m)GGAs. Hybrid functionals are more accurate but also
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much more expensive than (m)GGAs.

• Check the consistency between different functional classes
(e.g., compare a hybrid and a mGGA).

• In critical cases, test hybrids including different amounts of
Fock exchange.

• Consider proven multi-level approaches and composite
methods for larger systems (see Section 2).

Choice of Basis Set
Another important aspect regarding the computational
speed/accuracy compromise is the applied atomic orbital
basis set. From a fundamental point of view, this is merely a tech-
nical aspect, because DFT calculations can at least in principle
be numerically converged to the complete basis set (CBS) limit
where this influence is eliminated. In practice, however, this is
rarely done and finite basis sets are applied, introducing some
errors. However, basis set related errors in DFT are typically
much smaller than for correlated wavefunction theory-based
methods. This weaker basis set dependency compared with
wavefunction theory is a strong point of DFT. Nevertheless, even
the best functional will yield bad results if evaluated in a small
and insufficient basis set.

The most important characteristic of basis sets is their com-
pleteness, often referred to as basis set size reflecting the number
of functions to represent a given electron. An important error for
too small basis sets is the so-called basis set incompleteness error
(BSIE)89, which results from an insufficient function space in the
linear combination of atomic orbitals expansion. In short, BSIE
arises when the employed basis set is not flexible enough to de-
scribe the fine details of the electron density. In most cases, the
description of the valence electrons is most crucial and thus ba-
sis sets are usually categorized according to the so-called cardinal
number that indicates the number of independent basis functions
per occupied valence orbital. The corresponding size is usually
referred to as double- (DZ), triple- (TZ), quadruple- (QZ),...,-zeta
where the term zeta refers to the number of filled electron shells
in the neutral atom (i.e., 1s, 2s, 2p, 3s, 3p, 3d, ...). Another ba-
sis set related error arises if the basis set is too small and hence
rather incomplete: Spatially close atoms and fragments start to
“borrow” basis functions from each other, resulting in an artificial
energy lowering for more compact structures, which is known as
the basis set superposition error (BSSE).90 BSSE is the practically
most relevant error and commonly associated only with weak in-
teractions and noncovalently bound inter-molecular complexes,
for which it can become relatively large being in the magnitude
of the interaction energy. However, it is important to recognize
that BSSE is always present and also affects, e.g., conformational
energies and even molecular structures if too small basis sets are
used. Accordingly, knowing which computations are specifically
sensitive to basis set size and where it is worth to invest the in-
creased computational demand resulting from a larger basis set
to significantly improve the result is fundamental. This aspect is
the topic of the following Section 2 and Fig. 5. For BSSE prone
systems with clearly separated fragments with no inter-fragment

covalent bonds, the so-called counter-poise correction can be ap-
plied to correct for BSSE.91 An efficient alternative to this com-
putationally demanding correction is provided by approximate,
empirical correction schemes that are based on the molecular
structure, such as the geometric counter-poise correction (gCP),
or employ specially adapted effective core potentials92 In con-
trast to the full counterpoise corrections, these are always appli-
cable and computationally cheap, and thus can also employed to
correct for the intramolecular BSSE. Such approximate counter-
poise corrections can repair the most drastic effects of BSSE, e.g.,
in geometry optimizations with small basis sets. Their applica-
tion is similarly straightforward as that of dispersion corrections.
Thus, we recommend the gCP approach of Kruse and Grimme15

for geometry optimizations with small basis sets that supports HF
and DFT as well as many basis sets. The related DFT-C approach
of Witte and Head-Gordon is further recommended for accurate
noncovalent interaction energy calculations (adapted specifically
for DFT/def2-SVPD calculations, see example 3.2),16. Other no-
table concepts are the proximity-function of Faver and Merz for
large biomolecules,93 as well as the ACP-n approach of Jensen.94

The most commonly used Gaussian type contracted basis
sets belong to the Pople (e.g., 6-31G),95 Dunning (cc-pVXZ)96,
Jensen (pc(seg)-X)97,98, and Ahlrichs (def2-XVP)99,100 basis set
families. As a somewhat technical side note we want to mention
that Pople-type basis sets such as 6-31G* or 6-311G** as well
as the Dunning-type sets cc-pVXZ (X=D, T , ...) are not recom-
mended here for standard DFT treatments, mainly because more
efficient and consistent alternatives by Ahlrichs and co-workers
are available.101 All basis sets may be augmented by additional
polarization that have a higher angular momentum or diffuse
functions with small exponents to introduce more flexibility if
necessary, e.g., for anions, dipole moments or electric polariz-
abilities. For the recommended Ahlrichs basis sets, examples are
the def2-TZVPP basis set with added polarization functions and
def2-TZVPD102 or ma-TZVP103 (In some contexts also denoted
as ma-def2-XVP) that are augmented with diffuse basis functions.
To test if the results of a calculation are converged with respect to
the basis set size, it should be investigated how they change when
the cardinal number is increased (def2-TZVP to def2-QZVP), and
when polarization function are added or removed (def2-TZVP to
def2-TZVPP).

If heavy elements are involved, def2-XVP basis sets use the
matching Stuttgart-Cologne effective core potentials (def2-ECPs,
by default for Z > 36)104 to replace the inner core electrons.
This not only reduces the computation time for very heavy
elements, but also increases the accuracy due to the implicit
inclusion of (scalar)-relativistic effects, which mainly affect the
core electrons. The application of robust small-core effective
core potentials is typically sufficient for most thermochemical
property calculations. Nevertheless, for certain properties of very
heavy nuclei and properties involving core electrons such as NMR
shieldings, explicitly relativistic all-electron calculations with
special Hamiltonians, such as X2C105,106, ZORA107, or DKH108

may be necessary, but are beyond the scope of this work.

Recommendations:
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• Be aware of BSIE and BSSE.

• Try to approach a reasonable basis-set size (≥TZ) for energy-
related properties.

• Consider adding polarization functions for flexibility (def2-
XVPP).

• Consider adding diffuse functions for anions, dipole mo-
ments, and polarizabilities (ma-XVP, def2-XVPD).

• Check for basis set convergence (increase/decrease cardinal
number by one).

• If heavy atoms are present (Z > 36), apply effective core
potentials.

Comparing Apples with Apples

Finally, a remaining critical point is the consideration of finite
temperature effects. Most computational models per construc-
tion yield results valid for the absolute zero temperature (T =
0 K,−273.15°C), nuclear equilibrium scenario. Therefore, a sys-
tematic deviation compared to experimental data at finite temper-
atures is expected as standard equilibrium structure treatments,
such as geometry optimizations, do not include effects such as
nuclear zero-point vibrational energy (ZPVE), vibrationally (ther-
mally) elongated bonds, or molecular entropy. Accordingly, a per-
fect agreement between experimental structures obtained at finite
temperature and those calculated at T=0 K is not necessarily de-
sirable since – sometimes substantial109–111– finite-temperature
effects can cause a significant bias. However, for common cova-
lent bonds between typical atoms, these effects are too small to
have a significant influence.

More importantly, bare electronic energies calculated in the gas
phase (E) cannot be compared enthalpies (H) or free/Gibb’s ener-
gies (G), which are typically measured in solution. This is because
the zero-point vibrational energy that is contained in the internal
energy U , thermostatistical corrections contained in H, entropic
corrections and free energy of solvation contained in G are of-
ten substantial for typical reactions and can take on the order of
several kcal·mol−1 (see examples in Section 3).

Recommendations:

• Try to model the experiment as closely as possible.

• Apply zero-point vibrational energy and thermostatistical
corrections to enthalpy or free energy if necessary.

• For large systems with many small vibrational frequencies
<50-100 cm−1, consider the robust mRRHO model for the
entropy part of the free energy.

As many quantum chemical applications typically involve man-
ifold methods based on various physical concepts, further reading
on general computational chemistry as well as specific aspects is
recommended.5,26,73,89,112–115

Quantum Chemistry Program Packages
In the last decades, various more or less specialized program
packages were developed. All of them provide the same basic
DFT functionality and relevant differences concern their ease of
use, their efficiency, and their availability (free or commercial).
In the following, a selection of common program packages with
versatile functionality in molecular applications is given and
individual strengths and specialties are highlighted briefly. These
programs proved to be reliable for a wide range of quantum
chemistry applications in our group.

TURBOMOLE116

• Very fast and robust

• Technically advanced and state-of-the-art algorithms

• Molecular symmetry handling

• Fast hybrid functional implementation by semi-numerical
Fock-exchange approximation (SENEX)

ORCA117–119

• Efficient implementation of DFT and wavefunction theory

• Fast hybrid functional implementation by semi-numerical
Fock-exchange approximation (RIJCOSX)

• Large toolkit for molecular spectroscopy

• Easy and intuitive input structure

• Free of charge for academic use

Q-Chem120

• Large number of implemented density functionals

• Large variety of specialized DFT treatments (time-
dependent-DFT, constrained-DFT) and analysis tools (en-
ergy decomposition analysis, EDA)

• Special DFT methods for NCI (SAPT, DFT-C)

Psi4121

• Modular code with great interfacing/scripting capabilities

• Special DFT methods for NCI (SAPT)

• Free of charge

Molpro122

• Advanced DFT (RPA, ACFDT) and embedding (WFT-in-DFT)
techniques

• Special DFT methods for noncovalent interactions (SAPT)

• Free of charge

AMS123

• Use of Slater-type orbital (STO) basis sets

• Good relativistic treatments
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• Huge quantum chemical toolbox

• Great graphical user interface (GUI)

The widely used Gaussian program124 package is a promi-
nent representative that is not specially recommended here as it
seems to be computationally not very efficient, lacking important
recent technical advances, and better, even freely available,
alternatives with a similar or even higher functionality exist in
our opinion.

Specifically for large systems or very demanding computational
tasks, DFT methods can be complemented by semi-empirical
quantum mechanical methods. Even though some of these are
implemented in the mentioned quantum chemistry packages, sev-
eral features are only available in the corresponding original
codes. The most frequently used semi-empirical quantum me-
chanics programs are xtb125, DFTB+126, and MOPAC127. For
example, the recent single-point hessian (SPH)128 approach can
be utilized with semi-empirical methods by using the native im-
plementation in the program. Further, the xtb program can be
used as a driver for other codes (using the xtb functionality with
parts of other codes to employ, e.g., DFT in the SPH approach)
such as ORCA. A detailed documentation can be found in Ref.129.

2 The right tool for the task
A central task in computational chemistry is to balance compu-
tational demands against methodological accuracy and robust-
ness. To this end, it is important to be aware of strengths and
weaknesses of specific methods, to consider the system size, and
the required accuracy of the target quantities such as structures,
reaction energies, or conformational energies. Practically rel-
evant systematic errors in this respect are the aforementioned
self-interaction error (SIE), basis-set superposition (BSSE) and in-
completeness errors (BSIE), as well as the lacking description of
London dispersion by most functionals. The relevance of these
aspects depends not only on the system under investigation but
even more so on the task at hand. Thus, it is instructive to discuss
available methodological choices in the framework of the most
typical steps of a computational investigation. The aim of this
section is thus to guide the choice of the methodological tool set,
to provide the means to adapt it to the task at hand. Simply put:
We want to explain how one can cut corners where it does not
hurt through clever methodological choices and the use of multi-
level approaches.

An illustrative example for multi-level approaches is the use
of efficient semi-local (GGA and mGGA, i.e., no Fock exchange)
functionals or composite methods for structure optimizations and
vibrational frequency calculations, combined with single-point
energy calculations at a hybrid/QZ level. The underlying idea
is that although energies calculated with (m)GGA functionals are
susceptible to SIE, they still provide very reasonable structures at
a small fraction of the computational cost of the more advanced
non-local (hybrid and double-hybrid) functionals. This holds true
even for SIE-prone systems, such that single-point calculations
with hybrid functionals on (m)GGA structures often provide en-
ergies and properties as accurate as a fully optimized hybrid ap-
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Figure 4 Potential energy surface along the cyclopropenyl–anthracene
center-of-mass distance RCMA for the mGGA r2SCAN-D4, its hybrid vari-
ant with 25% Fock exchange r2SCAN0-D4 130, and the W1-F12 refer-
ence. W1-F12 denotes a highly accurate wavefunction theory-based ref-
erence level. All DFT data calculated with the def2-QZVPP basis set.
Re = equilibrium distance. Colored arrows indicate the charge transfer
from anthracene to the cyclopropenyl cation for the respective theoretical
level.

proach. One example for this is the anthracene-cyclopropenyl
cation potential-energy surface from our recent article introduc-
ing r2SCAN-3c18 that is shown in Fig. 4. Although the mGGA-
based composite method overestimates the interaction energy
due to SIE, the equilibrium intermolecular distance is in very good
agreement with the high-level coupled-cluster reference.

Recognizing that structure optimizations are generally much
less sensitive to the level of theory than energy and many other
property calculations, multi-level approaches enables large com-
putational savings without any significant loss of accuracy. To
generalize from this example, we summarized the most suitable
functional/basis-set combinations for typical steps of a computa-
tional study in Fig. 5. To guide the choices visually, we marked
the recommended level of theory with the best balance between
computational effort and robustness in blue, accurate and robust
but not necessarily efficient choices in green, and methods that
should be avoided in red. Less clear-cut cases (in between red
and green) are marked in yellow. These methods can under cir-
cumstances be a good choice but are not as robust as green ones.
Hence, results obtained at this level should be checked for system-
atic errors as indicated in the field, and often better alternatives
(blue fields) are recommended instead. In all cases, the most se-
vere systematic errors and drawbacks we expect based on our ex-
perience are shown as text. In the following, we will discuss this
table column (task)-wise to motivate and explain our choices, and
provide additional details. To streamline this discussion, we fully
separate the theoretical tasks in the computational context. This
means that, e.g., the discussion of methods for conformational
energies only refers to calculation of electronic energies and ex-
cludes vibrational and entropic contributions, which we discuss
separately.
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structureb,
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b If the structure is reasonable (DZ ≈ TZ), GGA/DZ or even semi-empirical frequencies are sufficient. If not, use SPH.
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TZ
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d The large amount of Fock exchange can cause pronounced errors for transition metal complexes.

BSSE
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a High dependency on the size of the numerical integration grid.

c Self-interaction error can limit the accuracy for hybrid functionals with small amounts of Fock exchange (< 20%).
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Figure 5 Decision matrix to guide the choice for a method combination (functional class/basis set) for common computational tasks. All considerations
imply the use of a dispersion-correction. Red, yellow, and green color code indicate the accuracy and reliability of a method for the given task, while
blue marks our recommendation based on a good cost/accuracy ratio. Text in the fields points out the most relevant, systematic errors we expect at
this level (SIE, BSSE, BSIE) or if a theory level is unnecessarily demanding (excessive). Excessive method combinations probably do not yield any
significant increase in accuracy justifying the much increased computational cost in the respective application. Selected recommended methods are
given with the respective method class. DZ = double-zeta; TZ = triple-zeta; QZ = quadruple-zeta basis set. BSIE = basis set incompleteness error;
BSSE = basis set superposition error; no-D = missing London dispersion ; SIE = self-interaction error; Fock exchange = non-local exchange (also
termed exact exchange) from wavefunction theory.
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2.1 Structure

Structure optimizations are the first step of most quantum-
chemical investigations, either starting from an experimental ref-
erence or a low-level guess that may employ semi-empirical quan-
tum mechanics or force-field methods. At this point, the most typ-
ical user errors concern the starting structure(s) and mistakes in
the input resulting in wrong charge, spin- or protonation states,
which drastically alter the results, whereas wrong choices of the
theoretical model are less common and often less severe. Hence,
we recommend to carefully check the input before setting the
computational machinery in motion. Self-consistent field conver-
gence issues are often a strong hint towards problems with the
input. As already discussed above, structures are much less sensi-
tive to the functional and basis set than energies and properties.
Therefore, a well-balanced TZ basis set (def2-TZVP) is sufficient,
and going higher to QZ level is generally a waste of computational
resources. Even well-balanced DZ basis-sets (def2-SVP) can pro-
vide useful results when combined with the empirical geometric
counterpoise (gCP)15 correction to mitigate the sometimes sig-
nificant structural impact of BSSE. In fact, combining small but
well-balanced basis sets with the gCP correction is the basis of the
PBEh-3c25 (DZ, def2-mSVP) and r2SCAN-3c (TZ, mTZVPP) com-
posite methods, which are tailor-made for the task of structure
optimization and thus strongly recommended. In our opinion, it
is rarely required to go beyond this level for structure optimiza-
tions in standard thermochemical studies.

Concerning the functional, (m)GGAs are typically sufficient
(e.g., r2SCAN-D4131,132, TPSS133-D4, or even PBE-D4) as al-
ready discussed in the beginning of this section. This provides
the additional advantage to fully exploit the usually very accu-
rate resolution-of-the-identity (RI) approximation76, also called
density-fitting, which makes (m)GGA calculations much more
affordable than using hybrids. As a result, mGGA function-
als can be employed with larger basis sets at essentially the
same or even lower cost than hybrids with small basis sets like
B3LYP/6-31G*. In turn, we argue that hybrid functionals should
only be used for structural optimizations if there is a good rea-
son, such as strong SIE, application to transition state searches,
weakly bound electrons in anions or presence of heavy main-
group elements. To investigate if hybrid functionals have a sig-
nificant influence, we suggest to begin with comparing results
obtained with the r2SCAN-3c and PBEh-3c composite methods.
A very robust but also significantly more expensive choice is
PBE0-D4/TZ, which can already be regarded as a benchmark
level for structural optimizations. B3LYP-D4/TZ achieves a sim-
ilar level of accuracy but is – in our experience – not quite as ro-
bust as PBE0-D4/TZ, in particular for transition-metal containing
systems. Also range-separated hybrids and double-hybrid func-
tionals have been shown to provide very accurate structures.134

However, application of double-hybrids is typically excessive and
not necessary for standard applications due to beneficial error-
cancellation effects for structures. Even for very large systems,
structural optimizations should not go below polarized DZ ba-
sis set level. The functional should be at least of good (m)GGA
quality (PBE or TPSS) and always include a dispersion correc-

tion (D3/D4115,135,136, VV10137). Note that BLYP138,139 is not
recommended because the GGA-typical slight systematic overes-
timation of covalent bond-lengths is more pronounced than with
the recommended GGAs.

2.2 Frequencies

The calculation of vibrational frequencies is indispensable to ob-
tain zero-point vibration energies, thermostatistical corrections to
enthalpy and free energy, and also for the prediction of IR/Raman
spectra, which are not in the focus here. Since the underlying cal-
culation of second energy derivatives quickly becomes very de-
manding for larger systems, it is desirable to conduct such calcu-
lations at the lowest level that still provides reasonable results.
Therefore, we recommend to use efficient composite methods or,
alternatively, mGGA or hybrid functionals with a DZ basis set in
combination with the gCP correction. Similar to structures, error-
cancellation is very stable and, since the thermostatistical cor-
rection to a reaction energy is typically much smaller than the
electronic part from DFT, the impact of a lower level is naturally
limited. In many cases, it is even sufficient to obtain thermosta-
tistical corrections at a semi-empirical quantum mechanics level,
e.g., with GFN2-xTB5,140, as shown in example 3.2. We note that
application of low-level semi-empirical methods should be care-
fully checked if exotic bonds, transition metals, or heavy main-
group elements are present.

The only complication that arises concerning the use of lower-
level methods for frequencies is that the structure for which the
vibrational frequencies are calculated has to be an energy mini-
mum at this very level (fully optimized, vanishing atomic forces).
Otherwise, artificial imaginary frequencies will severely impact
the accuracy of the calculated thermostatistical corrections. For
this reason, the same theory level has to be used for structure
optimization and vibrational frequency calculations or a second
set of optimized structures obtained at this lower level has to be
used ). This limitation can be overcome with the recently pre-
sented single-point Hessian (SPH) approach, which allows to ob-
tain frequencies and reasonable thermostatistical corrections for
any non-equilibrium structure through the application of a spe-
cific biasing potential.128 While originally developed for the semi-
empirical method GFNn-xTB, the SPH approach can also be used
for DFT if the xtb program is used as a driver for a quantum-
chemistry program like ORCA (see xtb documentation).129

Note that in general, a presence of a few low-energy imaginary
frequencies <50-100 cm-1 is quite typical for large systems and
often technically/numerically related to the DFT grid. This is per
se not a problem if properly dealt with, that is, the frequencies
should be inverted (multiplied by −i) and treated as normal real
frequencies, like in the xtb program.125 However, if these small
imaginary modes are not inverted or removed, or too many are
present, they can significantly bias the thermostatistical entropy
corrections. In contrast, the appearance of high-energy imaginary
modes (> 100 /cm) in frequency calculations for fully optimized
structures indicates that the given structure is no minimum on
the respective potential energy surface and requires further re-
finement, e.g., by manual distortion and re-optimization.
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Only if the individual vibrational frequencies and IR/Raman
intensities are desired and not just thermostatistical corrections,
it might be useful to move to hybrid level and larger basis sets as
this improves the calculated spectral intensities. One functional
with a proven track record for the computation of IR spectra is
B3LYP, or its dispersion corrected low-cost variant B3LYP-3c, see
Refs. 7,17. For a comprehensive analysis of the performance of
various functionals, basis sets, and the influence of Fock exchange
on vibrational frequencies, we refer to the work of Radom and
coworkers.141

2.3 General Remarks on Energy Calculations

For the following four categories, conformers, reaction ener-
gies, barriers, and noncovalent interactions, the calculated
electronic energies become the central quantity, which requires
larger basis sets for converged results than structures or frequen-
cies. Therefore, DZ basis sets (like 6-31G** or def2-SVP) are no
longer sufficient, and we strongly advise against using them ex-
cept if they are part of composite schemes made for this pur-
pose. Even in combination with full counter-poise corrections
or gCP, the residual BSSE and BSIE of DZ basis sets is substan-
tial. One possible exemption is the calculation of NCIs with the
def2-SVPD basis set and tailor-made DFT-C correction for BSSE
of Head-Gordon and Witte,16 which we showcase for the NCI ex-
ample in Section 3.2. Common TZ basis sets often yield results
already reasonably close to the basis set limit, but convergence
should be checked at a QZ level in critical cases. Before reduc-
ing the basis set size to the bare minimum, we suggest moving to
more efficient (m)GGA functionals instead of hybrids or even TZ-
based composite methods, which are purpose-made to perform
well with smaller basis sets.

For double-hybrid functionals, the limitations of TZ basis are
more severe since the MP2 component of the calculation typically
has a stronger basis-set dependency than the (m)GGA or hybrid
DFT part. Here, complete-basis-set-extrapolation (CBS) from TZ
to QZ should be considered142,143, but the details are beyond
the scope of this work. Lastly, we suggest deciding on one ap-
proach for all energy-related properties to retain a certain degree
of consistency and comparability, meaning that reaction energies,
barrier heights, and association energies of reactants in one reac-
tion or reaction network should be obtained consistently with one
method combination, e.g., ωB97M-V/QZ144 single-point energies
on r2SCAN-3c structures (ωB97M-V/QZ//r2SCAN-3c) Therefore,
a compromise needs to be made considering all the requirements
stated in the following.

2.4 Conformers

Conformational energies refer to the differences in the electronic
energy of different conformers of a given molecule with a fixed
covalent bond topology. Conformational energies are more for-
giving in the energy-related categories due to the typically similar
structures as they strongly profit from error compensation. At
the same time, however, they need to be accurate within a range
of about 0.1-0.2 kcal·mol−1 to predict Boltzmann populations at
room temperature reasonably well. This is particularly important

in cases where properties are weighted for several conformers,
which can vary widely (see example 3.3).

Thus, conformational energies should at least be obtained with
TZ basis sets, and for this reason, the PBEh-3c composite method
(based on a DZ basis) is not recommended for the task. Con-
formational energies are particularly sensitive to mid- and long-
range electron-correlation effects, such that the dispersion cor-
rection takes an important role. In particular, for metal-organic
systems, density or charge-dependent corrections like VV10 or D4
should be preferred over the charge-independent D3 scheme. Ac-
cording to the conformational subsets of the GMTKN55 bench-
mark, r2SCAN-D4 and the r2SCAN-3c and B97-3c composite
methods are particularly well-suited for conformation energies.
If the systems are small and higher-level calculations are afford-
able; hybrid functionals can be employed with large TZ basis sets.
Here, we recommend the ωB97X-V and ωB97M-V approaches of
Mardirossian and Head-Gordon or the respective D4 or D3 ana-
logues.145,146 Also, a common dispersion-corrected B3LYP/TZ or
QZ approach can provide accurate conformational energies, yet
this method has been outperformed in a recent benchmark by the
r2SCAN-3c composite method at a small fraction of the computa-
tional cost (see also example 3.3). Double hybrid functionals can
be used for small systems and maximum robustness and accuracy.

The most accurate functionals in the GMTKN55 benchmark are
ωB97M(2)147 of Mardirossian and Head-Gordon and revDSD-
PBEP86-D4148 of Martin and coworkers. A particularly robust
and widely available double hybrid we also want to recommend
is PWPB95-D4149. On a side note, we want to mention that
semi-empirical quantum mechanics and force-field-based meth-
ods yield much less reliable conformational energies than DFT
and hence can only be applied in initial steps of multi-level work-
flows and by using a very conservative (large) energy selection
window, and are best coupled with DFT-based energy re-ranking
(see workflow given in Fig. 7).52

2.5 Reaction Energies

Reaction energies refer to the difference in the total electronic
energies between reactants, products, and possible intermediates
that constitute minima on the potential energy surface. Since the
geometric and electronic structure of the molecules differs more
widely, error compensation is weaker than for conformational en-
ergies. However, the practically acceptable error for reaction en-
ergies is typically also larger than for conformational energies,
and an accuracy of about 1-2 kcal·mol−1, which is difficult to ob-
tain experimentally, is often considered to be sufficient. While
all of this strongly depends on the reaction under investigation, a
number of general findings hold true for the vast majority of ex-
amples: Regarding the basis set, reaction energies require large
TZ or QZ basis sets for converged results (see examples). The
basis-set dependency should be carefully investigated by compar-
ing single-point energies obtained with the next-smaller basis set
(e.g., def2-QZVP to def2-TZVP). Even if computational resources
are at the limit, the basis set size should not be reduced below TZ
quality.

Instead of reducing the basis set size, it should always be
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considered to switch to semi-local (m)GGA functionals if SIE is
not a major concern. Surprisingly, one of the most efficient ap-
proaches for accurate reaction energies is the r2SCAN-3c compos-
ite method, which outperforms the recommended B3LYP-D4/QZ
and PW6B95/QZ hybrid methods on the reaction energy subset
of the GMTKN55 benchmark (see Fig. 4 in Ref. 18).

In general, however, the accuracy and, in particular, the ro-
bustness of predicted reaction energies of non-metallic systems
profits from an admixture of Fock exchange. The optimum value
for reaction energies with global hybrids is at ≈ 25% Fock ex-
change. In contrast, barrier-heights often profit from even higher
amounts of ≈ 50% depending on the reaction type (see details
in Section 2.6). Therefore, if both reaction energies and barrier
heights are to be calculated, preferably with the same functional
as discussed above, a compromise must be made with global hy-
brid functionals. In this regard, we recommend Truhlar’s PW6B95
(28% Fock-exchange)150 hybrid with D3 or D4 dispersion correc-
tion, which provides accurate and robust thermochemistry, and
has been our default hybrid functional for mechanistic studies for
many years.

An approach to solve the problematic of high or low Fock-
exchange is provided by range-separated functionals such as
ωB97X-V and ωB97M-V. The variable admixture of Fock exchange
in these functionals makes it possible to get the best of both
worlds: good reaction energies and barrier heights. Accordingly,
the best-performing hybrid functionals on the GMTKN55 bench-
mark set are the above-mentioned range-separated ones being the
only hybrids with a WTMAD2 below 4 kcal·mol−1. Double hybrid
functionals are even more accurate and robust choices but also
most computationally demanding because they require larger ba-
sis sets.

Lastly, to complete this discussion of the optimal amount of
Fock exchange, we mention that this value also depends on the
type of the studied reaction. While the arguments and val-
ues presented above apply to main-group chemistry, transition-
metal compounds typically require lower amounts (roughly about
half of the values given above). Accordingly, functionals with
very high amounts of Fock exchange and range-separated hybrids
should be applied with care. An example is the prominent M06-
2X (54%) functional and the PBEh-3c composite method, which
showed larger errors in recent transition-metal reaction bench-
marks.36,87

2.6 Barrier Heights

Barrier heights refer to the electronic energy difference between
the transition state and the corresponding reactants/products.
Many transition state structures typically involve at least one
stretched bond and, in turn, near-degenerate orbitals with weakly
bound electrons, which gives rise to a particularly challenging
electronic structure. As a result, transition states are typically
prone to SIE, which often leads to a systematic underestimation
of their electronic energy and, in turn, barrier heights by (m)GGA
functionals. This error strongly depends on the one-electron char-
acter of the breaking bond(s) in the transition state: It is largest
for hydrogen-transfer or dissociation reactions, smaller, e.g., for

heavy-atom peri-cyclic reactions, and almost absent for covalent,
bond-conserving inversion or conformational processes. Hence,
cheap (m)GGA functionals may be used in special cases such as
conformational or inversion barriers after careful testing but, in
general, barrier height calculations are the only category in which
we advise against using semi-local (m)GGA functionals. Since
the calculation of barrier heights is perhaps the most challenging
task, we provide an extended discussion of the aspects mentioned
above in the example shown in Section 3.4.

In general, to mitigate the errors related to SIE, range-
separated hybrids are strongly recommended for barrier heights.
Specifically, ωB97M-V (also ωB97X-V) are performing very well
on the barrier height subsets of the GMTKN55 and other bench-
mark sets. If global hybrids need to be employed for some rea-
son, those with an increased Fock exchange (>30%) should be
preferred, and the results should be compared against range-
separated hybrids. Global hybrid functionals that have been
specifically designed for the prediction of barrier heights, like
the BMK151 or MPWB1K152 functionals, typically use 40-50%
Fock exchange (BMK 42%, MPWB1K 44%). Note that such high
amounts of Fock exchange typically deteriorate the performance
of reaction energies. Also, double hybrid functionals are well
suited for this task since they typically use a much larger fraction
of Fock exchange (>50%) than global hybrids and nevertheless
provide very accurate reaction energies. Due to their challenging
electronic structure, basis set convergence may also be slower for
transition states/barrier heights than for other properties, and QZ
basis sets should be considered.

The London dispersion energy contribution to typical chemical
reaction energies or barriers computed with standard function-
als can be large (or even decisive, see Ref.153), especially for
molecules with >20-30 atoms, and hence its explicit considera-
tion is very strongly recommended.

2.7 Noncovalent Interactions

Noncovalent Interactions refer to the difference in electronic en-
ergies between a non-covalently interacting complex and its iso-
lated molecular fragments. Since, by definition, no covalent
bonds are changed upon association of the fragments, noncova-
lent interaction (NCI) energies strongly profit from error com-
pensation, even more so than conformational energies. However,
at the same time, NCI energies are often relatively small on an
atom pair-wise basis, and therefore the required accuracy is of-
ten higher than for reaction energies. Moreover, small NCI en-
ergies can cause BSSE and SIE to become relatively large, and
their influence should be carefully investigated. Since London
dispersion is usually a dominant contribution to the binding in
NCI complexes, the dispersion correction is particularly impor-
tant. While VV10 can have a slight edge over D4 in exotic and
charged systems due to its dependence on the density, the inher-
ently better C6 coefficients14,136,137 as well as the inclusion of
three-body-terms154,155 in D4 (and D3-ATM in PBEh-3c), makes
D3-ATM and D4 more accurate in highly polarizable, small-gap
systems (e.g., bucky-balls or graphene sheets, cf. the L7 and S30L
benchmarks156,157).
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All "3c" composite methods can be recommended to efficiently
calculate noncovalent interaction energies, as they have been de-
signed with this purpose in mind. For most systems, r2SCAN-3c
is the best choice, while for SIE prone, typically highly polar sys-
tems, PBEh-3c can be superior. However, the small basis of PBEh-
3c can be problematic in such cases due to BSSE and BSIE. An-
other composite approach has been developed by Head-Gordon
and coworkers that combines the accurate B97M-V mGGA func-
tional with the def2-SVPD basis set and a tailor-made gCP-derived
correction termed DFT-C.16 This approach provided NCI energies
with an accuracy comparable to B97M-V/QZ results in their tests.
We demonstrate this approach in the NCI example in Section 3.2.

Finally, we want to mention that due to the good error
compensation for noncovalent interaction energies, even semi-
empirical quantum mechanical methods like GFN2-xTB or PM6-
D3H4158,159 can provide reasonable results for interactions in-
cluding complex geometries at a fraction of the computation cost
of a DFT calculation. Combining these very "low-cost" structures
and frequencies with single-point calculations at a composite-DFT
level is perhaps the best way to estimate noncovalent interaction
energies for very large systems with hundreds or thousands of
atoms.

On the high-end of the methodological spectrum, ωB97M-V
and ωB97X-V provide exceedingly accurate noncovalent interac-
tion energies if combined with a large TZ/QZ basis. Also, double
hybrid functionals are very accurate and robust for noncovalent
interaction energies, but also more basis set dependent and de-
manding. Noncovalent interactions in or with very small gap
systems (metals) are generally not well understood and require
special treatment.160

3 Examples

3.1 Formation and Isomerization of [2.2]Paracyclophane

The dimerization of 3,6-dimethylidenecyclohexa-1,4-diene to
[2.2]paracyclophane and its subsequent isomerization to
[2.2]metacyclophane shown in Fig. 6 represents a funda-
mental chemical transformation in organic chemistry. For
both reactions, experimentally determined standard heats of
formation can be used to derive the reaction enthalpies
(∆Hexptl.).161–163 Nevertheless, due to high uncertainties for the
3,6-dimethylidenecyclohexa-1,4-diene monomer, the reaction en-
thalpy of the dimerization amounts to −41.9±10.6 kcal·mol−1.
This error estimate is much smaller for the isomerization for
which an reaction enthalpy of −17.9±2.9 kcal·mol−1 is derived.

To obtain more reliable reference values, highly accurate W1-
F12164 electronic energies were calculated and combined with
PBE0-D4/def2-TZVP zero-point vibrational energy and enthalpy
corrections. Geometries calculated on the same DFT level were
used throughout (Fig. 6). The calculated reference reaction en-
thalpies amount to −48.7 and −19.0 kcal·mol−1, and thus lie
within the large error bars of the experimental values. Specifi-
cally, the dimerization reaction represents a challenging task for
computational methods as two new strained single bonds are
formed and the product includes pronounced intramolecular Lon-
don dispersion as well as exchange-correlation interactions be-

tween the close aromatic rings. Accordingly, a large deviation
is obtained at the dispersion-uncorrected B3LYP/QZ level, which
strongly underestimates the reaction enthalpy (∆HB3LYP/QZ =
−25.2 kcal·mol−1). Including the D4 dispersion correction results
in a much improved value of ∆HB3LYP-D4/QZ = −43.4 kcal·mol−1.
Nevertheless, the deviation from the W1-F12 reference value
still amounts to 5.1 kcal·mol−1. An even better agreement with
the reference value is obtained employing the PWPB95-D4/def2-
QZVP double-hybrid. The respective reaction enthalpy is cal-
culated to ∆HPWPB95-D4/QZ = −48.5 kcal·mol−1 in near-perfect
agreement with the reference.

The strain-reducing isomerization is less prone to intrinsic func-
tional errors, mainly due to beneficial error compensation re-
sulting from the chemical similarity of [2.2]paracyclophane and
[2.2]metacyclophane. Accordingly, all tested DFT methods are in
reasonable agreement and again, the PWPB95-D4/QZ result is in
perfect agreement with the reference value. In both cases, the
energy to enthalpy corrections are small compared to the relative
electronic energies, only contributing by 4.2 and 0.5 kcal·mol−1,
respectively.

3.2 Noncovalent interactions

Noncovalent interactions (NCIs) play an important role in chem-
istry, particularly in bio- and supramolecular systems.165,166 The
theoretical description of supramolecular complexes is therefore
of considerable importance, and particularly the prediction of
binding free energies (∆G). Since chemically relevant systems
are often quite large and also flexible, this task is challenging
for computational chemistry. To compare calculated values and
experimental data such as binding free energies measured in so-
lution, the thermostatistical corrections must also include the en-
tropy terms. This is specifically the case for bimolecular reactions.
The common approach to calculating binding free energies for the
formation of a NCI complex at a given temperature is shown in
Eq. (1)167

∆G = ∆E +∆δGsolv +∆GmRRHO , (1)

where ∆E refers to the difference of the total electronic gas-phase
energies, ∆δGsolv to the difference in solvation free energies, and
∆GmRRHO corresponds to the difference in the thermostatistical
contributions. Depending on details of the complex in question
(e.g., charged vs. neutral, H-bonds vs. π-π stacking, solvent),
these individual contributions may vary significantly in size and
can be of different sign. Regardless, all three contributions to ∆G
must be described fairly precisely, as these are typically large and
only partially cancel each other to give the typically rather small
experimental ∆Gs (−1 to −15 kcal·mol−1).157

Recently, we have proposed a workflow49 to compute the con-
tributions to Equation (1), which is summarized in Fig. 7 and
showcased for this example. The example complex is a +4
charged macrocyclic host (termed CBPQT4+) with bromoben-
zene as guest, whose ∆G was experimentally determined to be
−5 kcal·mol−1 in aqueous solution.168 The first challenge is to
model the actual molecular structure as realistically as possible,
ideally in solution at finite temperature. To this end, a con-
former search using the automatic CREST and CENSO approaches
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2
ΔHexptl. = −42 ± 11 ΔHexptl. = −18 ± 3 

[2.2]paracyclophane [2.2]metacyclophane

ΔHW1-F12 = −48.7 ± 0.5 

ΔHB3LYP-D4/QZ = −43.4
ΔHPWPB95-D4/QZ = −48.5

ΔHB3LYP/QZ = −25.2 

ΔHW1-F12 = −19.0 ± 0.5 

ΔHB3LYP-D4/QZ = −17.4 

ΔHPWPB95-D4/QZ = −19.1

ΔHB3LYP/QZ = −20.7 

dimerization isomerization

Figure 6 Formation of [2.2]paracyclophane 161 from 3,6-dimethylidenecyclohexa-1,4-diene 162 and subsequent isomerization to [2.2]metacyclo-
phane 163. All DFT reaction enthalpies employ PBE0-D4/def2-TZVP geometries, zero-point vibrational energy and enthalpy corrections at T = 298.15 K.
All values in kcal·mol−1. W1-F12 denotes a highly accurate wavefunction-theory-based reference level. QZ = def2-QZVP.

automatic CREST
(GFN2-xTB(ALPB))

standard CENSO workflow

part 0: 
exclude conformers > 4 kcal·mol−1

B97-D3/def2-SV(P) // GFN2-xTB

part 1: 
exclude conformers > 3.5 kcal·mol−1 

r2SCAN-3c + COSMO-RS 
+ GmRRHO(GFN2[ALPB]-SPH)

part 2: 
final geometry optimization 
r2SCAN-3c[DCOSMO-RS]

final ΔG ranking 
E(r2SCAN-3c) + Gsolv(COSMO-RS) 
+ GmRRHO(GFN2-xTB[ALPB]-SPH)

bromobenzene@CBPQT(4+)

ΔGcalc. = −5.4 kcal·mol−1

ΔGexptl. = −5.0 ± 0.5 kcal·mol−1

Br

N

4+

Figure 7 Suggested computational workflow to calculate the binding free
energy (∆G) of bromobenzene to CBPQT(4+) in water. For details on the
CREST/CENSO workflow see Refs. 51,52, and 49

is important, particularly for the complex but also for hosts and
guests if they are flexible molecules. In Ref. 46, we demon-
strated that the efficient semi-empirical extended tight-binding
method GFN2-xTB with a specially adapted implicit solvation
model (ALPB) is well-suited for this purpose. For the complex
discussed here, twelve conformers within a relative energy range
of 0–2.5 kcal·mol−1 are found after the final ∆G ranking even
though for rigid molecules like this one, it is often sufficient to
consider only the energetically lowest conformer. However, for
very flexible host or guest structures, the consideration of further
conformers by means of Boltzmann weighting is strongly recom-
mended.49 The reason is that if the configuration space is signif-
icantly narrowed in the complex compared to a free host/guest,
e.g., because an alkyl chain is fixed in one position in the complex,
this gives rise to a large entropy penalty and, in turn, temperature
dependency of the binding due to the T · S term. In such cases,

the conformational entropy should be explicitly considered,52,169

which significantly increases the cost of the calculations.
For the final geometry optimization (and conveniently also the

final energy calculation, see below) of the energetically lowest
conformer, we recommend the composite DFT method r2SCAN-
3c with DCOSMO-RS as implicit solvation model. Alternatively,
SMD, CPCM, and COSMO with descending preference from first
to last can be used. Note that COSMO-RS cannot be used in ge-
ometry optimizations. For the example discussed here, all four
mentioned implicit solvation models are suitable for the geome-
try optimization as evident from Fig. 8. Moreover, we note that
also our previous group-default for geometries, a TPSS-D3/def2-
TZVP optimization in gas phase, gives accurate results for this
example and also in general. This is because results are often not
very sensitive to the employed structures, as already discussed in
Section 2.1.

The thermostatistical corrections ∆GmRRHO typically provide a
significant positive, repulsive contribution to the free binding en-
ergy (blue bars in Fig. 8). We calculate them in the modified
rigid-rotor harmonic oscillator (mRRHO) approximation, which
includes a special treatment for low-frequency modes, zero-point
harmonic vibrational energy (ZPVE) and heat/volume work cor-
rections, but neglects the conformational entropy. This can be a
good approximation if the involved molecules are mostly rigid as
discussed above. Our default is to compute vibrational frequen-
cies with fast semi-empirical methods such as GFN2-xTB, which
is typically in good agreement with DFT reference values (devi-
ation ≤1-2 kcal·mol−1).170 This requires a suitable implicit sol-
vation model like ALPB as well as the single point Hessian (SPH)
ansatz,128 which uses a biasing potential approach to create an
artificial minimum at the DFT structure. The comparison of the
default GFN2-xTB[ALPB]-SPH ∆GmRRHO contributions with cor-
responding DFT values obtained in gas-phase at the TPSS-D3/TZ
level shown in Fig. 8 confirms that the semi-empirical approach
yields practically identical results but in a few minutes vs. several
hours of computation time for the DFT calculation. The alter-
native to SPH calculations, that is, a full re-optimization of the
geometry with GFN2-xTB (xtb-keyword: -OHESS), yields slightly
larger deviations from the gas-phase DFT reference (see Fig. 8),
but the SPH calculations benefit also from error cancellation due
to the use of an implicit solvation model. Hence, we generally
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recommend to calculate the frequencies with an implicit solva-
tion model and the SPH algorithm.

To calculate the binding energy (∆E) contribution to ∆G, our
default protocol uses the r2SCAN-3c single-point energy. In gen-
eral, composite DFT methods such as r2SCAN-3c or B97M-V/def2-
SVPD/DFT-C are efficient alternatives to numerically converged
QZ basis set DFT calculations and approximately 50 times faster
for this system size. As evident from Fig. 8, r2SCAN-3c (default,
leftmost bar), B3LYP-3c, and B97M-V/DFT-C are all in good agree-
ment with the reference. However, it should be noted that when
the systems are highly charged or feature exotic chemical interac-
tions, it is generally advisable to compare ∆E obtained with com-
posite methods to a more robust DFT/QZ calculation with a well-
performing hybrid (e.g., ωB97M-V) to be on the safe side. The re-
maining scatter of typically ±2 kcal·mol−1 for ∆E can usually be
attributed in about half to the errors of the density functional and
in the other half to the errors of the dispersion correction, which is
particularly important in NCI examples (see discussion in Section
2.7). For this example, VV10/NL is actually somewhat more accu-
rate in combination with B3LYP than D4 (see Fig. 8). Concerning
the basis set for the DFT calculation, the residual basis set errors
are smaller than the intrinsic functional error with QZ basis sets
and often already with large TZ basis sets. However, this changes
when the basis set size is further reduced to DZ, as evident from
the hierarchy of B3LYP-based results summarized in Fig. 8: With
the TZ basis the B3LYP-D4 results change only slightly compared
to QZ (and also M06-2X provides very good agreement with the
TZ basis), whereas the DZ basis 6-31G* with B3LYP-D3 exhibits
strong BSSE-induced overbinding. In contrast, the still widely
used B3LYP/6-31G* approach drastically underestimates the ∆E
contribution due to the lack of a dispersion correction, and thus
the resulting ∆G is off by more than 20 kcal·mol−1. This demon-
strates that the often assumed error compensation between lack-
ing London dispersion and BSSE in B3LYP/6-31G* is not to be
trusted. To show how the shortcomings of B3LYP/6-31G* can be
fixed at essentially no extra cost, we included the value obtained
with the B3LYP-3c approach, which combines B3LYP-D3 with a
DZ basis (def2-SVP) and the default gCP correction for BSSE (see
Fig. 8). Evidently, this physically sound approach gives results
very close to B3LYP-D4/QZ at the same cost as B3LYP/6-31G*,
demonstrating once again that there is no reason for using this
outdated but still popular method.9

The most challenging contribution in the entire workflow is the
solvation free energy contribution ∆Gsolv, especially for higher or
negatively charged systems in polar, H-bonding solvents. Here,
an error range of 2-3 kcal·mol−1 is realistic due to a large ∆δGsolv
value, which has an estimated intrinsic error of 10-20%, even
with the best implicit solvation models available. Among them,
according to our experience, COSMO-RS yields the most reliable
results, while SMD can serve as a good alternative. In contrast,
purely electrostatic models like COSMO and CPCM often perform
worse because they neglect all non-electrostatic terms, which are
particularly important if the solvent accessible molecular surfaces
change during the reaction (as is the case here, see Fig. 8).

Due to fortuitous error compensation effects, the free binding
energy produced by our standard workflow is typically accurate

to within 1-3 kcal·mol−1 from experimentally determined val-
ues,157 which is much less than the sum of the maximum errors
of the individual contributions would suggest. Also for this ex-
ample, the calculated ∆G value of −5.4 kcal·mol−1 agrees very
well with the experimentally determined one for a wide range of
method combinations. Moreover, the presented workflow has the
advantage to be computationally quite fast, requiring only about
30 hours in total on a common eight-core CPU for the shown
example. This efficiency largely results from the use of fast semi-
empirical methods for the frequencies and efficient mGGA-based
composite DFT methods for geometries and single point energies.
With such an efficient multi-level scheme, reliable affinity predic-
tions are possible for much larger complexes with up to 200-300
atoms in practical computation times. Finally, we want to men-
tion that the protocol shown in Fig. 7 is fully automated via the
freely available CREST and CENSO programs, and can thus be
invoked via two simple UNIX commands as described in the doc-
umentation.172,173

3.3 Optical rotation of α-/β -D-glucopyranose

The calculation of relative electronic energies is fundamental
and can indirectly have a crucial impact on property calculations
when ensemble-averaged treatments are used. This is for exam-
ple the case for computed specific optical rotation values of a
mixture of α- and β−D-glucopyranose depicted in Figure 9.174

The optical rotation strongly depends on details of the molecular
structure, and for flexible systems, on a reliable calculation of the
relevant populated conformers. Further, the values of α- and β -D-
glucopyranose isomers differ strongly from each other, and thus
the accurate description of the thermodynamic equilibrium be-
tween both forms is crucial. Here, the impact of the choice of the
theoretical level for the free energy calculations on the final op-
tical rotation values calculated at the PBE/def2-SVPD[COSMO]
level is demonstrated. For both anomers, conformer-rotamer
ensembles (CRE) were generated employing the CREST/CENSO
approach, and the finally obtained conformers were originally
ranked regarding their conformational free energies on the
r2SCAN-3c[COSMO-RS]//r2SCAN-3c[DCOSMO-RS] level of the-
ory. The same CREs are here re-ranked employing B3LYP method
combinations (B3LYP/QZ, B3LYP-D4/QZ, B3LYP/6-31G*, QZ =
def2-QZVP), as well as BP86175,176-D4/QZ for the electronic en-
ergy contribution. All others (zero-point vibrational energy, ther-
mostatistical, and solvation corrections) were taken from the
original r2SCAN-3c calculation. In agreement with results from
benchmark studies, the r2SCAN-3c composite method yields very
good energetic rankings, and the Boltzmann-weighted optical ro-
tation value for the α- and β -D-glucopyranose equilibrium is in
excellent agreement with the experimental value of αexptl. = 52.7
(all values in the following in the usual degree dm(g/cm3)−1

units). The same holds for the value that is based on a B3LYP-
D4/QZ ranking amounting to αB3LYP-D4/QZ = 54.6. For the plain
B3LYP/QZ level, a worse result of αB3LYP/QZ = 41.2 is obtained,
underlining the indispensability of a London dispersion correc-
tion even for relatively small molecules. The frequently used
B3LYP/6-31G* approach relies on a difficult-to-control error com-
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Figure 8 Breakdown of the contributions to the overall calculated ∆Gcalc. with the final result represented by a black line, and experimental reference
given as grey dashed line with the shaded areas marking the estimated error range of ±1.0 kcal·mol−1 and a more conservative error estimate of
±2.5 kcal·mol−1. Methods that do not reach the ±1.0 kcal·mol−1 window but are within ±2.5 kcal·mol−1 of the experimental reference value are
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SPH) at r2SCAN-3c[DCOSMO-RS] geometry), while the other bars illustrate the effect of selected method variations as indicated at the top (solvation,
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SVPD/DFT-C. B3LYP-NL utilizes VV10 with refitted parameters. 171 OHESS = GFN2-xTB[ALPB] frequencies with a re-optmized structure instead of
SPH with the DFT structure.

pensation of neglected London dispersion and BSSE. Neverthe-
less, the contribution of α-D-glucopyranose is overestimated, re-
sulting in a relatively bad value of αB3LYP/6-31G* = 61.7. The
pure GGA functional BP86-D4/QZ, which in general does not
perform well for conformational energies, yields an even worse
agreement with the experiment (αBP86-D4/QZ = 72.2). This ex-
ample clearly demonstrates that the best results are obtained if all
physically relevant effects, such as London dispersion and basis-
set completeness, are properly taken into account. Furthermore,
conformation-sensitive properties like optical rotation can indi-
rectly be used to assess the quality of theoretical approximations.

3.4 Reaction barriers

3.4.1 SN2 and Diels–Alder reaction

The reliable calculation of reaction barriers is crucial for the inves-
tigation of complex reaction mechanisms. They allow for a deeper
understanding of key reactions and thus a computer-aided design
of novel catalysts and a targeted tuning of chemical reactions.177

SN2 and Diels–Alder reactions represent well-known reaction

types in organic chemistry. Even though, these basic reaction
types seem comparably simple, their theoretical description still
requires a profound choice of the applied quantum chemical
method. For the [2+4] cycloaddition of ethylene to cyclopen-
tadiene (Fig. 10a) and the nucleophilic attack of OH− to fluo-
romethane (Fig. 10b), accurate reference electronic activation en-
ergies (∆E‡) are available.23 For both examples, the BP86-D3/QZ
(QZ = def2-QZVP) GGA strongly underestimates the reaction bar-
rier. Specifically, the reaction barrier of the SN2 reaction is under-
estimated by 10.2 kcal·mol−1. Here, the pronounced charge de-
localization in the transition state causes SIE related issues with
the GGA method. The mGGA M06-L/QZ yields much improved
results, which may be attributed to its highly empirical charac-
ter with the functional being also trained on reproducing barrier
heights in similar systems. Nevertheless, hybrid functionals such
as PBE0 are expected to yield improved results over the (m)GGA
methods by an enhanced physical description and for both reac-
tions, PBE0-D3/QZ yields a significant improvement over BP86-
D3/QZ. Finally, the range-separated hybrid ωB97X-V/QZ further
improves the results compared with the global hybrid and the
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Figure 9 Calculated, Boltzmann-weighted optical rotation for the equilib-
rium of α- and β -D-glucopyranose in water at 20°C. For each anomer,
15-18 conformers are considered in the example. QZ = def2-QZVP.

GGA, underestimating the SN2 reference reaction barrier only
slightly by −1.8 kcal·mol−1. It also yields comparably good agree-
ment for the Diels–Alder activation reaction overestimating the
reference value by 1.8 kcal·mol−1.

3.4.2 Hydrogen atom transfer reaction

Another challenging example reaction is depicted in Fig. 11.
Here, a hydrogen atom is transferred from a molybdenum hy-
dride complex TpMo(CO)3H (Tp = tris(pyrazolyl)borate) to
a Gomberg-type (tBu-4-C6H4)3C• radical.178 The experimental
free energy activation barrier was determined to ∆G‡ = 19.2
kcal·mol−1. As discussed in the previous sections and the elec-
tronic activation energy examples, transition states with stretched
covalent bonds are prone to SIE, and thus a significant underes-
timation of the reaction barrier by (m)GGA methods is expected.
This holds especially for bonds involving hydrogen where the one-
electron character is usually large. Compared with the previous
example, the desired property is an activation free energy in solu-
tion, involving additionally ZPVE, thermal, solvation and entropy
effects. For this reaction, the BP86-D4/QZ functional used for
the electronic energy underestimates ∆G‡ by almost 4 kcal·mol−1.
This is even more pronounced upon decreasing the basis set size
from QZ to TZ to DZ with a severe underestimation by over
7 kcal·mol−1 for BP86-D4/DZ. With the B3LYP-D4 hybrid func-
tional, ∆G‡ is slightly overestimated by 1.4 kcal·mol−1 yet close
to the chemical accuracy window of 1 kcal·mol−1. Nevertheless,
also for hybrid functionals small basis sets result in an underes-
timation of the reaction barrier which seems to be rather sensi-
tive here. The GGA functional even yields a negative electronic
activation energy of ∆E‡ = −2.2 kcal·mol−1 (BP86-D4/QZ) and
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Figure 10 Calculated gas-phase electronic reaction barriers (∆E‡) for se-
lected functionals using the def2-QZVP basis set 23 for a) the Diels–Alder
cycloaddition of cyclopentadiene and ethylene (reference level: accurate
W1-F12 wavefunction theory), and b) the SN2 reaction of fluoromethane
with a hydroxide anion (reference level: very accurate W2-F12 wavefunc-
tion theory). The light-grey area indicates the expected error-range of the
reference method.

the transition state does not represent a stationary point at the
corresponding potential energy surface. B3LYP-D4/QZ yields a
small, yet reasonable ∆E‡ value of 3.0 kcal·mol−1. The small
electronic activation energy further underlines the importance of
solvation, enthalpy and free energy corrections for a direct com-
parison to the experiment. The free activation barrier is only well-
described upon inclusion of all relevant contributions (corrections
computed at the geometry optimization level B97-3c, solvation
corrections by COSMO-RS) leading to an increase of the barrier
from 3.0 (∆E‡) to 7.2 (∆H‡) and finally 20.6 kcal·mol−1 (∆G‡).

4 Perspective
The development of quantum chemistry over the last 20-30 years,
and foremost DFT, is a great success story. The fact that nowa-
days, non-experts can do reasonable quantum chemistry calcula-
tions for large chemically relevant systems on desktop computers
is fantastic. The influence of having widely available computa-
tional tools on chemical research can not be understated, and
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Figure 11 Calculated contributions to the activation free energy ∆G‡ for
a metal-centered hydrogen-transfer reaction based on hybrid (B3LYP-
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mostatistical contributions (yellow bars), and COSMO-RS solvation and
entropic corrections (blue bars). Black lines represent the sum of all con-
tributions yielding ∆G‡. DZ = def2-SVP; TZ = def2-TZVP; QZ = def2-
QZVPP basis set. The light-grey area indicates the expected error-range
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will presumably grow even larger in the future. We hope that the
guidelines and recommendations given in this work help to in-
crease the reliability of DFT-based quantum chemistry predictions
in the daily work of many chemists.

We strongly emphasized the aspect of finding the right method-
ological compromise between computational effort (speed) and
desired accuracy while still keeping as close as possible "the right
answer for the right reason". An often overlooked aspect in this
balance is that faster theoretical methods enable a more exten-
sive – and hence more reliable – study of the system under in-
vestigation, for example regarding its conformational behavior,
molecular dynamics, or explicit solvation issues. This is of par-
ticular importance since, in our experience, errors and deviations
due to the neglect of important low-lying conformers (ensemble
properties vs. individual molecule property) can be even larger
than the errors in the electronic energy by the functional or ba-
sis set approximations. We thus want to motivate the reader to
conduct systematic conformational searches, explore the dynam-
ical behavior by means of MD simulations, consider explicit sol-
vation treatments more routinely with currently developed meth-
ods, and to employ efficient multi-level approaches for chemically
realistic models.

However, also on the electronic structure side of the problem,
there are challenges ahead. Although many very relevant chem-
ical properties and problems nowadays can be solved by stan-
dard DFT treatments as described here, there are still problem-
atic systems (e.g., open-shell transition metal complexes), open
questions (e.g., how to treat strongly solvated, highly charged
systems?) and problems which are fundamentally difficult (en-
tropy). For those aspects, non-standard treatments and expert
knowledge are often required and should be involved.

In our opinion, the positive development of the basic den-
sity functionals over the last decade has slowed down and en-
tered a kind of saturation regime in terms of the "peak" accu-
racy achieved. Nevertheless, we note some promising new de-
velopments which are already applicable such as local hybrid
functionals179–181 or non-self-consistent field treatments with
cheap (m)GGAs to avoid exchange-correlation potential driven
errors182,183. Currently, machine-learned functionals184–186 are
still in their infancy, but the potential of such extremely empiri-
cal (and in no way "cheap") methods could be high, at least for
organic and main group compounds. In turn, DFT is the method
of choice for generating extremely large data bases with millions
of compound entries for machine learning algorithms187–189. In
this context, we still see a great potential to make the best per-
forming functionals (which are sufficiently accurate for about
>90% of all chemical applications) significantly faster but with-
out losing robustness or numerical accuracy. Central here are
accurate yet efficient approximations of the non-local (Fock) ex-
change part of hybrid or double hybrid density functionals and,
for lower-rungs (mGGA), the numerical integration of the semi-
local exchange-correlation energy. Because DFT is a rather gen-
eral "first-principles" approach, we believe that most of our con-
clusions also hold true for computations of (molecular) solids and
liquids under periodic boundary conditions, although we do not
explicitly considered these here. For more special cases like low-
bandgap systems, such as metallic solids, however, things may
change more drastically, such that a consideration of special tech-
nical settings may be required to avoid a fundamental breakdown
of approximations.
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