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Abstract: 

Natural compounds are widely used as attractive and valuable starting points for drug lead 

discovery. The present study aims to identify phytochemical compounds found in medicinal 

plants as potential COVID-19 inhibitors, using ensemble docking simulations. To this end, a 

phytochemical library from the PHCD database – a database of natural chemical compositions of 

Persian medicinal herbs (https://persianherb.com) – have been virtually screened against four key 

protein targets in the SARS-CoV-2 life cycle – the M
pro

 and PL
pro

 proteases and the Spike and 

human ACE2 proteins. Several potential antiviral lead candidates have been identified based on 

the “Computational Multitarget Screening” approach, in which favourite candidates interact 

simultaneously with all four targets. Four of the bioactive phytochemicals identified – 

Chelidimerine, Gallagyldilacton, Hinokiflavone, and Physalin Z – show the highest binding 

affinities to all the targets and are suggested to be the best choices for drug design research. Also, 

several important medicinal plants, including Chelidonium majus L., Punica granatum, Rhus 

coriaria, Capparis spinose, Cichorium intybus, and Cynara scolymus, with the most 

phytochemicals interacting with all the host and viral proteins, have been identified that can be 

considered as the most important herbal resources for drug development with the medicinal plant 

formulations against COVID-19. 
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1. Introduction 

Despite previous warnings of scientists about the possible emergence of a global viral pandemic, 

in 2020, the COVID-19 pandemic caused by the SARS-CoV-2 virus brought all countries to 

their knees and showed that the world with relatively empty-handed is poorly prepared to combat 

the pandemic and viral diseases. To tackle the highly complex challenge, many academic 

research laboratories and pharmaceutical companies from all over the world are involved in 

massive efforts to find effective vaccines and antiviral drugs against COVID-19. Fortunately, 

thanks to the admirable and round-the-clock efforts of the scientific community, the arrival of 

several successful vaccines (especially mRNA-based vaccines) at the beginning of 2021 and the 

approval of a couple of oral antiviral drugs (Molnupiravir and Paxlovid) at the end of the year 

have raised hopes for handling the pandemic in the near future (1-6). 

Vaccines (and antibodies) target mainly Spike protein on the viral surface which is necessary for 

recognizing and binding to the human angiotensin-converting enzyme 2 (ACE2) receptor during 

viral entry (5-12). The antiviral drugs target some key proteins involved in the viral replication 

machinery, such as the RNA-dependent RNA polymerase (RdRp) which synthesizes viral RNA 

and two conserved viral cysteine proteases, main protease (M
pro

) and papain-like protease (PL
pro

) 

which process the polyprotein chains translated from the viral RNA and cleave the chains into 

functional proteins that are required for viral replication, transcription, and assembly (1,4,10-21). 

It is important to note that since there are many mutation-prone residues in different targets – 

especially in the viral Spike protein – thus a successful vaccine or drug should be less sensitive 

to the variants and be effective against these mutations. Therefore, researchers should examine 

regularly the efficiency of approved antivirals and vaccines against new mutations in the target 

proteins and continuously design new inhibitors to counter the threat of resistance-causing 

mutations (1-3,22). 

The rational design of new drugs requires precise molecular-level structural information on the 

target proteins involved in the viral life cycle (14,23). The structural analysis of the proteins in 

complex with different types of inhibitors is critical for understanding the molecular mechanism 

of the inhibition of protein function, characterizing the complexity of protein–inhibitor 

interactions, and identifying active and potential binding/interacting sites. Currently, many 

available structural and functional data on the target proteins – obtained from experimental and 

computational methods – have facilitated the structure-based drug design against COVID-19 and 

have enabled active researchers in the field to analyze and uncover many details of SARS-CoV-2 

targets for developing new inhibitors. For more detailed discussion and explanation, the reader is 

directed to Refs. 9, 19-21, 24-37. 

In structure-guided drug discovery campaigns, such structural studies are combined with the 

computational screening of ligand libraries to rapidly identify potent lead inhibitors against 

SARS-CoV-2 targets and subsequently, complemented by in vitro, in vivo, and trial studies to 

confirm their antiviral activities (9,15,17,20-21,38-44). Various new sophisticated computational 
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technologies and modeling approaches, such as quantum computing, massively parallel 

processing, Graphical Processing Units (GPU)-based algorithms, and artificial intelligence (AI) 

models are now being applied to accelerate computational drug design, especially for high-

throughput virtual screening of very large databases and compound libraries (15,20,44-53). 

In recent years, natural compounds from terrestrial and marine sources have been widely used as 

promising starting points for drug discovery projects, due to their high chemical and structural 

diversity (54-63). Among the natural compounds, phytochemicals from medicinal plants and 

herbs have attracted the most attention and have been extensively studied and tested for their 

diverse biological activities and drug-like properties (21,64-72). During the COVID-19 

pandemic, several herbal compound databases derived from the medicinal plants of various 

geographical regions, such as China (65,69,73-76), India (68,77), Vietnam (78), Korea (65), 

Jordan (79), Africa (80), and Brazil (81) have been evaluated, both computationally and 

experimentally, for their potential antiviral activities against the SARS-CoV-2. Accordingly, it 

has been reported that multiple phytochemicals from various compound classes, including 

polyphenols (55,60,62,63,68,78,82-84), alkaloids (57,63,66-69,85), terpenes 

(55,63,66,67,69,84,86) and flavonoids (9,55,60,63,66-69,71,76,82-84,87) show a striking 

antiviral activity against the virus. 

It is important to note that the phytochemical compounds present in the plants are highly 

dependent on climate conditions which means that the phytoconstituents of the same plant may 

vary in different regions of Earth. Therefore, the screening of new phytochemical libraries from 

different regions of the world provides new potential opportunities for finding novel drug 

candidates (89,89). Recently, we have designed and developed a searchable database (called 

PHCD) containing useful information about 312 famous Persian medicinal herbs and their 

phytochemical constituents (is freely available at https://persianherb.com) (90). This database 

contains structural and chemical information about more than 5,500 chemical compounds, about 

10% of which are not included in any other database. In this research, the antiviral activity of the 

phytochemical library from the PHCD database against four key protein targets in the SARS-

CoV-2 life cycle – the M
pro

 and PL
pro

 proteases and the Spike and human ACE2 proteins – have 

been studied and considered. Several potential antiviral drug candidates have been identified 

based on the “Computational Multitarget Screening” approach (91-93), in which favourite 

candidates interact simultaneously with multiple targets.   

 

2. Methods 

2.1. Protein Structures Preparation 

The starting point of this research is the preparation and characterization of three-dimensional 

structure files in the RCSB PDB database (94) for the target proteins. The number of PDB 

https://persianherb.com/


5 
 

structures downloaded and analyzed for the M
pro

 and PL
pro

 proteases and the Spike and ACE2 

proteins are 251, 45, 336, and 34, respectively. It should be noted that the structures studied for 

these two proteases are all X-ray crystal structures with a resolution of less than 3 Å, but for the 

other two proteins due to the lack of structures obtained by X-ray crystallography, structures 

resolved via cryo-EM have also been selected for the following analyses (for a complete list of 

the PDB IDs, see Table S1 in the Supporting Information).  

The PDB files were processed and analyzed according to the following procedure. In the first 

step, the crucial structural information available for each chain in the PDB entries was extracted. 

For this purpose, mutated/modified residues, missing atoms/residues, ligands information 

(names/chains, atomic coordinates, and molecular sizes), and some essential crystallographic 

data (like the resolution values and alternate locations) were identified and documented for all 

PDB chains. The next step is to split the PDB files into individual chains for performing the 

structural alignment of the monomeric chains, which is necessary for clustering and identifying 

representative structures for docking and virtual screening calculations. Different considerations 

have been made for each target protein, which are discussed in the following.  

For the M
pro

, 291 monomeric chains were obtained from the original 251 PDB files. To build 

reliable structural binding-site alignment, the intersection of residues involved in the formation 

of two antiparallel β-barrels between domains I and II for all monomers of M
pro

 which contains 

66 residues were selected based on “SHEET” records in the PDB files (See Table S2 in the 

Supporting Information for a list of residues contributing to the β-barrel structures). The 87 

monomeric chains were identified from the 45 PDB files of the PL
pro

, which 36 of the chains 

were discarded due to having the missing functionally important segments in the catalytic pocket 

of the PL
pro

 (which includes a Cys111-His272-Asp286 catalytic triad). The intersection of 

residues involved in the formation of β-sheets in the thumb and palm domains which contain 41 

residues was used to drive the structural alignment process (Table S2). All M
pro

 and PL
pro

 

monomeric chains were aligned on the Cα atoms of the selected residues of their corresponding 

reference structures, 6LU7 chain A and 6WRH chain A, respectively. The former reference is the 

first released protein crystal structure for SARS-CoV-2 M
pro

 with a resolution of 2.16 Å and the 

latter is a high-quality crystal structure of the PL
pro

 at 1.6 Å resolution. The pairwise RMSD 

values for all above Cα atoms between every pair of the aligned protein structures of the M
pro

 

and PL
pro

 did not exceed 0.43 and 0.48 Å, respectively. 

The 801 monomeric chains were recognized for the original 336 PDB files of the Spike protein. 

Due to the inherent flexibility of this protein, most of the chains are of low quality (resolutions 

up to 12 Å). Therefore, only the chains with a resolution of less than 3 Å (209 chains) were 

selected for the next steps. Some of these chains contain missing residues at the receptor-binding 

domain (RBD) (sequences 305 to 530) (19,28,29,38,95-100). The 41 Spike chains with more 

than 10 missing residues at the RBD domain (more than 5% of the total sequence) were also 

removed from these 209 selected chains. The remaining 168 protein chains share the same amino 

acid sequences of 11 residues with β-sheet contents (Table S2). The structural alignment was 
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performed on the Cα atoms of these 11 residues. For the ACE2 protein, the 34 PDBs were 

analyzed – all of them in complex with the RBD domain of the Spike protein – and in total 58 

monomeric chains of ACE2 were extracted. The 52 residues with the helical contents in the α-

helix binding domain of the ACE2 protein which directly interacts with the RBD were used to 

perform the structural alignment of the monomeric chains (Table S2). The crystal structure 6M0J 

(at 2.45 Å resolution) of human ACE2 (chain A) in complex with the Spike RBD (chain E) were 

used as the reference structures for the structural alignment of all monomeric chains of the ACE2 

and Spike proteins. The pairwise RMSD values for all above Cα atoms between every pair of the 

aligned protein structures of the ACE2 and Spike did not exceed 1.00 and 0.70 Å, respectively. 

2.2. Residual Binding Spot Detection 

In the structural alignment step, all solvent molecules (water and organic solvents like diglycol, 

dimethyl sulfoxide, glycerol, and 1,2-ethanediol), metals, and small ions (such as chloride, 

nitrate, and acetate) were removed from all monomeric chains, except the co-crystallized ligands 

in the M
pro

 and PL
pro

 complexes. The location of the substrate-binding sites of the two proteases 

has been defined based on residues around the co-crystal ligands (3.5 Å) in different protein-

ligand complexes. To this end, first, the center of mass of the crystallographic ligands in the 

aligned protein-ligand complexes has been calculated. The principal component analysis (PCA) 

on the center of mass of the ligands was used to define the binding pocket of both the proteases 

(for a detailed discussion see, for example, section 2.2 of Ref. 32). According to the analysis, out 

of a total of 245 ligands present in the PDBs of the M
pro

 complexes, 194 ligands have been 

localized on the same location in the crystal structure of the complexes - the region between 

domains I and II, which is known as the substrate-binding site of the M
pro

 (7,9,12,14,101-103). 

For the PL
pro

 complexes, out of a total of 41 identified ligands, 33 ligands have been located in 

the active site of the protease - in a cleft between the thumb and palm domains (9,14,20,104-

107). The remaining ligands (51 out of 245 for the M
pro 

and 8 out of 41 for the PL
pro

) have been 

sparsely distributed in other regions of the surface of the protein and therefore were excluded 

from further analyses. In the next step, all important amino acid residues interacting with the 

ligands/inhibitors inside the binding site were identified. For this purpose, the distances between 

the heavy atoms of the ligands/inhibitors and the residues of the proteases were calculated and 

then, a list of binding residues for each complex (194 and 33 complexes selected for the M
pro

 and 

PL
pro

 complexes, respectively) was generated for which at least one heavy atom of the residues 

falls within a cutoff distance (less than 3.5 Å in this study) of any ligand heavy atom. The union 

of all obtained list of residues which contains 30 and 21 residues for the M
pro

 and PL
pro

, 

respectively, were considered as the binding sites of the proteases. The selected residues for 

defining the binding site have been tabulated in Table S3 in the Supporting Information. It is 

important to note that the catalytic residues Cys145 and His41 in the M
pro

 and Cys111 and 

His272 in the PL
pro

 which play a key role in the proteolytic cleavage of the viral polyproteins, 

present in the above lists of the selected residues (14,20,76,102-104). 
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For the other two proteins, the binding regions were identified based on the contact interface 

between the residues of the Spike and ACE2 chains (within the cutoff distance of 4.5 Å) in the 

Spike RBD-ACE2 complex PDBs. From the structural analyses of 58 Spike RBD-ACE2 

complexes, 17 hot spot residues of the Spike RBD were detected which interact with the ACE2 

chain in more than 80% of the analyzed complexes, while there are 15 interacting residues of the 

ACE2 which make a network of inter-residue contacts with the Spike RBD chain in more than 

80% of the complexes. The identified interacting residues were considered as potential binding 

sites of the Spike and ACE2 chains (Table S3). The found binding spot residues for the two 

proteins are very consistent with recent computational findings and experimental observations 

(19,28,29,38,95-98). 

2.3. Protein Clustering 

In this step, the pairwise RMSD matrices between the binding site residues of all aligned 

monomeric chains for each target protein were calculated and employed to identify the 

representative protein structures using the single-linkage hierarchical agglomerative clustering 

method based on the Ward variance minimization algorithm (108,109). It is interesting to 

mention that the number of matrix elements for each of the M
pro

, PL
pro

, Spike, and ACE2 

proteins is (291 × 291 × 30), (51 × 51 × 21), (168 × 168 × 17), and (58 × 58 × 15), respectively, 

in which the first two numbers indicate the number of aligned monomeric chains and the third 

numbers denote the number of the binding site residues, as detected in the previous section (see 

Table S3). 

Membership in clusters depended on the simultaneous fulfillment of two conditions: first that the 

number of pairwise RMSD values more than 2.0 Å for each pair of residues between members of 

one cluster should not be more than a predefined number of residues and, second, that average 

pairwise RMSD values of each residue between all pairs of members in one cluster should be 

less than a chosen cutoff value. The success of this strategy in protein clustering and the 

selection of the representative protein structures with the maximum conformational diversity of 

the binding site has recently been shown in different molecular docking studies (32,110). The 

291 monomeric M
pro

 chains were classified into eight clusters, when the values of the two 

thresholds were set to seven numbers for the first criterion (the number of residues with RMSD > 

2.0 Å between members of each cluster) and 1.3 Å for the second criterion (average RMSD 

value over the residues of each member in a cluster). Similarly, eight clusters have been 

identified for the 51 monomeric PL
pro

 chains when the values of the two thresholds were set to 

three numbers and 1.2 Å for the first and second criteria, respectively. 

All 168 and 58 monomeric chains of the Spike and ACE2 proteins were clustered into ten and 

five groups, respectively, by setting the first and second criteria to seven numbers and 2.5 Å for 

the Spike and three numbers and 1.6 Å for the ACE2. It should be noted that the selection of 

more clusters for the Spike protein is due to its high flexibility. The results of clustering have 

been depicted as a dendrogram representation in Figure 1. The structure with the lowest average 
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RMSD value with respect to all the other members has been selected as the representative 

structure of a given cluster. The high-quality structures with better resolution have been 

introduced as the representative structure for the two-membered clusters. For each cluster, PDB 

IDs of the representative structures have been listed in Figure 1. 

2.4. Representative Structures Preparation 

The representative protein structures were protonated by the REDUCE program (111). The 

hydrogenated structures were partially relaxed for optimizing the hydrogen atom positions and 

removing steric clashes or close contacts in the crystal structures using the NAMD.2.13 program 

(112) with the CHARMM36m force field and generalized Born implicit solvent (GBIS). All the 

structures were minimized using 20000 steps of conjugate gradient minimization, involving 

10000 steps minimization with the protein heavy atoms restrained harmonically using a force 

constant of 200 (kcal/mol)/Å
2
 followed by 10000 steps with a harmonic positional restraint of 

100 (kcal/mol)/Å
2
 on all heavy atoms. All the optimized representative structures of the target 

proteins (31 protein chains in total) were converted into PDBQT format for performing 

molecular docking simulations. 

2.5. Ligands Preparation 

All 5546 natural compounds from the PHCD Database (extracted from Persian medicinal herbs) 

(90) were geometrically optimized in the gas phase using the PM7 (113) semi-empirical quantum 

mechanics (SQM) method with MOPAC2016 (114). It should be added here that the PM7 is a 

fast and successful SQM method which reliably describes various types of noncovalent 

interactions and some important chemical observations, such as the planarity of conjugated rings 

or molecular fragments (110). The gradient norm was set to 10 kcal mol
−1

Å
−1

. To ensure that no 

chemical bond breaking/formation processes take place during the optimization calculations, 

InChIKey identifiers - generated with InChI software - were generated and compared for the 

initial structures and final optimized structures. Furthermore, the structures with more than 20 

rotatable bonds were excluded from subsequent calculations, due to the well-known fact that the 

docking success rates decrease with increasing the number of active rotatable bonds (115,116).
 

The remaining optimized compounds (4892 chemical compounds) were prepared in PDBQT 

format for the virtual screening process. 

2.6. Docking Setup and Protocol 

In this research, all the 4892 phytochemicals were docked individually to each of the selected 

representative structures of the protein targets (8, 8, 10, and 5 representative structures for the 

M
pro

, PL
pro

, Spike, and ACE2 proteins, respectively, as described in sections 2.3). It is 

noteworthy to point out that the use of an ensemble of multiple rigid receptor conformations for 

one target protein in docking simulations, often referred to as ensemble docking, is the most 

common strategy to incorporate the receptor flexibility in the docking that achieves better 

enrichment than rigid receptor docking to any of the individual members of the ensemble 
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(17,20,32,117,118). However, in the absence of a common strategy to choose the representative 

docking poses from ensemble docking results, we have very recently presented a new strategy to 

pick up the most appropriate docking poses from the ensemble docking results (32).
 
In our 

proposed protocol, all predicted poses of a given ligand against an ensemble of multiple different 

conformations of a receptor are collected in a pool of ligand conformations and clustered to 

identify representative poses. The top-ranked poses (with the lowest-energy poses) from the first 

and the most populated clusters are chosen as representative poses of the ligand. In addition, it 

has been shown that the top-ranked poses of the most populated clusters obtained by AutoDock 

Vina show a very good performance in estimating binding poses and affinity ranking for the 

available experimental data for M
pro

-ligand complexes (32).
 

Accordingly, AutoDock Vina software (version 1.1.2) (119) was used for the molecular docking 

simulations. The exhaustiveness parameter was set to 200. It seems useful to recall that the 

default exhaustiveness value is 8, and increasing this to higher values enhances the exploration 

of the conformational space of the ligand during the docking procedure and increases the 

probability of finding the proper ligand conformations (120-122). Each Vina run generates 20 

poses. Next, all predicted docking poses for each phytochemical – 160 (=8×20) poses for the 

M
pro

 and 160 (=8×20), 200 (=10×20), and 100 (=5×20) poses for the PL
pro

, Spike, and ACE2 

proteins, respectively – were collected separately for each protein targets and re-clustered based 

on the symmetry-corrected heavy-atom root mean square deviation (RMSD) algorithm 

implemented in AutoDock4 with an RMSD cutoff of 2.0 Å (32,110,123,124). Then, the top-

ranked poses of the first and the most populated clusters were selected as the representative 

docking poses of each phytochemical in complex with each of four protein targets for further 

analyses. 

The docking search space for the M
pro

 and PL
pro

 proteases was constructed based on the 

Cartesian coordinates of the co-crystal ligands found inside the catalytic binding site of the 

aligned protein-ligand complexes – as described in section 2.2. The initial docking box covers all 

the bound ligands with a wide range of sizes (from small molecules to large peptidomimetic 

inhibitors) at different locations of the catalytic binding site. Then, the box size was extended by 

5 Å in each of the three dimensions to ensure that the docking search space is large enough for 

exploring possible binding conformations of new ligands (119,125). The dimensions and center 

coordinates of the final docking box have been tabulated in Table S4 in the Supporting 

Information.  

The docking search space for the other two proteins (Spike and ACE2) were defined based on 

the binding spot residues identified in the Spike RBD-ACE2 complexes – as described in section 

2.2 (Table S3). First, an initial docking box containing all of the binding spot residues was 

constructed for each of these proteins and then, the box size was increased by 5 Å in each of the 

three dimensions. Due to the large surface of the interaction site of these two proteins in their 

complexes with each other, and consequently estimating an unwillingly narrow docking search 

space, the center of the docking box has been displaced in the direction of the Spike RBD-ACE2 
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interface to create a larger search space for the conformational poses generated during the 

docking process, without increasing the docking box dimensions (for the docking box 

information, see Table S4 in the Supporting Information). The final docking boxes on a 

superposition of optimized representative protein structures have been displayed graphically in 

Figure S5 in the Supporting Information. 

 

3. Results and discussion 

As mentioned above, the computational pipeline employed in this research (including the 

structural clustering strategy to construct the protein ensemble for performing docking 

calculations and the proposed manner to choose the representative docking poses from the 

ensemble docking results) has already been designed for correctly predicting experimental 

binding poses and affinity ranking of M
pro

-ligand complexes (32) and thus can be utilized to 

properly produce a rank-ordered list of the phytochemicals of the PHCD Database, according to 

the Autodock Vina scoring function of the representative docking poses. Consequently, two 

rank-ordered lists of the docked phytochemicals have been produced for each protein target, one 

results from the representative poses of the first clusters and the other from the representative 

poses of the most populated clusters. The top 10 phytochemicals in the rank-ordered lists of the 

representative poses of the first and the most populated clusters for the investigated targets, 

along with their plant sources are shown in Table 1 (the top 100 compounds of ranked lists are 

given in Tables S6-S13 in the Supporting Information). 

The analysis and comparison of the data in the tables show that the same phytochemicals and 

medicinal plants appear among the rank-ordered lists of the top 100 phytochemicals of the 

protein targets. In total, 12 common phytochemicals were found in all tables obtained from the 

representative poses of the first clusters (Tables S6, S8, S10, and S12) and 7 common 

phytochemicals were identified in all tables related to the most populated clusters (Tables S7, S9, 

S11, and S13). From a computational viewpoint, it means that these phytochemicals 

simultaneously target the four protein targets and can be considered as potential antiviral drug 

candidates against various key protein targets in the SARS-CoV-2 life cycle. In addition, 21 and 

24 common medicinal plants were identified in the tables related to the first and the most 

populated clusters, respectively. The common phytochemicals and medicinal plants for the two 

rank-ordered lists related to the first and the most populated clusters are summarized in Table 2 

and the two-dimensional (2D) chemical structures of the multi-target phytochemicals identified 

are depicted in Figure 2. 

The Vina scores of the common phytochemicals and their positions in the ranked lists of the top 

100 phytochemicals are shown in Table 3. The first observation from Table 3 is that most of the 

phytochemicals exhibit higher binding affinities for both proteases (especially the M
pro

) than the 

two other targets, the Spike and ACE2. A reasonable explanation for this observation is that the 
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docked ligands should be placed inside the substrate-binding pocket of the proteases and are able 

to interact with a large number of residues of different regions of the binding pocket surface, 

while the docked ligands to the Spike and ACE2 targets experience a relatively large flat surface 

with few or no binding (sub)pockets and consequently, the ligands interact with a few residues of 

limited regions of the protein surface. For comparison purposes, the Vina scores of the top-

ranked poses (with the lowest-energy) belonging to the first and the most populated clusters for 

all docked phytochemicals have been summarized in Figure S15 in the Supporting Information. 

The highest negative Vina score, which indicates the maximum predicted binding affinity, for 

the M
pro

, PL
pro

, Spike, and ACE2 proteins are -12.1, -10.2, -9.9, and -8.9 kcal.mol
-1

, respectively. 

It should be added here that the magnitude of the Vina score values calculated for the top-ranked 

phytochemicals (in Table 3 and Tables S6-S13 in the Supporting Information) may be compared 

with the Vina score values calculated from virtual screening of several sets of FDA-approved 

drugs and natural compounds against the two proteins M
pro

 and Spike which have recently been 

reported in some researches (80,126-132). The information about ligand names, the Vina score 

values, and literature sources are documented from the original papers and given in Table S14 in 

the Supporting Information. By comparing the Vina score values reported in Tables 3 and S14, it 

can be seen obviously that the common phytochemicals identified in this study (Table 3) reveal 

higher binding affinities to the two protein targets than previous literature data on known drugs 

(Table S14). Therefore, it seems that the introduced multi-target phytochemicals in this research 

with a high tendency to simultaneously target the host and viral proteins create better drug lead 

candidates against COVID-19.  

Another important observation from Table 3 is that 4 out of 13 phytochemicals – Chelidimerine, 

Gallagyldilacton, Hinokiflavone, and Physalin Z – show higher binding affinities to all the four 

protein targets and occupy better ranking positions in their ranked lists (numbers in parentheses) 

compared to the other phytochemicals. Thus, they are suggested to be the best choices for drug 

design research. It is very interesting to note that for Chelidonium majus L., the only herbal 

source of Chelidimerine, significant in vitro inhibitory activity against cysteine proteinases has 

already been reported (133). In addition, some Physalin derivatives have very recently been 

introduced as potent M
pro

 inhibitors (78,134,135) and Hinokiflavone which belongs to 

biflavonoid compounds, has already been identified as the antiviral potential of H1N1 influenza 

inhibitor (55). Even more interesting is the fact that, 5 out of 13 phytochemicals – two flavonoid 

glycosides (6 and 7 in Figure 2), two biflavonoid compounds (8 and 13), and Pongamoside A 

(11) – contain the flavonoid scaffold which is well-known for its striking antiviral potential 

against diverse coronaviruses (9,55,60,63,66-69,71,76,82-84,87). Two compounds 1 (a steroidal 

lactone) and 10 have also been proposed as dual inhibitors targeting both the Spike RBD and 

M
pro

 proteins (68,72,78,136,137). However, to the best of our knowledge, none of the five 

phytochemicals 3, 4, 9, 11, and 12 have been studied or reported as a potent antiviral agent to 

date, and then their observed antiviral activity against COVID-19 are suggested for the first time 

in the present virtual screening study. 
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As an important note, it should be pointed out that identifying Capparispine 26-O-beta-D-

glucoside from the ranked lists related to the most populated clusters (in Table 3) as a potential 

antiviral agent against all the four protein targets (especially against ACE2 and M
pro

) and not 

being seen in the first clusters indicates the importance of the selection of the lowest-energy pose 

in the most populated cluster as an important representative pose of the ensemble docking 

results. Therefore, just taking the top-ranked poses with the lowest-energy (the same 

representative pose of the first cluster) as the best solution of docking calculations, the 

possibility of identifying some important phytochemicals is lost. 

Finally, to determine the importance of common medicinal plants introduced in Table 2, the 

numbers of observations of the medicinal plants in each ranked list (Tables S6-S13) have been 

summarized in Table 4. The medicinal plants observed only in one of the two lists related to the 

first and the most populated clusters have been discarded from Table 4. Assuming that the more 

phytochemicals belonging to a medicinal plant in the ranked list(s), the more attractive the 

medicinal plant for the development of potential antiviral drug candidates, the medicinal plants 

were arranged based on the sum of the number of its phytochemicals observed in the four 

corresponding lists. Of course, it should also be added that the possible synergistic effects of 

multiple bioactive phytochemicals belonging to a medicinal plant that can act simultaneously on 

different key protein targets in the viral life cycle enhance the importance of such a medicinal 

plant.  According to the hypothesis, Chelidonium majus L. with the maximum number of its 

phytochemicals over all the ranked lists of the top 100 phytochemicals (in total, 25 and 23 times 

in the lists belonging to the first and the most populated clusters, respectively) can be considered 

as the most important herbal resource for drug design targeting the key viral proteins, the M
pro

, 

PL
pro

, and Spike RBD (only a couple of phytochemicals obtained from the plant present in ACE2 

lists). The next three important medicinal plants, including Punica granatum, Rhus coriaria, and 

Capparis spinose, with the largest number of their phytochemicals interact simultaneously with 

all the host and viral proteins and thus, they are suggested to possess antiviral effects against 

SARS-CoV-2. 

 

4. Conclusion: 

Currently, the use of computational techniques for antiviral drug discovery from compound 

libraries and databases is one of the most powerful tools for combating the COVID-19 pandemic. 

In this work, the antiviral activity of the phytochemical library from the PHCD database 

(https://persianherb.com) (90) against four key protein targets in the SARS-CoV-2 life cycle – 

the M
pro

 and PL
pro

 proteases and the Spike and human ACE2 proteins – have been studied and 

considered using a new successful computational pipeline in the framework of the ensemble 

docking strategy. 

https://persianherb.com/
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The computational pipeline employed in this research, including the structural clustering strategy 

to construct the protein ensemble for performing docking calculations and the proposed manner 

to choose the representative docking poses from the ensemble docking results, has recently been 

designed for correctly predicting experimental binding poses and affinity ranking of M
pro

-ligand 

complexes (32) and has now been utilized to properly rank about 5,000 phytochemical 

compounds of the PHCD database during their screening against different protein targets. 

Several potential antiviral lead candidates have been identified based on the “Computational 

Multitarget Screening” approach, in which favourite candidates interact simultaneously with all 

protein targets. Four of the bioactive phytochemicals identified – Chelidimerine, 

Gallagyldilacton, Hinokiflavone, and Physalin Z – with different chemical scaffolds show the 

highest binding affinities to all the targets and are suggested to be the best choices for drug 

design research. Also, some important medicinal plants have been identified based on the 

numbers of their phytochemicals in the ranked lists of the top 100 phytochemicals for each 

protein target, assuming that the more phytochemicals belonging to a medicinal plant in the 

ranked lists, the more attractive the medicinal plant for drug development with the medicinal 

plant formulations. These important medicinal plants, including Chelidonium majus L., Punica 

granatum, Rhus coriaria, Capparis spinose, Cichorium intybus, and Cynara scolymus, with the 

most phytochemicals interacting with all the host and viral proteins, can be considered as 

promising potential herbal resources for drug discovery against COVID-19. 

Clearly, the plant-based antiviral lead candidates identified in this research should be further 

evaluated by comprehensive molecular dynamics (MD) simulations, experimental assays, and 

clinical trials to confirm their actual activity against COVID-19. At present, we are collaborating 

with another academic research laboratory at Western University for performing large-scale MD 

simulations of the bioactive phytochemicals identified. We hope that these findings may 

contribute to the rational drug design against COVID-19. 
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Table 1. The top 10 compounds from the PHCD database (obtained from the top-ranked poses of the 

first and the most populated clusters) against the protein targets, along with their plant sources. 

 

 

 

 

 

 

 

Protein 

targets 

Top 10  phytochemicals in the rank-ordered list belonging 

to the first cluster 

Top 10  phytochemicals in the rank-ordered list belonging 

to the most populated cluster 

Rank Chemical Name Herb Name Rank Chemical Name Herb Name 

M
pro 

 

 

1 Chelidimerine Chelidonium majus L. 1 Chelidimerine Chelidonium majus L. 

2 Gallagyldilacton Punica granatum 2 Gallagyldilacton Punica granatum 

3 mulberrofuran G Morus nigra 3 Pedunculagin Juglans regia 

4 Pedunculagin Juglans regia 4 Bisindigotin Isatis tinctoria 

5 Granatin A Punica granatum 5 Akyrogenin Polygonatum orientale 

6 Bisindigotin Isatis tinctoria 6 Capparispine Capparis spinosa 

7 Dehydrated tergallic C-glucoside Ipomea purpura 7 Sennidin A Cassia Italica 

8 Cyclomorusin Morus alba 8 cimiracemoside I Cimicifuga racemosa 

9 Amentoflavon Ginkgo biloba 9 Hinokiflavone Rhus coriaria 

10 Scaiadopitysin Ginkgo biloba 10 Procyanidin B2 Ziziphus jujuba 

PL
pro 

1 Amentoflavon Ginkgo biloba 1 Amentoflavon Ginkgo biloba 

2 Bisindigotin Isatis tinctoria 2 Bisindigotin Isatis tinctoria 

3 Hinokiflavone Rhus coriaria 3 perylene Melissa officinalis 

4 perylene Melissa officinalis 4 Isocodonocarpine Capparis decidua 

5 Isocodonocarpine Capparis decidua 5 Pongamoside A Hyoscyamus niger 

6 Pongamoside A Hyoscyamus niger 6 temazepame Artemisia dracunculus 

7 temazepame Artemisia dracunculus 7 Hinokiflavone Rhus coriaria 

8 physalin Z Physalis alkekengi 8 Norsaguinarine Papaver bracteatum 

9 Silybin B Silybum marianum 9 Hispaglabridin B Glycyrrhiza glabra 

10 Licoisoflavanone Glycyrrhiza glabra 10 valoneic acid dilactone Oenothera biennis 

ACE2 

1 Capparispine 26-O-beta-D-glucoside Capparis spinosa 1 Capparispine 26-O-beta-D-glucoside Capparis spinosa 

2 Hinokiflavone Rhus coriaria 2 Hinokiflavone Rhus coriaria 

3 Gallagyldilacton Punica granatum 3 Gallagyldilacton Punica granatum 

4 physalin Z Physalis alkekengi 4 physalin Z Physalis alkekengi 

5 Granatin A Punica granatum 5 Granatin A Punica granatum 

6 Neolutein b Pistacia vera 6 Neolutein b Pistacia vera 

7 cimiracemoside P Cimicifuga racemosa 7 cimiracemoside P Cimicifuga racemosa 

8 (all-E)-Lutein Isatis tinctoria 8 (all-E)-Lutein Isatis tinctoria 

9 Beta-carotene Pistacia vera 9 Beta-carotene Pistacia vera 

10 Lawsowaseem Lawsonia inermis 10 Lawsowaseem Lawsonia inermis 

Spike 

1 Chelidimerine Chelidonium majus L. 1 Chelidimerine Chelidonium majus L. 

2 15-N-acetyl capparisine Capparis decidua 2 Hinokiflavone Rhus coriaria 

3 Isoglaucanone Adiantum capillus-veneris 3 9-cis-beta-Carotin Spinacia oleracea 

4 Hinokiflavone Rhus coriaria 4 Apigenin-7-O-rutinoside Theobroma cacao 

5 Gallagyldilacton Punica granatum 5 Gallagyldilacton Punica granatum 

6 10-Hydroxy phaeophorbide Isatis tinctoria 6 cimiracemoside I Cimicifuga racemosa 

7 9-cis-beta-Carotin Spinacia oleracea 7 Dihydrocoptisine Chelidonium majus L. 

8 farnesiferone A Ferula persica 8 Chelidonine Fumaria parviflora 

9 Apigenin-7-O-rutinoside Theobroma cacao 9 Atroposide A Hyoscyamus niger 

10 Apigenin glucuronide Rhus coriaria 10 Amentoflavon Ginkgo biloba 



31 
 

Table 2. The list of common phytochemicals and medicinal plants for all tables related to the 

first and the most populated clusters. 

 

 

  

Common phytochemicals in all 

tables related to the first clusters 

Hinokiflavone, Gallagyldilacton, Chelidimerine, physalin Z, Bisindigotin, mulberrofuran G, 

Amentoflavo, Apigenin-7-O-rutinoside, Pedunculagin,  Withanolide 

Luteolin-3'-O-di-rhamnoside-7-O-rhamnoside, Pongamoside A 

Common phytochemicals in all 

tables related to the most 

populated clusters 

Capparispine 26-O-beta-D-glucoside, Gallagyldilacton, mulberrofuran G,  Chelidimerine, 

Luteolin-3'-O-di-rhamnoside-7-O-rhamnoside,  Hinokiflavone, Bisindigotin 

Common  medicinal plants in all 

tables related to the first clusters 

Adiantum capillus-veneris, Capparis decidua, Capparis spinosa, Chelidonium majus L., 

Cichorium intybus, Cynara scolymus, Ginkgo biloba, Hyoscyamus niger, Ipomea purpura, 

Isatis tinctoria, Juglans regia, Morus nigra, Onopordon acanthium, Passiflora caerulea, 

Physalis alkekengi, Punica granatum, Rhus coriaria,  Withania somnifera, 

Securigera securidaca (L.) Degen & Dorfl, Silybum marianum, Theobroma cacao  

Common  medicinal plants in all 

tables related to the most 

populated clusters 

Adiantum capillus-veneris, Amygdalus communis, Capparis decidua, Capparis spinosa, 

Cassia Italica, Chelidonium majus L., Cichorium intybus, Crataegus microphylla, Cynara 

scolymus, Ginkgo biloba, Hyoscyamus niger, Ipomea purpura, Isatis tinctoria, Juglans 

regia, Morus alba, Morus nigra, Oenothera biennis, Onopordon acanthium, Passiflora 

caerulea, Punica granatum, Rhus coriaria, Securigera securidaca (L.) Degen & Dorfl, 

Silybum marianum, Theobroma cacao 
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Table 3. Vina scores (in kcal.mol
-1

) of the common phytochemicals and their positions (in 

parentheses) in the rank-ordered subsets of the top 100 phytochemicals. 

Common phytochemicals in the 

top 100 compounds of ranked lists 

Vina score and the position in the ranked lists 

(related to the first clusters) 

Vina score and the position in the ranked lists 

(related to the most populated clusters) 

M
pro

 PL
pro

 ACE2 Spike RBD M
pro

 PL
pro

 ACE2 Spike RBD 

Amentoflavon -9.9 (9) -10.2 (1) -7.5 (100) -8.2 (23) ─ ─ ─ ─ 

Apigenin-7-O-rutinoside -9.3 (56) -8.8 (61) -8.5 (6) -8.5 (9) ─ ─ ─ ─ 

Bisindigotin -10.0 (6) -10.2 (2) -7.6 (87) -8.4 (14) -10.0 (4) -10.2 (2) -7.5 (61) -8.0 (17) 

Capparispine 26-O-beta-D-glucoside ─ ─ ─ ─ -9.5 (11) -8.5 (90) -8.6 (1) -7.7 (64) 

Chelidimerine -12.1 (1) -9.4 (11) -8.2 (13) -9.9 (1) -12.1 (1) -8.5 (93) -7.9 (18) -9.9 (1) 

Gallagyldilacton -10.4 (2) -9.1 (27) -8.9 (1) -8.7 (5) -10.4 (2) -9.1 (15) -8.4 (3) -8.5 (5) 

Hinokiflavone -9.5 (30) -10.1 (3) -8.5 (5) -8.7 (4) -9.5 (9) -9.4 (7) -8.5 (2) -8.7 (2) 

Luteolin-3'-O-di-rhamnoside-7-O-

rhamnoside 
-9.5 (38) -9.2 (22) -7.9 (38) -7.9 (83) -9.0 (51) -8.7 (49) -7.9 (17) -7.9 (32) 

Mulberrofuran G -10.1 (3) -9.2 (19) -7.8 (47) -8.1 (36) -9.4 (14) -8.8 (34) -7.8 (22) -7.8 (38) 

Pedunculagin -10.1 (4) -9.0 (37) -7.8 (54) -7.9 (82) ─ ─ ─ ─ 

Physalin Z -9.6 (22) -9.5 (8) -8.3 (9) -8.4 (11) ─ ─ ─ ─ 

Pongamoside A -9.1 (81) -9.5 (6) -7.5 (96) -7.9 (66) ─ ─ ─ ─ 

Withanolide -9.2 (77) -8.7 (83) -7.7 (74) -8.2 (32) ─ ─ ─ ─ 
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Table 4. The numbers of phytochemicals belonging to the medicinal plants in the ranked lists of 

the top 100 phytochemicals for each protein target (obtained from Tables S6-S13).  

Common medicinal plants in all the 

top 100 compounds of ranked lists 

Number of observations of common 

medicinal plants in each ranked list 

(related to the first clusters) 

Number of observations of common 

medicinal plants in each ranked list 

(related to the most populated clusters) 

Medicinal Plant Names M
pro

 PL
pro

 ACE2 Spike 
Total 

count 
M

pro
 PL

pro
 ACE2 Spike 

Total 

count 

Chelidonium majus L. 10 6 1 8 25 9 5 2 7 23 

Punica granatum 7 4 6 6 23 6 5 5 6 22 

Rhus coriaria 7 7 5 3 22 8 4 3 6 21 

Capparis spinosa 4 2 5 10 21 4 3 7 6 20 

Cichorium intybus 4 5 4 6 19 3 4 2 4 13 

Cynara scolymus 3 1 4 11 19 2 1 3 6 12 

Ipomea purpura 4 5 4 3 16 6 4 1 3 14 

Theobroma cacao 1 4 3 7 15 3 3 2 6 14 

Securigera securidaca (L.) Degen & Dorfl 4 3 4 4 15 7 3 1 3 14 

Ginkgo biloba 6 6 2 1 15 3 3 1 4 11 

Hyoscyamus niger 3 3 6 2 14 3 2 2 3 10 

Capparis decidua 1 2 4 6 13 1 3 2 4 10 

Adiantum capillus-veneris 2 2 4 4 12 4 1 2 2 9 

Onopordon acanthium 2 1 2 6 11 2 1 1 5 9 

Isatis tinctoria 2 4 3 1 10 1 3 2 2 8 

Juglans regia 3 1 3 2 9 2 1 2 4 9 

Silybum marianum 3 2 2 2 9 1 2 1 1 5 

Morus nigra 3 1 1 3 8 2 1 1 3 7 

Passiflora caerulea 3 1 1 2 7 2 1 1 1 5 
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Figure 1. Bottom-up tree dendrogram of the clusters obtained using the Ward’s hierarchical 

method. The population of each cluster is given in each box and the PDB IDs of the 

representative structures for each cluster are also displayed below the boxes. 
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Figure 2. 2D chemical structures of the common multi-target phytochemicals identified from the 

virtual screening process. Withanolide (1), Physalin Z (2), Bisindigotin (3), Gallagyldilacton (4), 

Chelidimerine (5), Luteolin-3'-O-di-rhamnoside-7-O-rhamnoside (6), Apigenin-7-O-rutinoside 

(7), Hinokiflavone (8), Capparispine 26-O-beta-D-glucoside (9), Mulberrofuran G (10), 

Pongamoside A (11), Pedunculagin (12), and Amentoflavon (13). 
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