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Abstract 

Ultrafast spectroscopy often involves measuring weak signals and long data acquisition times. Spectra are 
typically collected as a “pump-probe” spectrum by measuring differences in intensity across laser shots. 
Shot-to-shot intensity fluctuations are most often the primary source of noise in ultrafast spectroscopy. 
Here we present a novel approach for denoising ultrafast two-dimensional infrared (2D IR) spectra using 
conditional generative adversarial neural networks (cGANNs). The cGANN approach is able to eliminate 
shot-to-shot noise and reconstruct the lineshapes present in the noisy input spectrum. We present a 
general approach for training the cGANN using matched pairs of noisy and clean synthetic 2D IR spectra 
based on the Kubo-lineshape model for a three-level system. Experimental shot-to-shot laser noise is 
added to synthetic spectra to recreate the noise profile present in measured experimental spectra. The 
cGANNs can recover lineshapes from synthetic 2D IR spectra with signal-to-noise ratios as low as 2:1, 
while largely preserving the key features such as center frequencies, linewidths, and diagonal elongation. 
In addition, we benchmark the performance of the cGANN using experimental 2D IR spectra of an ester 
carbonyl vibrational probe and demonstrate that by applying the cGANN denoising approach, we can 
extract the frequency-frequency correlation function (FFCF) from reconstructed spectra using a nodal-line 
slope analysis. Finally, we provide a set of practical guidelines for extending the denoising method to 
other coherent multidimensional spectroscopies. 

 

Introduction 

Coherent multidimensional spectroscopy (CMDS) techniques measure time-resolved molecular structures 
and dynamics in heterogeneous systems. Measurements are typically done by applying a sequence of 
laser pulses to measure the nonlinear vibrational or electronic polarization of a system.1–3 Nonlinear 
signals are approximately three orders of magnitude lower in amplitude compared to the applied laser 
pulses. The weak nonlinear signals are heterodyned with a strong local oscillator to reconstruct the signal 
electric field amplitude and phase.2,4 Shot-to-shot subtraction is essential to isolate specific signals of 
interest. Since the local oscillator pulse amplitudes are usually greater than the nonlinear signals, 
subtraction is highly susceptible to laser intensity fluctuations. As a consequence, signal-to-noise ratios 
(SNR) in ultrafast measurements are dominated by instabilities in the laser output intensity, as well 
fluctuations within the optical setup, such as air currents, thermal gradients, and optomechanical drift.5–7 
This makes certain measurements particularly challenging, and in some cases measuring single 
multidimensional spectra require acquisition times of several hours to several days.8–11  

Low SNRs and long data acquisition times are arguably the most severe limitations of ultrafast 
spectroscopy. Significant efforts have resulted in several effective noise suppression schemes. These 
approaches can be roughly divided into two categories: 1. Methods implemented within the design of the 
optical setup,9,12–15, and 2. Numerical models for on-the-fly processing of measured laser shots.16–20 The 
first category includes passive methods such as using common optical components or active methods that 



monitor and correct for optical drift.21–24 These methods typically target intensity fluctuations, phase drift, 
as well as spectral shifts, which are the main sources of noise in ultrafast spectroscopy. High-repetition 
rate lasers and fast interferometric scanning can further mitigate the 1/f laser noise.25–30 In addition, it is 
common to use a secondary detector, where a copy of the probe spectrum can be detected simultaneously 
with and without the nonlinear signal of interest.6,7,31,32 Within this category, on-the-fly data processing 
can be used to suppress fluctuations, by either directly referencing “blank” pixels, or taking advantage of 
spatial correlations between pulses measured across two detectors.16–18,33 Combinations of these noise 
suppression methods have significantly improved the quality of data produced in ultrafast measurements. 
Despite these advancements, collecting high-quality datasets remains a bottleneck for ultrafast 
spectroscopy. For these reasons, there is a pressing need to develop robust denoising methods that can be 
either implemented for on-the-fly processing or can be used to denoise data post-acquisition. Here we 
present a method to reconstruct spectral lineshapes from noisy spectra. 

Machine learning (ML) is perhaps one of the most useful computational tools that has emerged in the last 
decade. ML provides a general approach to extract features from large datasets without pre-set physical 
models.34–39 Indeed, ML implementations are now commonplace, not only in science, but ML has 
transformed nearly all modern consumer electronics. For example, ML models are now an integral part of 
the image-processing workflow in cell phone photography, particularly because ML models are well 
suited for image analysis and processing.39,40 In particular, conditional generative adversarial neural 
networks (cGANNs) have been developed as a general tool for image-to-image translation from an input 
domain to an output domain.41–43 cGANNs are perfectly suited to image processing applications such as 
removing artifacts, reducing noise, or generating missing features. In short, the cGANN architecture is 
composed of a generator convolutional neural network, which generates sets of images, and a 
corresponding discriminator, which distinguishes between images derived from the training set versus the 
generated image set (Figure 1).42,44,45 Here the cGANN model “learns” the general features present in the 
training data and can reconstruct spectra that contain the same features present in the training set.43,46 This 
makes the model perfectly suited to extract these features from noisy images and generate the 
corresponding “denoised” or reconstructed images. Specifically, for denoising experimental ultrafast 
spectra where the underlying features, such as the general number of peaks and frequencies, are often 
known a priori, but the new information is contained in the subtle changes to the lineshapes with varying 
experimental conditions. Therefore, it is straightforward to generate synthetic training spectra that contain 
the general features of the measured spectra and use synthetic image pairs to train the cGANN. In this 
paper we demonstrate the use of cGANNs for denoising two-dimensional infrared (2D IR) spectra and 
describe a general procedure for generating synthetic spectra based on the Kubo lineshape model but with 
added experimental laser noise. 



 

 

Methods 

Experimental Two-dimensional Infrared Spectroscopy:  

The 2D IR spectrometer has been described previously.47 In brief, mid-IR pulses (100 fs, ~300 cm-1) are 
generated using a combination of optical parametric amplification and difference-frequency generation 
(TOPAS Prime/N-DFG, Light Conversion) which is pumped by a 1-kHz Ti:Sapphire-based regenerative 
amplifier (Astrella, Coherent Inc.) The 25-µJ mid-IR pulses are split into excitation (pump) pulses and 
detection (probe) pulses using a 0.5º CaF2 wedge. The excitation pulses are routed through an 
acoustooptical-based pulse shaper (QuickShape, PhaseTech Spectroscopy)48 to generate time-delayed 
pulse pairs. Each delay is repeated twice in which the carrier phase of the stationary pulse is modulated by 
π, thus producing adjacent “0 0” and “0 π” pulses which are subtracted to recover the 2D IR signal and 
suppress pump-probe scatter. The delay between the pump pulses is numerically Fourier-transformed to 
generate the excitation frequency axis. The probe pulse is measured using a 128x128-pixel MCT array 
detector (Catalina, Teledyne Nova Sensors)49 which is used to generate the detection frequency axis. The 
pump and probe pulses were maintained at perpendicular polarizations to reduce pump scatter at the 
detector.  

We measured 2D IR spectra of the single-peak carbonyl stretch of dilute ethyl acetate (EtOAc) (99.8%; 
Sigma-Aldrich) in dimethyl sulfoxide (DMSO) (>99.7%; Fisher BioReagents) at a concentration of 
0.25 mg/mL at room temperature and under dry air. All chemicals were used as received. The spectra 
were collected at coherence times (t1) scanned from 0 to 3 ps in steps of 20 fs to generate the excitation 
axis (ω1) by numerical Fourier transformation. The waiting times (t2) were selected at intervals ranging 
from 150 fs to 3 ps. Spectra were collected with a rotating frame frequency of 1,400 cm-1. The individual 
noisy spectra at each waiting time were collected by averaging 4,000 laser shots (~4 seconds of data 
acquisition), and the final clean spectra were an average of 800,000 laser shots (~13 minutes of data 
acquisition). The 2D IR spectra were normalized to the highest intensity peak in the frequency domain. 
The data set was collected over a period of ~8 hours of continuous laser operation. Blank shots were 
collected at a different time by setting the waiting time to -10 ps, such that the probe arrives at the sample 
before the pump, resulting in spectra without the third-order signal. In total, 100 sets of 128-pixels by 

 

Figure 1: Diagram of the conditional generative adversarial neural network (cGANN) architecture and general 
training approach. The Generator is simultaneously trained on a combination of two L1 loss functions, one 
derived from the output of the Discriminator (LD), and one on the difference between generated and target 

spectra (L1G). 



10,000 blank shots were measured sequentially and stored, and later used to generate synthetic spectra 
with experimental noise, as described next. 

Response Functions and Experimental Laser Noise: 

Time-domain response functions were generated using the standard three-level Kubo lineshape model as 
described previously, and are numerically Fourier-transformed to generate 2D IR spectra.3,50 Specifically, 
within the Kubo model the frequency-frequency correlation function is assumed to reflect sub-100-fs 
relaxation, resulting from inertial dynamics, followed by single-exponential picosecond relaxation:  
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Producing the following lineshape function 
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where Δω is the amplitude of frequency fluctuations, τc is the frequency-fluctuation correlation decay 
time, δ(t) represents the limit of fast dynamics, and T2

* is the pure dephasing time. The fast relaxation is 
below the time-resolution of the 2D IR spectrometer. The lineshape function is then used to generate 
spectra using the associated response functions for the rephasing (��) and nonrephasing (���) signals 
respectively: 

 

in which χ is a scaling factor to account for the number of oscillators, μ01 is the transition dipole moment 
of the oscillator, ω01 is the center frequency of the transition, ωrot is a rotating-frame frequency, Δ is the 
anharmonicity, and t1, t2, and t3 are the three corresponding time delays, respectively, and T1 is the 
vibrational lifetime of the transition. The total response function is the sum of the rephasing and 
nonrephasing signals. This function is then Fourier-transformed along t1 and t3 to generate a complex 
signal S2DIR(ω1, t2, ω3) that is comparable to the 2D IR measurements. The t1 axis is chosen to be the same 
as the t1 steps measured in the experiment. 
 
Next, a series of “blank” experimental probe shots are used to generate the noise contributions to the 
spectra. Sets were selected at random to generate a sequence of 15,000 shots. This sequence was then split 
into pulse pairs, chosen to represent the “0 0” and “0 π” shots in the experimental measurements, and the 
pulses are pairwise subtracted. This noise trajectory is then split into sequential sets containing the same 
number of elements as the t1 delays in the 2D IR measurement (151 delays), and the sets are then 
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averaged together. The subsequent laser shot noise series is Fourier-transformed to obtain ω1 and ω3 noise 
spectra. Next, the noise spectra are interpolated to the same ω1 and ω3 axes as the S2DIR signal. Finally, the 
noise spectrum is normalized by the root-mean-squared (RMS) amplitudes across all frequencies and then 
multiplied by a scaling factor to produce the desired signal-to-noise ratio (SNR) of the synthetic spectrum. 
Here the signal-to-noise ratio is defined as the ratio of the maximum amplitude of the 2D IR signal prior 
to noise addition (S2DIR) to the RMS amplitude of the noise floor. The 2D IR signal and the noise spectrum 
are then added together to generate the final noisy spectrum. Each set is exported as a pair of two 
single-channel 8-bit uncompressed images corresponding to the spectra with and without noise, which 
then serve as the labeled pairs for cGANN training. 
 
 

Synthetic Spectra Generated for Training: 

 

Synthetic spectra were generated using the three-level response function and experimental noise profiles 
described above. The training set consisted of 1,000 total synthetic spectra as five sets of 200 spectra with 
increasing signal-to-noise ratios from SNR 2, 5, 10, and 20, respectively. Using the same parameters, an 
additional set of 200 spectra within each SNR was generated for benchmarking. The waiting time (t2) was 
randomly selected from 150 fs to 3 ps. The response function parameters were randomly selected from a 
uniform distribution within the parameter bounds shown in Table 1, and the random experimental noise 
was added to each spectrum individually. The noise trajectories and source code used to generate 
synthetic spectra are available on GitHub.1 
 

Table 1: Response function parameters used for cGANN training. 
Param ω01 (cm-1) Δ (cm-1) Δω (cm-1) τc (ps) T2

* (ps) χ (arb) μ01 (arb) 
Min 1680 12.8 5 1.5 1 1 1 
Max 1712 19.2 20 1.5 4 1 1 

 

cGANN Architecture and Training Protocol: 

 
As described above, the cGANN architecture consists of two separate neural networks, a Generator, and a 
Discriminator. The cGANN loss function represents the L1 distance to the target ground truth and the 
Discriminator loss is used to describe whether a generated spectrum is a member of the ground truth data 
set. In other words, the discriminator loss is a measure of how “realistic” a spectrum is. The two loss 
functions are minimized simultaneously. Here the discriminator consisted of a convolutional neural 
network of depth 8 “convolution-batch normalization-ReLU” layers with additional dropout layers for the 
first 4 steps, and the discriminator depth was set to 4 convolutions with a similar architecture that follows 
the implementation of Radford and coworkers, as adopted into the pix2pix framework.51 Here, the set of 
generated synthetic images was used to train the cGANN by splitting the images into 1000 mini-batches, 
and the training was run as a direct simultaneous steepest-decent minimization of the generator and 
discriminator loss for a total of 10 epochs with a learning rate for both the generator and discriminator set 
to 0.002, although the generator loss function quickly converged as the features present in the training 
spectra are relatively simple. The training data set and training scripts used here are available on GitHub.2 

 

 

Results and Discussion 

Benchmarking peak center and width: 

 

 
1 https://github.com/baizgroup/SyntheticSpectra 
2 https://github.com/baizgroup/cGANN_denoising 



Once trained, the cGANN was benchmarked against the synthetic spectra generated using the same 
parameters but not included in the training set. Figure 2A shows three example noisy input spectra with 
an SNR of 2. These spectra contain the highest noise levels in the benchmarking set, and therefore the 
most challenging spectra to reconstruct. The three spectra were chosen at random from the 200-spectrum 
benchmarking set. In all three spectra, the peaks are only just visible above the noise floor. Figure 2B 
shows the ground truth synthetic spectra used to generate the noisy input spectra. The first spectrum 
contains peaks that are relatively well centered along the pump axis, the second spectrum contains peaks 
around the same frequency but with broader inhomogeneous width, and the third spectrum shows a 
narrow peak towards the low-frequency region. In the spectra, the shot-to-shot laser noise is visible as 
vertical bands, as it is typically observed in experimentally measured spectra. Figure 2C shows the 
corresponding output spectra generated by seeding the cGANN with the corresponding noisy spectra. The 
reconstructed spectra have peak center frequencies and widths which are very similar to the ground truth 
spectra, showing that the cGANN is able to “extract” the important features from noisy spectra and 
generate reconstructed spectra that closely match features of the spectra in the absence of noise. Figures 
2D and 2E show a pump-slice amplitude (PSA) and probe-axis projection52 of the same three spectra, 
respectively. The PSA analysis is described elsewhere, but, in brief, the difference between maximum and 
minimum amplitudes along ω3 for a given ω1 slice. This analysis generates a spectrum that is comparable 
to the absorption spectrum of the same system.53 The comparison between the reconstructed and ground 
truth PSA spectra in the figure show more clearly that the reconstructed spectra closely match the ground 
truth. However, it is apparent that the peaks in the reconstructed spectra are slightly broader compared to 
the ground truth. The probe-axis projection shows that the cGANN greatly reduced the baseline shift 
present in the noisy spectra. 

 

  

Figure 2: Example spectra as a test of the cGANN performance. (A) Synthetic spectra generated with 
signal-to-noise ratio of 2 (SNR=2) used as input to the cGANN. (B) Ground truth “clean” spectra generated 
without noise. (C) cGANN reconstructed spectrum generated from the input spectrum. (D) Pump-slice 
amplitude and (E) probe-axis projections of the noisy input (grey), ground truth (cyan), and reconstructed 
spectra (green) for comparison. 



 
 
The cGANN output spectra can be more quantitively benchmarked by plotting the center frequencies and 
full-width-at-half-maximum (FWHM) corresponding to the benchmarking spectra. Figure 3 shows a plot 
of the reconstructed spectra against the ground truth for all 200 SNR=2 spectra in the benchmarking data 
set. The plots show that the cGANN produces an accurate center frequency with an RMSD to ground 
truth of 3.1 cm-1. However, the spectrum appears broader, as the FWHM increases significantly, with an 
RMSD of 6.6 cm-1 compared to ground truth. With the (SNR=5) benchmarking set, the peak center and 
FWHM RMSD decrease to 1.9 cm-1 and 4.4 cm-1

, respectively. The results show that the cGANN 
denoising produces broader peaks, and this broadening is similarly observed when using higher SNR 
spectra as the input. This could be a result of the training set biasing the output; however, it is unclear 
what the origin of this broadening could be since the benchmarking set is obtained from the same 

 

Figure 3: (A) Center peak frequencies computed as the first moment of the PSA spectrum and (pump axis, 
ω1), and (B) full-width-at-half-maximum of the cGANN reconstructed and ground truth spectra in the 
benchmarking data set using the (SNR=2) spectra as the input. The root-mean-squared-error (RMSE) for the 
peak center and peak width is 3.1 cm-1 and 6.6 cm-1, respectively. 



parameter set as the training set. Nonetheless, the comparison shows that the cGANN can generate 
high-quality reconstructed spectra that closely match the features present in the noisy spectra, 
demonstrating that this approach is ideal for extracting features from spectra with high noise levels. 

 
Extracting frequency-frequency correlation functions from reconstructed synthetic spectra: 

 

Two-dimensional spectroscopy is often used to extract dynamical information. Dynamics are reflected in 
the frequency-frequency time correlation function (FFCF) of the vibrational probe.1,3,13,52,54–58 The 
correlation function can be extracted from absorptive 2D IR spectra through lineshape analysis. Two 
commonly used methods are the center line slope (CLS) analysis and nodal-line slope (NLS) analysis.59–66 
While both methods are equivalent in the absence of noise, the NLS is more robust. In brief, NLS 
quantifies the slope of the nodal line between the positive ground-state-bleach peak which appears along 
the diagonal, and the negative excited-state-absorption peak appearing below the diagonal. This is 
accomplished by slicing the 2D spectrum along the pump axis (ω1) and fitting each slice to a sigmoidal 
function. The zero-crossing probe frequency is then used to generate the NLS. This is then fit to a line for 
each 2D IR spectrum, and the slope is computed. The NLS is computed for different waiting-time (t2) 
spectra representing the FFCF. The decay is typically fitted to a monoexponential, and the relaxation time 
constant is extracted to quantify the timescale of the frequency fluctuations. One advantage of NLS over 
CLS is that NLS produces more robust results in the presence of pump-axis noise because a constant 
amplitude offset along this axis, namely, vertical stripes in 2D spectra, does not significantly affect the 
NLS. 
 
Here we quantify the ability of the cGANN to accurately reconstruct the lineshapes in synthetic spectra, 
through NLS analysis; we compare the reconstructed NLS decay with the ground truth analysis. Spectra 
are generated at 200 equally spaced waiting times between 150 fs and 3000 fs with the lineshape 
parameters in Table 2. In brief, the parameters are within a similar range to those used in generating the 
training set (Table 1); however, unlike the training set, the values of the lineshape parameters are fixed in 
generating waiting-time 2D IR spectra. One specific parameter to note is the correlation time (τc) which is 
set to 1.5 ps, and this value is then what is expected to be extracted through NLS analysis of spectra. 
 

Table 2: Response function parameters used for benchmarking cGANN performance in extracting 
waiting-time dynamics. 

ω01 (cm-1) Δ (cm-1) Δω (cm-1) τc (ps) T2
* (ps) χ (arb) μ01 (arb) 

1675 16 20 1.5 1 1 1 

 
Single-peak spectra generated using the response function parameters in Table 2 are shown in Figures S1, 
S2 and S4. It is evident that without further processing, spectra with an SNR of 2 are inadequate for NLS 
lineshape analysis by the randomness of the slopes shown in Figure S1. Figure 4C shows NLS decay 
recovered from the waiting-time series of the noisy spectra with an SNR of 2. The random nature of the 
plot shows that using traditional NLS analysis, it would be nearly impossible to extract correlation times 
from these highly noisy 2D IR spectra. Next, Figure 4E shows the ground truth spectra with a near-perfect 
single-exponential decay with a time constant of 1.5 ps. This shows that the NLS analysis recovers the 
correlation time used to generate the spectra as expected. It is important to note that the errors may arise 
from numerical noise and discrete quantization of the spectra due to the 8-bit depth used in generating 
images. Finally, the same analysis is performed on the cGANN reconstructed data. The NLS shows a 
monoexponential decay with a time constant of 1.54 ± 0.24 ps. The error bounds are computed by 
bootstrapping methods described previously.67 In short, sets containing 50% of the data points are 
selected at random from the full 200-point set, and a total of 100 monoexponential fits are performed for 
each data set. The reported decay time constants above correspond to the average of the 100 fits, and the 
standard deviation across the fits is reported as the uncertainty. In conclusion, this analysis clearly shows 



that cGANNs can recover the NLS decay out of a waiting-time 2D IR series that would be nearly 
impossible to analyze otherwise. The recovered NLS time constant accurately captures the dynamics of 
the ground truth spectra. 

 

Extracting frequency-frequency correlation functions from reconstructed experimental spectra 

 

The performance of the cGANNs can be directly evaluated on experimental 2D IR spectra. We perform 
the same PSA analysis and probe-axis projection to compare the cGANN-reconstructed spectra to the 
noisy and clean experimental spectra (Figure 5). Here the “clean” spectra are collected at the same time as 
the noisy spectra but averaged over a 200× greater number of shots, which produces spectra with very 
little noise. The spectra are processed using the same cGANN network trained from the synthetic spectra 

 

Figure 4: NLS analysis single-peak synthetic spectra. (A) Example noisy 2D IR spectrum (SNR = 2) at 
150 fs. The purple line represents the computed NLS, shown primarily to demonstrate that NLS values 
cannot be extracted with such high noise levels. (B) Ground truth spectrum at the same waiting time. The 
spectra were generated using the response function parameters in Table 2. (C) cGANN reconstructed 
spectrum using the noisy spectrum as the input. (D) Recovered NLS values as a function of waiting time 
extracted from analysis of noisy spectra at a signal-to-noise level of 2. Only values in the range 0 to 0.5 are 
shown in this plot. The NLS values do not follow any trends, and a timescale cannot be extracted from the 
plot. (E) Recovered NLS decay from ground truth spectra in the absence of noise. The relaxation follows a 
single-exponential function with a time constant of 1.5 ps which matches the correlation time input into the 
response function. (F) NLS analysis after cGANN denoising of the SNR = 2 spectra in panel D. Here the 
exponential relaxation is recovered and matches the timescale of the synthetic spectra without noise. The 
nodal line slopes of 20 selected spectra within this dataset are shown in Figures S1-S3. 



described above. Note that since the frequency axis is not included in the cGANN training, a cGANN 
trained using a synthetic peak can be used for experimental (or synthetic) spectra within a different 
frequency range as long as the peak widths correspond to a similar fraction of the frequency axes. Similar 
to the analysis of synthetic spectra shown above, the reconstructed experimental spectra also closely 
match the “clean” reference spectra. An example set of noisy, reference, and reconstructed spectra at 
300 fs are shown in Figure 5A-C respectively. The spectra across all 24 delays are shown in Figures 
S6-S8. The reconstructed spectra show a slightly broader peak, as can be observed in the comparison of 
PSA and probe-axis projections in Figure 5D-E. Similar to the analysis described above, NLS was used to 
extract the dynamics from the experimental spectra. The pump-axis frequency cutoff range for computing 
NLS was 1724-1745 cm-1. Reliable fits could not be extracted from the noisy spectra, as shown in Figure 
6A. The clean spectra and the cGANN-reconstructed spectra in Figure 6B-C show a monoexponential 
NLS with a decay constant of 1.67 ± 0.43 ps and 1.42 ± 0.94 ps, respectively. This analysis demonstrates 
that the cGANN can recover the proper lineshapes shapes from the noisy experimental spectra while 
nearly eliminating background noise, vertical banding, and baseline shifts that result from shot-to-shot 
noise, as well as recover the NLS decay within an error of ~15%. In conclusion, we demonstrated the 
capabilities of the cGANN approach to extract dynamics from highly noisy experimental spectra of a 
single-peak vibrational probe. Most importantly, we demonstrated that the NLS can be extracted from 
noisy data that could not otherwise be analyzed. 



 
 
 

 

Figure 5: Example experimental 2D IR spectra of the carbonyl stretching mode of dilute ethyl acetate 

in DMSO. (A) Noisy spectrum with an average of 4,000 laser shots collected at a waiting time of 300 fs. 
(B) The same spectrum but collected with much higher SNR by averaging over 800,000 shots—this can be 
considered the ground truth spectrum. (C) Reconstructed spectrum using the noisy spectrum as the input. 
The purple line in A-C is the computed nodal line. (D) Pump slice amplitude and (E) probe-axis projection 
comparisons of the noisy (grey), ground truth (cyan), and reconstructed spectra (green). A set of 24 2D IR 
spectra collected at a range of waiting times are included in Figures S6-S8.  



 
 
General considerations for denoising spectra using cGANNs 

 

In principle, the cGANN approach described here can be used to denoise a wide range of 
multidimensional spectra, not only 2D IR spectra but also 2D Visible or extreme cross-peak spectra. Here 
we provide a set of recommendations as a guide for generating data sets and applying the cGANN 
approach presented. 
 

1. The training set must contain the same type of noise as the experimental spectra. For example, in 
2D IR spectroscopy shot-to-shot fluctuations are often much greater compared to pixel-to-pixel 
noise, however, this may not be the case for other techniques. Therefore, it is important to collect 
“blank” shots which contain the same noise characteristics as the experimental spectra and 
perform the same subtraction and averaging on the blank shots as the experimentally measured 
spectra. 

2. One important consideration is that the training data set must contain the same features present in 
the experimental data set. For instance, to reconstruct spectra containing cross-peaks, then the 
training set must also contain cross-peaks. This is best accomplished by using a response-function 
approach, as presented above, to generate synthetic spectra. For example, one could collect one 
“clean” spectrum at a single delay, use that data to fit a set of response function parameters, and 
subsequently use the parameter set to generate synthetic spectra. 

3. Similarly, the spectra must contain peaks of varying amplitudes, center frequencies, and widths. 
The training set should contain a range of peaks to avoid biasing the cGANN towards one 
particular feature. For example, if the peaks in the training set are too broad compared to the 
experimental peaks, the cGANN could be biased to produce peaks that may be too broad. 
Similarly, for obtaining accurate NLS decays, a range of waiting times must be selected, and the 
correlation times should be similar to what is expected in experiment. One would likely not know 
the exact correlation time prior to the measurements, but an estimate should be made to avoid 

 

Figure 6: NLS analysis of experimental spectra of the carbonyl stretching mode of dilute ethyl acetate in DMSO. 
(A) NLS of the noisy spectra collected with an average of 4000 laser shots. Points that fell outside the NLS range 
were not included in the plot. (B) NLS of the clean spectra collected with an average of 800,000 laser shots. (C) 
NLS of the cGANN reconstructed spectra using the noisy data as the input. NLS analyses of a set of 24 2D IR 
spectra collected at a range of waiting times are included in Figures S6-S8.  



biasing the cGANN. The cGANN bias can be benchmarked using synthetic spectra or 
experimental spectra collected at low and high signal-to-noise ratios. 

4. The training set should contain spectra with varying levels of noise. Here we selected different 
levels of SNR: 2, 5, 10, and 20, and each batch of 1000 spectra contained 250 spectra of each 
level. This ensures that the cGANN performs optimally with input spectra of different noise 
levels. In addition, it may be possible to further enhance the reconstructed spectra by performing 
multiple passes through the cGANN. However, we found that more than a single pass compounds 
the bias in the spectra and has not been advantageous in the data sets presented here. 

5. Finally, when spectra contain high levels of noise, the cGANN may not be able to accurately 
reconstruct the spectra. It is therefore important to perform a “hallucination test” by using pure 
noise as the input spectra and confirm that there are no specific peaks in the output spectra. If the 
output contains peaks within the expected range, it may suggest that the quality of the noisy 
spectra may be too poor to use as cGANN input.  

Conclusion and Outlook 

Noise-suppression approaches are essential to continue pushing the boundaries of sensitivity in 2D 
spectroscopy and continue to work towards increasingly challenging samples. Shot-to-shot fluctuations 
are the dominant source of noise in laser spectroscopy. Thus far, referencing approaches beyond simple 
dual-stripe detection methods have been proposed as a means of denoising spectra. Here we demonstrate 
the use of machine learning as a new tool in the spectroscopists’ toolbox. This approach can be combined 
with other methods such as edge-pixel referencing18 or probe-reference correlation approaches16,17 to 
further enhance signal-to-noise and further reduce acquisition times. The method presented here is general 
to any spectra, but it is important to understand which features are present in the spectra in order to 
generate the training set. In addition, this denoising approach can also be combined with any desired 
analysis including CLS, NLS, or even further machine-learning approaches to extract parameters from the 
reconstructed lineshapes.68 
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Online Resources: 

The MATLAB training and analysis scripts and the 2D IR spectra used in this work can be found on GitHub 

(https://github.com/baizgroup). The spectra are exported as 256x256-pixel black-and-white images. The 

synthetic spectra are under the SyntheticSpectra repository and the experimental spectra are under the 

ExperimentalSpectra repository. The cGANN scripts based on the pix2pix model and corresponding 

training parameters can be found in the cGANN_denoising repository. 

 

Supporting Figures: 

 

Figure S1. Synthetic single-peak spectra generated with signal-to-noise ratio of 2 (SNR=2) used as input 

to the cGANN for benchmarking. A total of 200 spectra were generated with uniformly spaced waiting 

times (t2) ranging from 150 fs to 3000 fs. Here 20 spectra at selected waiting times (indicated above each 

plot) are shown for illustration. The red line is the computed nodal line using the approach described in the 

main text. 



 

Figure S2. Synthetic “ground truth” single-peak spectra generated without noise used for cGANN 

benchmarking. A total of 200 spectra were generated with uniformly spaced waiting times (t2) ranging from 

150 fs to 3000 fs. Here 20 spectra at selected waiting times (indicated above each plot) are shown for 

illustration. The red line is the computed nodal line using the approach described in the main text. These 

spectra are the same as the spectra shown in Figure S1 but in the absence of noise. 

  



 

 

Figure S3. cGANN reconstructed spectra generated from the SNR=2 input spectra in Figure S1. A total of 

200 spectra were generated with uniformly spaced waiting times (t2) ranging from 150 fs to 3000 fs. Here 

20 spectra at selected waiting times (indicated above each plot) are shown for illustration. The red line is 

the computed nodal line using the approach described in the main text.  

 



 

Figure S4. Synthetic single-peak spectra generated with signal-to-noise ratio of 5 (SNR=5) used as input 

to the cGANN for benchmarking. A total of 200 spectra were generated with uniformly spaced waiting 

times (t2) ranging from 150 fs to 3000 fs. Here 20 spectra at selected waiting times (indicated above each 

plot) are shown for illustration. The red line is the computed nodal line using the approach described in the 

main text. 

  



 

 

Figure S5. cGANN reconstructed spectra generated from the SNR=5 input spectra in Figure S4. A total of 

200 spectra were generated with uniformly spaced waiting times (t2) ranging from 150 fs to 3000 fs. Here 

20 spectra at selected waiting times (indicated above each plot) are shown for illustration. The red line is 

the computed nodal line using the approach described in the main text.  

 



 

Figure S6. Noisy experimental spectra of the carbonyl stretch of dilute ethyl acetate in DMSO 

(0.25 mg mL-1) at selected waiting times (t2) from 150 fs to 3000 fs. Each spectrum is an average of 4,000 

laser shots (4 seconds of data acquisition). The red line is the computed nodal line using the approach 

described in the main text. The values of the nodal line slope as a function of waiting time are shown in 

Figure 6A (main text). 

  



 

 

Figure S7. Averaged “clean” experimental spectra of the carbonyl stretch of dilute ethyl acetate in DMSO 

(0.25 mg mL-1) at various waiting times (t2) from 150 fs to 3000 fs. These spectra are used for benchmarking 

the cGANN performance. Each spectrum is an average of 800,000 laser shots (~13 minutes of data 

acquisition). The red line is the computed nodal line using the approach described in the main text. The 

values of the nodal line slope as a function of waiting time are shown in Figure 6B (main text). 

 

  



 

Figure S8. cGANN reconstructed spectra generated from the noisy experimental input spectra in Figure 

S6. The red line is the computed nodal line using the approach described in the main text. The values of the 

nodal line slope as a function of waiting time are shown in Figure 6C (main text). 

 

  



 

 

Figure S9. Comparison of experimental spectra pump-slice amplitudes (PSA) and probe-axis projections 

shown for two spectra collected 1000 fs and 3000 fs as indicated in the inset. These are shown for illustration 

purposes. An additional comparison of experimental spectra, PSA, and probe-axis projection is shown in 

Figure 5 (main text). 
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