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ABSTRACT: Homology models have been used for virtual screening and to understand the binding mode of a known active, how-
ever rarely have the models been shown to be of sufficient accuracy, comparable to crystal structures, to support free-energy pertur-
bation (FEP) calculations. We demonstrate here that the use of an advanced induced-fit docking methodology reliably enables pre-
dictive FEP calculations on congeneric series across homology models ≥ 30% sequence identity. Further, we show that retrospective 
FEP calculations on a congeneric series of drug-like ligands is sufficient to discriminate between predicted binding modes. Results 
are presented for a total of 29 homology models for 14 protein targets, showing FEP results comparable to those obtained using 
experimentally determined crystal structures for 86% of homology models with template structure sequence identities ranging from 
30% to 50%. Implications for the use and validation of homology models in drug discovery projects are discussed, including the use 
of AlphaFold2 de novo structures. 

 
I. Introduction 

 
In a recent publication1, we have described an improved 

approach to small molecule protein-ligand docking, IFD-MD, 
in which a combination of conformational search and molecular 
dynamics methods are used to incorporate induced fit effects in 
the receptor for prediction of the protein-ligand binding mode. 
For cases where the induced fit effects are dominated by side 
chain motion of the protein, a success rate (RMSD of one of the 
top two poses less than 2.5A) of greater than 90% was reported 
across a wide range of receptors for 415 examples, which 
constitutes a significant advance in robustness and breadth of 
applicability over prior induced fit docking methods. 
Furthermore, we demonstrated that poses generated by IFD-
MD are of sufficient quality to enable useful free energy 
perturbation (FEP) calculations for congeneric series of drug-
like ligands. 

The data sets investigated in ref. 1 employed high 
resolution crystal structures as a starting point; the goal was to 
predict the change in receptor conformation for a new (active) 
ligand binding to the initial crystal structure.  The success of the 
methodology of ref. 1 raises the question as to whether IFD-MD 
can be similarly effective when docking a known active ligand 
into a homology model, and if so, how the accuracy is impacted 
by the sequence identity between the target receptor and the 
template used to build the homology model.  Docking into a 
homology model is often considerably more challenging than 
docking into a crystal structure, as the active site may need to 
be significantly reorganized to accommodate the ligand.  
However, as long as side chain motions dominate the 

reorganization, IFD-MD should in principle be capable of 
obtaining a reasonably good structure.  Whether such structures 
will support FEP calculations of sufficient accuracy to enable a 
computationally driven structure-based drug design campaign 
is an empirical question that can only be answered by the 
appropriate computational experiments. 

In our prior publication by Cappel et al., efforts to explore 
the impact of a homology model on FEP calculations deferred 
the problem of binding mode prediction2. Docked poses were 
selected on the basis of their ligand RMSD relative to the known 
experimental coordinates. In a subsequent publication by 
Moraca et al., induced-fit docking3 was used for binding mode 
prediction with the IFD scoring function used to select the final 
predicted complex for use in FEP4. This paper successfully 
demonstrated that induced-fit docking enabled the use of FEP 
in homology models, however the work was limited to members 
of the phosphodiesterase (PDE) family.  

Another pair of publications by Clark et al., demonstrated 
accurate use of relative binding FEP calculations in antibody-
antigen complexes, specifically regarding the gp120 
glycoprotein of HIV-15,6. The binding experiments performed 
in that paper reference a gp120 variant, requiring construction 
of gp120 homology models. Wild-type gp120-antibody crystal 
structures had a sequence identity of 50% for the gp120 variant 
of interest and were used as a template. These papers extended 
the use of FEP to homology models of protein-protein 
complexes which avoids the need to cope with small-molecule 
binding pose determination, although there were other unique 
challenges like the placement of glycans and mutant side 
chains. 
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In the present paper, we investigate a total of 14 protein 
targets, each of which consists of a congeneric set of active 
ligands along with a co-crystallized structure for one of those 
ligands. Seven of the data sets are taken from our 2015 paper in 
which we introduced our FEP+ methodology7 plus one 
homology model of PDE10A which was used as an isolated test 
case; the remaining six come from internal Schrodinger drug 
discovery projects. In each case, we evaluate the performance 
of IFD-MD for several different homology models, based on 
templates with differing sequence identities (roughly 30%, 
40%, and 50%, although templates in all three of these 
categories are not available for every target), using the ligand 
for which a co-crystallized structure is available for the IFD-
MD calculations (so as to be able to evaluate the RMSD from 
the experimentally determined structure). We then take the top 
5 poses produced by IFD-MD and carry out FEP calculations 
for the entire congeneric series of ligands for each pose. The 
final pose is selected using a scoring function which combines 
several performance metrics from the FEP calculations 
(correlation coefficient, RMS error) as well as the absolute 
binding free energy, obtained from our absolute binding free 
energy perturbation (AB-FEP) module8. This protocol is a 
realistic one to perform for many potential structure-based drug 
discovery projects, requiring experimental binding affinity data 
for a congeneric series obtained either from the literature 
(publication or patent) or in-house experiments.  

As is shown below, the interrogation of the top 5 poses, 
combined with the use of AB-FEP and FEP data from scoring 
the congeneric series, is sufficient to select a low RMSD pose 
in nearly all of the cases that we have investigated. Further 
refinement of the initial IFD-MD generated model is possible, 
for example by repredicting loop regions near the binding site, 
and/or running longer molecular dynamics simulations. Such 
refinement protocols will be the subject of a future publication.  

The paper is organized as follows. In Section II, we 
describe the datasets used to evaluate IFD-MD homology 
modeling performance. In Section III, we outline the workflow 
used to carry out the calculations, which integrates the IFD-MD 
predictions with the relative and absolute FEP calculations that 
are utilized to rank order the top scoring poses. In Section IV, 
results and discussion are presented for the various test cases in 
the data set; the implications of our findings, particularly for 
structure-based drug discovery efforts, are considered in 
Section V, the Discussion. Finally, in Section VI, the 
Conclusion, we summarize our results and outline future 
directions.  

 
II. Datasets 

 
In the present paper, we focus on two different datasets.  

For the first dataset, we chose eight retrospective targets from 
our original FEP+ publication7, referred to as the public dataset. 

In that paper, we considered an experimentally assessed 
congeneric series containing between 11 to 36 ligands for each 
of these targets, with the spread in binding affinities of the series 
ranging from 1.7 kcal/mol to 5.1 kcal/mol. As we previously 
reported, using free energy perturbation starting from crystal 
structures co-crystallized with at least one member of the 
congeneric series, we were able to achieve both predictive 
correlation (R2 > 0.35) with experimental binding affinity and a 
low root-mean-square error (RMSE < 1.4kcal/mol) for each 
target. Among the eight targets in ref 7, MCL1 was a unique 
case. Compared with the natural peptide binder for this target, 
the small molecule ligands in the data series opened a new sub-
pocket via a kink in a nearby helix. Low sequence identity (< 
50%) homology modeling templates in the PDB database, 
either with a small molecule or peptide binder, seldom open this 
pocket fully. This type of substantial induced conformational 
change, akin in magnitude to the DFG-in and DFG-out 
transition in kinases, could not be handled with our existing 
IFD-MD technology. Consequently, MCL1 was left out of the 
initial dataset. 

A second dataset was created using six targets and 
congeneric series derived from targets of interest to 
Schrodinger’s internal and collaborative drug discovery 
programs. For each target, a publicly available structure and 
congeneric series was available. The term "proprietary dataset" 
refers to this collection of data. Target names and homology 
modelling templates associated with the proprietary data set are 
kept hidden to maintain confidentiality concerning targets of 
interest to Schrödinger and its collaborators.  

Combining both datasets, there are in total 28 homology 
cases spanning 13 targets. Table 4 and Table 5 list the individual 
cases (each column represents a case). 

For each target, we used BLAST9 to scan the PDB database 
and chose a template with a sequence identity close to 50%, 
40%, or 30%. With the following exclusions, the template with 
the highest sequence identity to the cutoff was chosen: (1) 
Templates with bound ligands (i.e. holo-proteins) were favored 
over templates without bound ligands (apo-proteins), unless all 
templates were holo- or apo-proteins; (2) For kinases, only 
DFG-in structures were used as templates, as all kinase targets 
in our datasets are DFG-in structures. Table 1 and Table 2 
contained the targets and templates for both datasets, as well as 
information regarding the congeneric series and relative free-
energy perturbation statistics using the target crystal structure. 
When an apo structure was chosen as the homology modeling 
template, the ligand from the nearest holo template was grafted 
in to identify the binding site for later work. For example, for 
the target ptp1b in the public data set, because the template with 
30% sequence identity, 3M4U, is an apo structure, the binding 
site was defined using the ligand from the 40% sequence 
identity template, 2H02. 

 

 

Table 1. Public Dataset Compositiona 

System Native 
PDB 

Native 
AB-FEP 
(kcal/mol) 

No. of 
Ligands 

No. of 
Edges 

Binding 
Affinity 
Range 

FEP on crystal 
structure RMSE†/ 
R2 

50% SeqId 
Template 
PDB 

40% SeqId 
Template 
PDB 

30% SeqId 
Template 
PDB 

Thrombin 2ZFF -7.88 11 16 1.7 0.90 / 0.50 N/A 3F6U 1FXY 
Tyk2 4GIH -17.58 16 24 4.3 0.63 / 0.89 3ZC6 4ID7 4OT5 
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Jnk1 2GMX -15.13 21 31 3.4 0.98 / 0.77 3GC9 4B99 3MTL 
CDK2 1H1Q -10.85 16 25 4.2 1.36 / 0.38 1XO2 4AGU 3JUH 
P38 3FLY -16.61 34 56 3.8 1.02 / 0.61 1PME 4EOK 4BCF 
Bace1 4DJW -9.75 36 58 3.5 1.20 / 0.65 3ZLQ N/A 1DP5 
PTP1B 2QBS -22.15 23 49 5.1 0.85 / 0.81 N/A 2H02 3M4U 

a Units for binding affinity and RMSE are kcal/mol. An edge refers to a single FEP calculation between two ligands in the congeneric 
series. 

Table 2. Proprietary Dataset Compositiona 

System 
Native 
AB-FEP 
(kcal/mol) 

No. of 
Ligands 

No. of 
Edges 

Binding 
Affinity 
Range 

FEP on crys-
tal structure 
RMSE /R2 

System 1 -15.36 10 26 4.5 0.91 / 0.91 
System 2 -14.07 18 29 4.9 1.48 / 0.38 
System 3 -9.55 11 16 5.9 1.01 / 0.92 
System 4 -15.58 11 18 2.8 1.41 / 0.51 
System 5 -15.56 12 20 3.5 2.11 / 0.39 
System 6 -6.17 14 18 2.5 0.91 / 0.70 

a Units for binding affinity and RMSE are kcal/mol. An edge refers to a single FEP calculation between two ligands in the congeneric 
series. 

 
 

III. Computational Workflow 
 
We expect that obtaining accurate pose prediction and 

subsequent FEP results for a congeneric series will, in general, 
be significantly more challenging for a homology model than in 
the case where one is starting with a high-resolution crystal 
structure. In a homology model, the environment of the active 
site may have backbone deviations (as compared to a high-
resolution structure) which can increase the difficulty of 
predicting an accurate binding pose and can introduce noise into 
the calculation of both relative and absolute binding affinities.  
The objective of the workflow described below is to use a 
number of different metrics to evaluate the quality of the pose 
and thus to overcome noise. We optimize a scoring function 
which combines all of the information so as to succeed in the 
highest number of cases possible. Section IV.F reports initial 
true test set data for the method reported, however future testing 
of this scoring function on broader set of test cases will be the 
subject of future work and would be provide additional 
validation of the methodology.  

The first step in the homology modeling workflow is 
construction of the homology model starting from the template 
receptor bound to a suitable template ligand. If the template 
structure is a holo structure, then the ligand that is a component 
of the high-resolution complex serves as the template ligand. If 
the template structure is an apo structure (as might be the case 
for a project on a recently identified drug discovery target), we 
place a ligand from an alternative source into the template (for 
the present paper, we do this using an alternative holo template). 

The homology model itself is then generated from the template 
via standard alignment and modeling building protocols, as 
discussed below.  

Once the homology model is created, the next step is the 
use of IFD-MD docking to generate candidate poses for one or 
more compounds that are known to be active against the target 
receptor.  The ligand in the template structure is removed, and 
the top 5 poses from IFD-MD docking are selected for further 
processing. As described in ref. 1, the IFD-MD scoring function 
itself uses multiple components (most importantly the Prime 
continuum solvent-based energy10,11, WScore docking score12, 
and stability in metadynamics simulations13) to rank order 
hundreds of candidate poses. In ref. 1, where induced fit 
docking into a high-resolution crystal structure was the 
objective, our goal was to reliably place a low RMSD structure 
(less than 2.5A) among the two top ranked poses. Because of 
the greater noise expected in docking into a homology model, 
we revise our goal to be placement of a low RMSD pose among 
the top 5 ranked structures. Subsequent evaluations of pose 
performance using both relative FEP (for a congeneric series) 
and absolute FEP (AB-FEP) enables selection of an optimal low 
RMSD final pose among the five candidates emerging from 
IFD-MD.  

In Figure 1 is graphical depiction of the workflow outlined 
above. After all of the descriptors have been produced for each 
of the five candidate IFD-MD poses, a scoring function is used 
to combine the information and select the final pose. The 
formulation of the scoring function is given below in section 
III.D. 
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Figure 1. Flow chart of the homology modelling workflow. The workflow is initiated with an existing homology model and a congeneric 
series. The output is a list of ranked ligand-receptor complexes that are scored using a combination of relative FEP metrics and absolute 
binding FEP predicted free energy. The homology model can be generated via classical sequence alignment methods or alternatively using 
template-free methods such as AlphaFold2 predictions. The congeneric series is a list of similar ligands with associated binding affinity or 
functional activity data, e.g. Ki or EC50. Timings report here are approximate and depend on a number of factors such as the size of the 
receptor and the number of ligands in the congeneric series.  Relative Binding FEP timings are a function of the number of edges, a single 
FEP calculation performed between two ligands. For each target, the number of edges is listed in Table 1 and Table 2. 

 
III.A. Homology Model Generation 

 
The target and template sequences were aligned using the 

MUSCLE methodology14,15. The MUSCLE alignment was 
modified to shift gaps found within the secondary structure to 
instead be adjacent to loops. This correction was applied only 
when insertion/deletions would lie within 10 Å of the ligand in 
the homology modeling template. The finalized alignment was 
supplied to the Prime Homology Modeling module10 to build a 
complete atomic model of the receptor. We were interested in 
performance across a range of homology models and sequence 
identities for the purposes of this work, therefore we remain 
agnostic regarding questions about competing sequence 
alignment methodologies. Other alignment algorithms, such as 
HHBlits16, or alternative homology models, such as 
AlphaFold217 structures, could be used without altering the 
protocol developed in this work. The use of AlphaFold2 
structures may increase the success probability of our workflow 
when the sequence identity of the best template is in the 20-40% 
range.  

The initial homology model was built using Prime10,18,19. 
Residues that were conserved between the target and the 
template were assigned the template's coordinates, including 
side chain atoms. The side chain atoms were optimized for 
residues which were mutated between the template and target. 
De-novo loop prediction was performed wherever there were 
insertions or deletions. Throughout model building 
minimization used the VSGB2 implicit solvent model11 and 
OPLS3e20 force field .All un-templated C or N termini longer 
than one residue were removed from the homology model. 

 
III.B. Ligand Docking and Binding Site Optimization 

 
Following the construction of the homology model, IFD-

MD1 was used for ligand docking and binding site optimization. 
IFD-MD requires the presence of some chemical matter in the 
receptor, referred to as the template ligand, in order to define 
the binding site and facilitate induced-fit docking. When 
available, the ligand from the homology modeling template 
served as the template ligand for IFD-MD docking homology 
models. We selected for docking with IFD-MD the congeneric 
series member that was present in a previously published crystal 
structure, referring to the reference ligand. This enables us to 
track the ligand's RMSD for retrospective evaluation purposes. 
In a prospective project, one might dock the series' most potent 
ligand. An alternative strategy would be to dock multiple 
ligands from the congeneric series into the template and analyze 
the results of multiple IFD-MD runs. This could lead to building 
a superior model in some situations, e.g., when the series has 
more than one important binding mode. In the present work, 
docking a single ligand, selected from the congeneric series 
using the criterion described above, produced satisfactory 
results in nearly all cases studied.  

 
III.C. Model Validation with Free Energy Perturbation 

Calculations 
 
In many if not most drug discovery projects, some initial 

data regarding binding of active ligands to the target receptor is 
available, either from the literature (publications or patents) or 
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via an in-house experimental screen.  A central finding of the 
present paper is that the identification of even a relatively small 
number of active ligands (although more data is always better) 
can be effectively used to develop and validate a superior 
homology model - one that is suitable for enabling a structure-
based project going forward.  In effect, the ligands act as a probe 
of the receptor active site which can be used to discriminate 
among various plausible alternatives. 

We utilize two different types of free energy calculations 
to evaluate the performance of a specified IFD-MD pose for a 
particular active ligand and its associated congeneric series. 
Absolute binding free energy perturbation (AB-FEP) 
calculations are aimed at determining the free energy of binding 
of the ligand to a fixed receptor conformation (defined by the 
protein-ligand complex structure that is input into the 
calculations)8. These calculations are more difficult from a 
technical point of view than the standard relative FEP 
calculations among multiple ligands, and they are subject to 
noise arising from noise in the input structure (i.e. deviations 
from a high resolution experimental crystal structure), a 
significant concern when using a homology model. 
Furthermore, AB-FEP calculations do not include the 
reorganization free energy of the receptor (free energy to 
transition from the apo structure of the receptor to the holo 
structure induced by a specific ligand). Despite these issues, the 
robustness of AB-FEP calculations has reached the point where 
it is possible to reject most IFD-MD poses which are seriously 
flawed. In some cases, this capability is extremely helpful 
because (as we will see below) false positives in relative FEP 
assessment can arise, particularly when the initial data set of 
ligand binding affinities is sparse and the activity range of the 
data set is limited. 

Relative binding FEP tests whether the homology model 
can properly describe changes in binding affinity as various 
regions of the ligand are modified.  With sufficient data, relative 
FEP provides a sensitive calibration of the quality of the binding 
pose, and a useful assessment of suitability for prospective FEP 
calculations. As noted above, AB-FEP calculations are a helpful 
augmentation to relative FEP when the data set is potentially 
deficient in some respects. 

Schrödinger’s free-energy perturbation package, FEP+7,21 
was used to predict the protein-ligand binding affinities across 
a ligand congeneric series particular to a given target. We 
preserved an identical FEP map topology across all IFD-MD 
predicted poses. This topology is identical to what was used for 
the crystal structure. This removes any bias caused by the 
topology of the map and ensures comparisons between the 
crystal structure and alternative predicted binding modes are 
done fairly. Default FEP settings were used with the exception 
that 10ns of simulation time were performed instead of 5ns.  

The reference ligand, the ligand which was present in the 
target crystal structure and which was used for reporting the 
RMSD, is connected to multiple other ligands via perturbation 
edges in the relative free energy perturbation map. All ligands 
in all FEP maps contained closed cycles to allow for cycle 
closure correction7. This means each ligand, including the 
reference ligand, has at least two edges connected to it. For each 
edge, we extracted a representative structure. The 
representative structure was extracted for the physical replicas 
(i.e. lambda=0). This resulted in at least two representative 
structures for the two or more edges connected to the 
representative ligand. The enhanced sampling performed in 

relative FEP in many cases provided a salutary effect, 
improving the quality of the IFD-MD output structure. Table 4 
and Table 5 show the improvement in RMSD from the 
molecular dynamics run during RB-FEP. Absolute binding free 
energy was calculated using these representative structures as 
input resulted in at least two predicted ∆Gs for a single ligand. 
The lowest free energy predicted was used as the absolute 
binding free energy for that predicted ligand-receptor complex. 
Figure 1 illustrates this process. 

 
III.D. Determination of the composite scoring function 

 
The composite scoring function integrates the data from 

relative FEP and AB-FEP calculations in order to select a final 
pose. The specific descriptors used comprise the AB-FEP free 
energy and the correlation coefficient (R2), RMS error (RMSE), 
and slope for the relative FEP calculations. A linear functional 
form proved sufficient to select the best pose across the entire 
data set: 

 
𝑠𝑐𝑜𝑟𝑒	 = 	𝑤!"#$ ∗ 𝑅𝑀𝑆𝐸!%&'$( 	+	𝑤!! ∗ R!%&'$() 	+	𝑤*+,-.

∗ abs(1 − slope!%&'$() 	+	𝑤/%&'$(
∗ ∆G/%&'$( 

Equation 1. Composite Scoring Function 

 
Where 𝑅𝑀𝑆𝐸!%&'$(, R!%&'$() 	, slope!%&'$( are the pairwise 
RMSE, R2 and slope of the relative FEP calculations of the 
representative structure, across the ligand congeneric series. 
∆G/%&'$( denotes the representative structure's predicted AB-
FEP binding affinity. 

We chose the convention that a more negative score was 
more favorable. Of the descriptors used for the scoring function, 
the 𝑅𝑀𝑆𝐸!%&'$(, and ∆G/%&'$( already follow this 
convention. For the slope, we used the functional form 
abs(1 − slope!%&'$() to capture the distance the observed 
slope was from unity, which would be an ideal slope. The 
remaining term R!%&'$() , therefore required its weight to be a 
negative value. 

All of the public and proprietary data sets were used to train 
the model with the exception of the PDE10A homology 
modeling performed in section IV.F which serves as true test 
set data for the developed protocol.  

The parameters for the scoring function were optimized 
using a grid search. All predicted models for all grid points in 
this four-dimensional parameter space were scored within a 
coarse 20-point per dimension resolution and fixed range of 
values. The points in this 4D parameter space were then ranked 
by the number of successful cases and by the separation 
between satisfactory and unsatisfactory poses. A pose was 
considered satisfactory if its ligand-heavy-atom RMSD was ≤ 
2.6 Å. The separation between satisfactory and unsatisfactory 
poses is defined as follows: 

 

𝑆 ==𝑠𝑠𝑟0

1

023

 

Equation 2. Optimization function 
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Where the summation is over all 28 cases. The score-span 
ratio (𝑠𝑠𝑟0) of a single case is defined as: 

 

𝑠𝑠𝑟0 =	
𝑠4567 − 𝑠89:;0<9=
𝑠4567 −	𝑠>?:67

𝐼;@ 

Equation 3. Score-span ratio definition 

Where 𝑠4567 and 𝑠>?:67 are the scores of the pose with the 
highest rank and the pose with the lowest rank, respectively for 
a single case. 𝑠89:;0<9= is defined as the worst score among 
satisfactory poses with no interspersed bad poses, or as the best 
score among poses with an RMSD more than 2.6 Å if no pose 
other than the top-ranked pose has an RMSD of 2.6 Å or less. 
𝐼;@ is an indicator function that returns 1 only when the rank-
one pose is a satisfactory pose. The larger the score span ratio, 
the more the satisfactory poses occupy the span of scores 
without interspersed unsatisfactory poses and the better job the 
scoring function performs at discrimination. 

Once the points in this 4D parameter space were ranked, a 
finer search was performed with a resolution of 50 points per 
parameter. The range of values was set to be the range of 
observed values for each dimension for the top 20 points in the 
coarse search of parameter space. Supplemental Table S5 lists 
the range of parameters and the final values for the coarse and 
fine resolution grid searches. 

 
Table 3. Results of scoring function optimization excluding 
certain parametersa 

Excluded Parameter 
!𝑠𝑠𝑟0

1

023

 
Number 
Successful 
Cases 𝑤ABCD 𝑤A! 𝑤6=?@5 𝑤/%&'$( 

    11.73 27/28 
X    11.50 27/28 

 X   10.66 27/28 

  X  11.73 27/28 

   X 10.08 25/28 
X X   10.56 27/28 
X  X  10.86 27/28 
X   X 10.15 25/28 

 X X  9.96 27/28 

 X  X 8.60 24/28 

  X X 10.58 23/28 
X X X  10.72 25/28 
X X  X 8.52 24/28 
X  X X 10.29 24/28 
 X X X 8.07 21/28 

a Out of the 28 homology modeling cases, one case failed to 
produce any poses under 2.6 Å ligand RMSD. This forces the 
maximum number of successful cases to be 27 out of 28 cases. 

 
All combinations of terms were excluded to explore the 

contribution of that term to the overall scoring function. Table 
3 lists the results of all 15 combinations of excluding each of 
the four parameters. One case, the 30% sequence identity case 

for System 6 in the proprietary data set failed to produce any 
poses under 2.6 Å (see Table 5 and Table S4). This set the 
maximum number of cases to optimize to be 27 out of 28 total 
cases. Of the four terms in the scoring function, the 𝑤/%&'$( 
parameter appeared to be the most significant term. When it is 
the only excluded parameter, the scoring function is unable to 
rescue two cases, regardless of the weights of the other three 
parameters. For the other terms, their exclusion resulted in a 
poorer score-span ratio, which implies a reduced discrimination 
between satisfactory and unsatisfactory poses. The slope term 
was the least consequential of the four terms, showing only a 
significant impact when excluded along with another term, for 
example the AB-FEP ∆G weight. 

Leave-one-out (LOO) optimization was performed to 
investigate the stability of results when individual cases were 
excluded from parameter optimization. Leave-one-out 
optimization excludes a single case from parameter 
optimization. Once a new set of a parameters is found, the 
excluded case is then scored and classified as a success or 
failure. Out of the 27 cases that have at least one 2.6 Å RMSD 
pose or better, two cases failed during leave one out 
optimization. Those two cases are the BACE 26% sequence 
identity case and System 2 32% sequence identity.  

For the BACE 26% sequence identity case, LOO 
optimization led to the selection of the 4.98 Å pose with 
superior RB-FEP RMSE and R2 compared to the preferred 1.96 
Å pose (Table S3). The 1.96 Å pose has a highly discriminating 
AB-FEP ∆G that is nearly 12 kcal/mol superior to this 
competing 4.98 Å pose. However, with LOO, the weight of the 
AB-FEP ∆G term was insufficient to overcome the inferior RB-
FEP statistics of the 1.96 Å pose. 

System 2, 32% sequence failed LOO optimization with the 
3.54 Å pose selected rather than the 2.35 Å pose (Table S4). 
Here, proper weighting of the RB-FEP slope with the AB-FEP 
∆G was not achieved when this case was excluded from 
optimization. 

Both cases which failed LOO optimization are built from 
low-sequence identity templates and show the limitations of this 
small data set. 

 
IV. Results and Discussion 

 
IV.A. Overview. 

 
In Table 4 and Table 5, we present results for the IFD-MD 

homology modeling workflow for all of the cases included in 
the public and proprietary data sets. As a comparison point, 
relative and absolute FEP results for the native structures of the 
targets are given in Table 1 and Table 2. We also present the 
results of rigid receptor Glide docking (in Table 4 and Table 5) 
of the target ligand for the same set of test cases. The Glide 
results display a high fraction of large errors in pose prediction 
(RMSD > 3Å), indicating that the homology models neglecting 
induced-fit effects are unsuitable for subsequent investigation 
of ligand binding without refinement of the binding site, along 
the lines that we carry out here. These Glide poses resulted 
almost entirely in poor FEP performance (Supplemental Table 
S1 and Table S2) 

From the standpoint of structure-based drug discovery, a 
minimal basis for proceeding to use the homology model in a 
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project would be reasonable results (with regard to RMSE, R2, 
and slope) for relative FEP calculations.  We defined reasonable 
relative FEP performance to be an RMSE ≤ 1.5 kcal/mol and an 
R2 ≥ 0.3. 

 
 

 

Table 4. Public Data Set FEP Results and Ligand RMSDsa 

  Systems 

BACE TYK2 P38 JNK1 

Template 3ZLQ 1DP5 3ZC6 4ID7 4OT5 1PME 4EOK 4BCF 3GC9 4B99 3MTL 

Sequence Identity 54% 26% 51% 41% 33% 49% 38% 31% 47% 41% 29% 

RMSERB-FEP 
(kcal/mol) 

1.01 1.48 0.64 1.36 0.87 1.36 1.52 1.13 1.08 1.42 0.95 

R!%&'$()   0.48 0.02 0.89 0.67 0.78 0.31 0.30 0.43 0.63 0.59 0.60 

slope!%&'$( 0.88 0.14 0.97 0.29 0.72 0.56 0.66 0.58 1.14 1.34 0.94 

∆GAB-FEP (kcal/mol) -16.97 -18.75 -12.62 -12.18 -10.55 -13.08 -15.34 -10.81 -14.43 -16.2 -16.41 

RM
SD

 

GlideSP (Å) 3.16 2.37 3.82 4.81 6.34 2.70 6.76 8.74 5.54 5.84 6.16 

IFD-MD (Å) 2.17 2.60 1.78 3.41 2.18 1.39 2.42 2.01 3.12 1.29 1.44 

Final (Å) 1.40 1.96 0.74 0.77 0.84 1.06 1.49 1.31 1.22 0.93 0.84 

 Systems  

CDK2 Thrombin PTP1B 

Template 1XO2 4AGU 3JUH 3F6U 1FXY 2H02 3M4U 

Sequence Identity 50% 40% 34% 42% 39% 38% 27% 

RMSERB-FEP 
(kcal/mol) 

1.30 1.17 1.27 0.79 0.76 0.67 1.05 

R!%&'$()   0.45 0.54 0.45 0.35 0.48 0.89 0.71 

slope!%&'$( 0.35 0.49 0.46 0.73 0.95 1.04 0.84 

∆GAB-FEP (kcal/mol) -13.56 -11.19 -13.41 -8.17 -7.36 -18.28 -14.02 

RM
SD

 

GlideSP (Å) 5.42 1.50 5.58 7.11 2.90 7.43 6.36 

IFD-MD (Å) 2.14 1.86 1.45 1.53 2.43 1.09 2.18 

Final (Å) 1.56 1.87 1.61 1.16 2.08 1.41 1.24 
a Free energy perturbation and ligand RMSDs for the cases in the public data set. The relative-binding FEP statistics (RB-FEP) R2 and 

slope refer to the Pearson correlation coefficient of the best fit linear regression that maps experimental ∆G to relative binding FEP predicted 
∆G. The slope corresponds to the slope of this best fit line. RMSDs are reported as ligand heavy atom RMSD compared to the crystal 
structure for the reference ligand in the congeneric series. The GlideSP RMSD is the rigid-receptor docking RMSD. Rigid-receptor docking 
is not part of the workflow but is shown here for comparison to illustrate the need for induced-fit effects to be considered. The final RMSD 
is the ligand heavy-atom RMSD of the lowest free energy MD frame scored using absolute-binding FEP (AB-FEP).  

 
Table 5. Proprietary Data Set FEP Results and Ligand RMSDsa 

 System 1 System 2 System 3 System 4 System 5 System 6 

Sequence Identity 54% 33% 52% 41% 32% 52% 40% 27% 28% 30% 

Ligand RMSD (Å) 2.45 1.53 1.43 2.17 2.35 1.30 1.50 1.15 2.04 3.72 

RMSERB-FEP (kcal/mol) 0.80 1.05 1.44 1.53 1.35 1.49 1.23 0.50 3.08 0.79 

R!%&'$()   0.88 0.85 0.46 0.57 0.48 0.96 0.88 0.88 0.35 0.54 

slope!%&'$( 0.95 0.64 0.70 1.01 0.66 1.48 0.59 0.68 1.27 0.47 

∆GAB-FEP (kcal/mol) -13.81 -10.25 -11.65 -12.39 -8.54 -9.53 -8.22 -11.85 -13.91 -7.6 

RMSD
 GlideSP (Å) No pose No pose 1.37 9.53 1.74 0.54 5.28 6.08 7.93 5.37 
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IFD-MD (Å) 1.23 2.72 2.36 2.30 2.40 3.08 1.01 1.55 2.52 2.88 

Final (Å) 2.45 1.53 1.43 2.17 2.35 1.30 1.50 1.15 2.04 3.72 
a Free energy perturbation and ligand RMSDs for the cases in the public data set. The relative-binding FEP statistics (RB-FEP) R2 and 

slope refer to the Pearson correlation coefficient of the best fit linear regression that maps experimental ∆G to relative binding FEP predicted 
∆G. The slope corresponds to the slope of this best fit line. RMSDs are reported as ligand heavy atom RMSD compared to the crystal 
structure for the reference ligand in the congeneric series. The GlideSP RMSD is the rigid-receptor docking RMSD. Rigid-receptor docking 
is not part of the workflow but is shown here for comparison to illustrate the need for induced-fit effects to be considered. The final RMSD 
is the ligand heavy-atom RMSD of the lowest free energy MD frame scored using absolute-binding FEP (AB-FEP).  

 

A significant fraction (86%) of the test cases below satisfy 
the criteria that RMSE ≤ 1.5 kcal/mol and R2 ≥ 0.3  (Table 6 
and Table 7); two of the cases that do not (bace1, 26% sequence 
identity and System 5, 28% sequence identity of the proprietary 
data set) involve building homology models when the sequence 
identity of the template and target is below 30%.  It is not 
surprising to see a degradation in model quality in this regime. 
Nevertheless, the results for all four cases with unsatisfactory 
FEP performance have some favorable features – all four cases 
have a good ligand RMSD under 2.5 Å. These partially 
validated results suggest that further refinement of the structure 
(e.g. prediction of surrounding loops, more extensive MD 
simulation, etc.) could improve the structures sufficiently to 
support acceptable predictive relative FEP performance. 
Alternatively, a better starting point for the homology model 
(e.g. an AlphaFold217 structure) might similarly yield superior 
results to those shown here. We intend to explore both of these 
directions in future work. For the specific protocol described in 
this paper, a sequence identity of 30% or higher appears to be 
sufficient to yield a useful model over 80% of the time.  
Statistically, one would not necessarily expect every 30% 
sequence identity model to work as well as those shown here 
but given the availability of experimental binding data for the 
congeneric series (necessary to execute the workflow in any 
case), suitable performance on the relative FEP metrics can 
readily be identified. Further tests of the model in prospective 
use (involving modifications of the ligand at different locations 
than in the congeneric series) should then enable a more 
rigorous probe of the overall quality of the ligand pose.  

 
Table 6. Homology modeling success rate by FEP Perfor-
mancea 

 Total 
Cases 

50% Seq. 
ID 

40% Seq. 
ID 

30% Seq. 
ID 

Public 
Dataset  

18 5/5 5/6 6/7 

Proprietary 
Dataset 

10 3/3 1/2 4/5 

a Each homology case is rounded to the nearest sequence identity 
bin listed here. Success is defined to have a RMSE ≤ 1.5 kcal/mol 
and an R2 ≥ 0.3. 

 

Table 7. Homology modeling success rate by ligand RMSDa 

 Total 
Cases 

50% Seq. 
ID 

40% Seq. 
ID 

30% Seq. 
ID 

Public 
Dataset  

18 5/5 6/6 7/7 

Proprietary 
Dataset 

10 3/3 2/2 4/5 

a Each homology case is rounded to the nearest sequence identity 
bin listed here. Success is defined to have a ligand heavy-atom 
RMSD ≤ 2.5 Å. 

While some degradation of the relative FEP results as 
compared to the crystal structure data can be observed, it is 
remarkable how frequently results of comparable quality are 
obtained, in some cases even for lower sequence identities.  
This result is not achieved via IFD-MD alone; the molecular 
dynamics simulation of the FEP step is important in a number 
of cases to generate an accurate ligand pose.  However, results 
of this type require at least a plausible initial guess, unless one 
is willing to expend extraordinarily amounts of computational 
resources; there is no possibility that a relatively short MD 
trajectory (nanoseconds as opposed to many microseconds) 
could refine a 5-7A pose of the type that is generated by rigid 
receptor docking in more than half of the test cases.  

The AB-FEP results are quite variable, with some of the 
low RMSD poses showing a better signal than others (see for 
example, the P38 results in Table 4). The AB-FEP results for 
crystal structures are obtained in a simulation with all of the key 
interactions in place, as well as an optimally relaxed 
environment.  Because AB-FEP is strongly restrained around 
the initial pose (necessary in order to obtain converged results 
in reasonable computation times), sampling away problems 
with the initial structure is difficult, and the quality of the AB-
FEP result is going to be strongly dependent upon the quality of 
the initial pose. The initial results shown below are encouraging 
in that a strong signal is frequently obtained, and in a few cases 
can profitably be used to choose between poses with noisy 
relative FEP results (only one of which has a reasonable 
RMSD). It is also quite possible that further refinement of the 
structure, around a localized region, could be used to generate 
improved AB-FEP results; indeed, AB-FEP can be used as a 
signal to select the best alternative among such refined poses. 
In fact, success along these lines is already apparent from the 
current protocol in which AB-FEP is used to select among a 
number of representative MD frames from a given IFD-MD 
pose. Experiments along these lines will be carried out in 
subsequent work. 

Most of the remaining subsections below in this section 
address the various points discussed above in more detail, 
including illustrative examples. The final subsection, IV.F, 
considers a potential failure mode; a specific case, a congeneric 
series of ligands binding to the PDE10A receptor.  Here, use of 
the data as provided leads to ambiguity in selecting the final 
pose; in particular, a pose with a very poor RMSD is 
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competitive in both absolute and relative FEP performance with 
a quite different pose with a sub 1 Å RMSD.  We analyze this 
case in detail and show that the problem lies in the fact that the 
ligand is very hydrophobic (leading to plausible AB-FEP 
binding free energies in multiple poses) and that the binding 
affinity is highly correlated with molecular weight (in essence, 
more binding affinity can be obtained by adding hydrophobic 
groups to the core, even in very different orientations of the 
core). This problem can be overcome by selecting a subset of 
ligands with similar molecular weights but differentiated 
binding affinities, for which the low RMSD pose qualitatively 
outperforms in the incorrect pose in relative FEP correlation 
with experiment.  

 
IV.B. IFD-MD Allows for Accurate Binding Mode 

Prediction in Imperfect Homology Models 
 
Below we report the RMSD of the ligand for each stage of 

the homology modeling workflow. Among all the stages, the 
induced-fit docking of a ligand from the congeneric series was 
critical. The induced-fit docking produced pose becomes the 
scaffold upon which all members of the congeneric series are 
aligned. While the additional dynamics performed during 
relative binding FEP and absolute binding FEP can correct 
some flaws in the structure, in any reasonable simulation time, 
significant kinetic barriers are likely present preventing a total 
reorganization of the binding mode. In 24 of 28 homology 
modeling cases from both datasets, IFD-MD generated poses 
with ligand heavy-atom RMSD less than 2.5Å as one of the top 
five poses (Table 4 and Table 5). For comparison, we report the 
RMSD of rigid-receptor docking, performed using GlideSP. 
Out of the 28 homology modeling cases, only 5 cases can 
produce a sub-2.5 Å ligand RMSD. This illustrates the need for 
an induced fit technology to produce an accurate initial pose 
(Table S1 and Table S2) . 

The example of cyclin-dependent kinase 2 (CDK2) 
modeling using the 34% sequence identity 3JUH template 
demonstrated how IFD-MD poses preserved critical binding 
site interactions during FEP simulations. Figure 2A shows the 
crystal structure of CDK2 relative to the initial homology 
model, before any induced-fit docking has occurred. The 
linkage/hinge area was of poor quality in the original homology 
model and can be described as having two flaws: 

1. The backbone amine and carbonyl groups were pointed 
upward, away from the binding site 

2. The auxiliary hydrogen bond (topmost in the figure) was 
impossible to form because the second carbonyl group retreated 
from the binding site.  

As a result, rigid receptor docking with a flexible ligand 
and a rigid protein receptor failed to predict any plausible pose 
in even the top 20 predictions. Figure 2B shows the top rigid 
receptor docked pose. This pose, unable to form hydrogen 
bonds with the hinge, rotates the polar groups on the ligand to 
instead face solvent. By comparison, the top two poses 
produced by IFD-MD both had reasonable hinge hydrogen 
bond interactions. The top IFD-MD pose has a ligand RMSD of 
5.21 Å and is shown in Figure 2C while the second-ranked IFD-
MD pose is a 1.45 Å RMSD pose and is shown in Figure 2D. 
Both poses formed similar hydrogen bonds with the hinge. 
Notable here was that the ligand perturbations occurred on the 
benzene ring which are in a distinctly different environment. As 

expected, these two poses were markedly different in terms of 
their performance in FEP. The 1.45 Å pose demonstrated strong 
recapitulation of experimental data with R2 of 0.45 and RMSE 
of 1.27 kcal/mol, whereas the negative control pose performed 
poorly with an R2 of 0.16 and an of RMSE of 4.09 kcal/mol. 
The FEP correlation plots for these two poses are shown in 
Figure 2E and F.  

 

 

Figure 2. Docking and FEP performance for the CDK2 case using 
PDB 3JUH, 34% sequence identity. (A) Interactions between the 
native CDK2 crystal structure (PDB:1H1Q) and its native ligand 
(both in white), as well as the initial homology model (green). (B): 
The top-ranked pose for rigid receptor docking (GlideSP) into the 
initial homology model. Unable to form a hinge interaction, the 
pose has retreated from the hinge and moved the polar atoms to be 
solvent exposed. (C) Hinge interactions of the 1.45 Å RMSD IFD-
MD pose. (D) Hinge interactions of the 5.21 Å RMSD IFD-MD 
pose. (C) The FEP results for the 1.45 Å IFD-MD pose. The RMSE 
is 1.27 kcal/mol and the R2 is 0.45. (F) The FEP results for the 5.21 
Å IFD-MD pose. The RMSE is 4.09 kcal/mol and the R2 is 0.16. 

 

IV.C. Ligands Requiring Simple Motions Could be Fixed by 
the Sampling Performed in FEP 
 
When IFD-MD predicts no pose with an RMSD of less 

than 2.5 Å among the top 5, it is possible that a relatively short 
MD simulation can transform an apparently poor IFD-MD pose 
into a much-improved pose with a low RMSD, for example by 
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a predominantly translational motion of the ligand relative to 
the receptor, typically coupled to some side chain motions and 
ligand peripheral group rotation. For example, we observed this 
starting from a 3.12 Å RMSD IFD-MD ligand pose docked into 
a homology model of c-Jun N-terminal kinase-1 (JNK1) 
modeled using PDB ID 3GC9 template (47% sequence 
identity). While the IFD-MD pose has an RMSD of 3.12 Å, its 
variation from the crystal structure was due to a simple folding 
of the chloro-dimethyl benzene ring, which was addressed later 
in the initial FEP equilibrium step. As a result, the FEP 
predictions following the equilibrium stage were comparable to 
the crystal structure FEP results (R2 of 0.63 vs. 0.77 in the 
native, RMSE 1.08 kcal/mol vs. 0.77 kcal/mol, respectively). 
The ligand RMSD improved from 3.12 Å to 1.22 Å (Figure 3). 

 

 

Figure 3. Comparison of the binding mode for the homology model 
of JNK1 using the 47% sequence identity template 3GC9. (A) 
Comparison of the IFD-MD pose (green) and the native structure 
(white). The RMSD of this pose is 3.12 Å, which is dominated by 
the incorrect position of the terminal chloro-dimethyl benzene ring. 
(B) The representative frame of the IFD-MD pose after running 
FEP. The RMSD has improved to 1.22 Å. 

 
IV.D. Limited Binding Affinity Range Could Lead to 

Unreliable FEP Predictions 
 
Although thrombin modeled on the 3F6U template (42% 

sequence identity) generated a low-RMSD IFD-MD pose with 
(RMSD 1.53Å), its RB-FEP performance was slightly inferior 
to that of a 7.74Å IFD-MD pose (R2 0.35 vs. 0.41, RMSE 0.96 
kcal/mol vs. 0.59 kcal/mol (Table S3). This 7.74 Å pose is a 
180º flip (Figure 4). The perturbations in the congeneric series 
were located adjacent to the solvent-exposed region of the 
benzene ring. Between the near symmetry of the ligand and 
narrow, 1.8 kcal/mol activity range of the congeneric series, the 
relative binding FEP performance of the two poses are nearly 
equivalent. This is significantly smaller than the typical range 
of 3-4 kcal/mol activity range for the congeneric series used in 
our FEP validation publication.  

To remedy this, other ligands with perturbations at distinct 
places should be added to break the symmetry (e.g. 
perturbations on the amine group in this case). This will 
increase the binding affinity range of the congeneric series 
concurrently. This is also a situation in which the AB-FEP score 
of the different poses can be helpful in differentiating the 
alternative poses, as is in fact the case here (Table S3). 

 

 

Figure 4. Comparison of a 1.53 Å RMSD pose and a 7.74 Å RMSD 
pose for thrombin modeled from the 42% sequence identity tem-
plate, 3F6U. (A). Visualization of the 1.53 Å RMSD pose (green) 
compared to the native (white). (B) Visualization of the 7.74 Å 
RMSD pose (pink). (C) RB-FEP plot of predicted ∆G versus ex-
perimental ∆G for the 1.53 Å RMSD pose. (D) RB-FEP plot of 
predicted ∆G versus experimental ∆G for the 7.74 Å RMSD pose 

 

IV.E. Predicted Ligand Poses with Large RMSDs Can 
Perform Well in RB-FEP if the Perturbations are Localized 

 

System 6 from the proprietary data (30% sequence 
identity), performed well with RB-FEP although the IFD-MD 
RMSD and ligand representative RMSD of both poses were 
greater than 2.5 Å (Table 5). Even though the representative 
MD frame selected by AB-FEP is 3.72 Å, the large RMSD is 
localized to the end of the ligand opposite where the 
perturbations are resulting in very native-like R2 of 0.47, and 
RMSE of 0.59 kcal/mol FEP performance. Figure 5 illustrates 
this situation. Figure 5A shows the crystal structure while 
Figure 5B shows the pose generated at the end of the complete 
homology modeling protocol. The congeneric series here is 
perturbing the terminal chlorinated benzene ring pointing out 
towards the reader. That ring is in a native-like position and free 
to execute small rotations being relatively solvent exposed. 
However, the opposite end of the molecule is incorrectly placed 
and in a completely buried environment. It is unlikely that any 
reasonable amount of simulation time can resolve this. While 
this case is technically a success in terms of satisfaction of our 
set FEP performance metrics, prospective use of this predicted 
model would presumably perform poorly once perturbations 
were made across multiple vectors on the molecule. 
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Figure 5. Predicted versus experimental binding mode for system 6 
(30% sequence identity) and RB-FEP performance. (A) Mesh and 
surface representation of the native structure for System 6. (B) 
Mesh and surface representation of the IFD-MD predicted. This 
pose has a 3.72 Å ligand RMSD dominated by the incorrect place-
ment of the end of the molecule opposite the chlorinated benzene 
ring. However, the perturbations in the congeneric series are local-
ized entirely to this chlorinated benzene ring. (C) RB-FEP perfor-
mance using the native crystal structure. (D) RB-FEP performance 
using the IFD-MD generated predicted structure. 

 

IV.F. Non-Specific Hydrophobic Contacts Can Degrade the 
Ability to Discriminate Between Competing Binding 
Mode Predictions 

 

As mentioned in section III.B, a broad activity range is 
needed to robustly challenge homology models. This is because 
a simple null model, for example picking the average ∆G for all 
ligands, would provide a competitive R2 and RMSE for series 
with a narrow activity range. 

In general, it is preferable to avoid congeneric series that 
can be simply explained by a basic descriptor such as molecular 
weight, polarity, or similarity. Regardless of the series' length, 
if, a strong correlation exists between physical properties and 
binding affinity, a simple null model may mask the poor 
performance of an incorrect homology model. This was noticed 
when building phosphodiesterases (PDE) homology models. 
The goal was to construct high-accuracy homology models of 
PDE10A (PDB ID: 5C2H) using crystal structures from other 
PDE families, similar to what was done in our previous 
publication4. Here, the PDE10A homology modeling was kept 
outside of scoring function optimization and therefore served as 
a test case. 

The binding site contacts of the crystal structure 5C2H can 
be classified into three components: 

1. interactions between the pyrimidine core and both 
Gln716 and Phe719, 

2. stacking of the thiazole substituent in the R1 pocket 
between the hydrophobic side chains of Tyr514, His515 and 
Phe686, 

3. hydrophobic interactions in the R2 pocket (also known 
as selectivity pocket). 

 
The initial ligand congeneric series was constructed using 

a 28-ligand subset (Table S6) from a 95-ligand set22. The 
homology modeling template was taken from PDE2A crystal 
structure, 5U7K, a 37% sequence identity homologue to 
PDE10A. As shown in Table 8, FEP calculations reported 
similar performance for both poor- and high-quality models. 
Figure 6 shows the correlation plots for the two poses. The plot 
shows that even on a per-ligand basis, the predicted ∆Gs are 
quite similar across the favorably large activity range of 8 
kcal/mol. 

 
Table 8. Relative and absolute binding FEP performance 
for two PDE10A predicted binding modes 

 
Ligand RMSD (Å) 

RB-FEP  AB-FEP 
∆G 
(kcal/mol) RMSE (kcal/mol) R2 

0.97 1.29 0.89 -12.89 

4.41 1.32 0.89 -12.67 
 

 

Figure 6. RB-FEP performance (predicted versus experimental ∆G) 
for PDE10A models. (A). RB-FEP performance for the 0.97 Å lig-
and RMSD pose (B) RB-FEP performance for the 4.41 Å ligand 
RMSD pose. 

 
As mentioned, two of the key interactions of PDE10A 

inhibitors (i.e. ligands) were the contacts in two hydrophobic 
pockets on both ends of the ligands, which were exactly where 
the perturbations occurred. Larger hydrophobic ligand 
substituents resulted in higher ligand efficiency and affinity, 
which explained the strong correlation between ligand 
molecular weight and experimental binding affinity. 

To validate this hypothesis, we then chose a different 
subset (Table S7) from the 95-ligand congeneric series, with the 
intent of picking compounds within a narrow molecular weight 
range but a broad activity range (Figure 7). For this subset of 
ligands, the two models showed markedly different 
performance in relative-binding FEP. Here, the 0.97 Å RMSD 
maintained an excellent RMSE and R2 while the 4.41 Å pose 
showed no correlation between predicted ∆G and experimental 
∆G (Table 9). 
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Table 9. Relative binding FEP performance for two 
PDE10A predicting binding modes using a subset of ligands 
for which there is weak correlation between affinity and 
molecular weight. 

 
Ligand RMSD (Å) 

RB-FEP  
RMSE (kcal/mol) R2 

0.97 1.36 0.51 

4.41 2.05 0.02 
 

 

Figure 7. Correlation plot between molecular weight and binding 
affinity for the 95-ligand PDE10A congeneric series. Boxed in 
green in a subset of ligands for which there is a broad activity range 
but no correlation to molecular weight. 

  
V. Discussion 

 
Homology models have seen increasing utilization in drug 

discovery projects over the past decade.  The most common 
applications of a homology model are to provide a reasonable 
guess for the binding modes of known active compounds 
(typically obtained via docking calculations), and more 
generally to enable optimization of hits and leads via a 
“structure-guided” proces23–25. As the goal of these efforts is to 
provide physical insight as opposed to quantitative information 
about binding affinity, it is difficult to assess the robustness of 
the homology models or the ligand binding modes obtained 
from them. 

Homology models have also been employed to carry out 
virtual screening of the target, ordinarily via docking 
calculations for in house or purchasable chemical libraries26,27.  
A number of these virtual screening efforts have reported 
successfully finding hits, typically in the low micromolar 
regime.  However, using a homology model as generated, 
without any structural refinement of the active site, will often 
lead to steric clashes of even tight binding ligands with the 
protein, making it impossible to recover important classes of 
active compounds.  An example of such a situation is discussed 
in ref 28 in which a homology model was built for the receptor 
CDC7 (at a time when no crystal structure of this target was 
available). The authors concluded that pharmacophore-based 
docking was superior to docking into their homology model for 
just this reason. 

The results in the present paper unambiguously 
demonstrate that the application of the IFD-MD methodology 
to a homology model is capable of transforming the active site 
to a configuration suitable for a given active ligand with a high 
degree of robustness.  Furthermore, the resulting configuration 
is often improved further by subsequent molecular dynamics 
simulation and is a useful starting point for relative binding free 
energy perturbation calculations for a congeneric series that is 
compatible with the induced fit structure that IFD-MD has 
produced.  

The opportunities to apply IFD-MD to high quality 
computationally derived protein structures have recently been 
qualitatively expanded by the publication of the AlphaFold2 
protein structure prediction methodology by Jumper et al.17.  
Results from the CASP14 competition suggested that the 
transformative combination of machine learning and physics 
based computation pioneered in AlphaFold2 is capable of 
producing remarkably accurate (although still imperfect) 
backbone structures in a blind prediction even when there is no 
close homologue to the target in the Protein Data Bank- for 
example, when the closest sequence identities are in the 20-30% 
range29.  Initial preliminary investigations that we have carried 
out support the proposition that, at the very least, AlphaFold2 
structures are in many cases a significant improvement over 
those derived from alternative prediction approaches for a wide 
range of interesting pharmaceutical targets.  

However, the AlphaFold2 methodology does not take 
ligands, or the associated induced fit effects of ligand binding 
on the receptor structure, into account. In order to render 
AlphaFold2 structures suitable for driving structure-based drug 
design projects (e.g. via virtual screening and/or FEP 
computations for lead optimization) it is necessary to reorganize 
the binding site to accommodate a given ligand series, precisely 
as has been carried out in the present paper. Furthermore, there 
are cases where refinement of loop regions is also required, and 
this potentially can be accomplished by a physics-based 
approach such as is available in the Prime program10,18,30. Given 
that AlphaFold2 models have been produced for every known 
protein in the human genome, there is in principle an 
opportunity to create effective structure-based drug design 
projects for hundreds, if not thousands, of important 
pharmaceutical targets that previously were accessible only via 
ligand-based approaches. 

A key aspect of the refinement protocol that we have 
described above is the use of binding data from a ligand series 
to choose between multiple options for the protein-ligand 
complex structure.  The ambiguity and noise that is present in a 
typical homology model, even with the most recent advances, 
can be addressed by differentiating proposed options with 
ligand-based information. As the structural ambiguity grows 
(e.g. multiple options for loop conformations), the need for 
resolution of options with an even greater quantity (and 
diversity) of ligand binding data can only increase.  

One way to interpret these results is that the IFD-MD and 
FEP calculations provide a way to combine protein structure 
prediction and ligand binding information. In a pharmacophore 
methodology, one is in effect using ligand binding data to try to 
map out the interactions of the ligand in the binding pocket; 
indeed, the COMFA approach31,32, an early 3D ligand-based 
algorithm, a “molecular field” representing the inferred 
attractiveness of various regions of the receptor to different 
types of ligand atoms was assembled from the ligand binding 
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data. In the IFD-MD/FEP based protocol proposed here,  rather 
than assembling a guess for the “molecular field” from scratch 
(an extremely difficult task given a limited amount of ligand 
binding data), we instead use the ligand binding data to choose 
between a highly restricted number of alternatives which have 
been constructed by using all of the information in the PDB and 
in sequence databases (as processed and deployed for example 
by the AlphaFold2 algorithm).  Provided that suitable candidate 
structures can in fact be generated by the protein-based 
component of the algorithm (more than one may be needed, for 
example to accommodate DFG-in and DFG-out binders to 
kinases), this approach should provide increased reliability and 
accuracy as compared to a pharmacophore-based approach, 
while avoiding the problem of sterically precluding the binding 
of key active compounds via the reorganizational capability of 
IFD-MD. 

  
VI. Conclusion 

 
We have shown that the IFD-MD induced fit docking 

methodology is capable of obtaining a good initial pose within 
the top 5 scoring poses, typically within 2.5 Å of the native 
structure, upon docking of a known active ligand into a 
homology model, in cases where the sequence identify of the 
target to the template is in the range of 30-50%.  This domain 
of applicability may well be extended via the use of AlphaFold2 
structures. 

The correct pose can then be identified via a combination 
of relative binding FEP calculations for a congeneric series of 
active ligands, and AB-FEP calculations on the candidate poses. 
The molecular dynamics simulations used to equilibrate the 
relative binding FEP often lead to improved RMSDs as 
compared to the original poses generated by IFD-MD, and 
representative structures from the MD simulations are therefore 
used in the AB-FEP calculations. 

Our consistent results across a wide range of targets and 
ligand series engender optimism that the combined IFD-
MD/FEP approach described herein can be utilized in a 
diversity of applications in drug discovery projects based on 
homology modeling, including virtual screening, hit to lead 
discovery, and lead optimization.  A key question is whether the 
protocols can succeed for particularly challenging but important 
target classes such as GPCRs. Further work will address this 
issue in the near future.  
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