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Abstract 

Automated molecule design by computers has been an essential topic in materials informatics. 

Still, generating practical structures is not easy because of the difficulty in treating material 

stability, synthetic difficulty, mechanical properties, and other miscellaneous parameters, often 

leading to the generation of junk molecules. We tackle the problem by introducing 

supervised/unsupervised machine learning and quantum-inspired annealing. Our autonomous 

molecular design system can help experimental researchers discover practical materials more 

efficiently. Like the human design process, new molecules are explored based on knowledge 

of existing compounds. A new solid-state polymer electrolyte for lithium-ion batteries is 

designed and synthesized, giving a promising room temperature conductivity of 10-5 S/cm with 

reasonable thermal, chemical, and mechanical properties. 
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1. Introduction 

The increasing demands of sustainable technology require the faster, more reliable 

design of functional materials, which are essential components of rechargeable batteries, solar 

cells, bioplastics, and drugs, and are used for other energy-, environment-, and health-related 

applications.[1, 2] Because there are massive chemical structures,3 extracting candidate 

molecules from the search space is essential (Figure 1a).[1-3] 

Recently, machine learning has been used to accelerate in silico material screening.[1, 2] 

The key idea of mimicking the structure-property relationship has enabled the rapid screening 

of candidate structures.[1, 2, 4] Recent deep learning models, such as deep reinforcement learning 

(DRL)[5, 6] and variational autoencoders (VAEs),[7, 8] help connect molecular geometry and 

numerical information (i.e., latent space) semi-reversibly, contributing to the automated design 

of materials with desirable properties.[9] The method is not just conceptual; it is also helping 

researchers develop high-conductivity electrolytes,[10] light emitters,[11] photovoltaics,[12] and 

other functional materials experimentally.[2, 13] 

A major drawback of computational molecular screening has been the insufficient 

filterability of candidate materials. Usually, molecules are designed de novo only according to 

one or a small number of specific material parameters because of the high costs of preparing 

machine learning models and corresponding databases (Table S1).[1] However, materials must 

satisfy the diverse property standards for practical examinations. For instance, a solid-state 

polymer electrode should maintain sufficient ionic conductivity, electrochemical stability (e.g., 

potential window), thermal robustness, mechanical strength, crystallinity, and solubility in 

specific solvents during film preparation.[10, 14]  

Methodically evaluating each factor by machine learning is usually infeasible because 

of the high cost of database preparation (i.e., one chemical experiment takes more than one day 

typically).[1, 2, 10] Apart from machine learning, there are few filtering methods. Synthetic 

accessibility score is a standard criterion for evaluating the synthetic difficulty of molecules.[15] 

However, the algorithm was designed only to roughly screen for drug-like compounds, meaning 

that the filtering is not sufficient for most other applications. Computational material 

simulations can predict various properties, but the accuracy is too low, especially for complex 

material systems (e.g., device response and polymer properties).[16] A breakthrough is needed 

in automated molecule design to filter out impractical materials. 
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Figure 1 Concept for our supervised/unsupervised machine learning system for automated 

molecule design. a Searching for candidate structures among over 1060 structures. Candidates 

must be screened by a specific target property (e.g., conductivity) and other parameters, such 

as stability, preparation cost, and mechanical strength. b Designing molecules de novo by 

supervised/unsupervised learning, quantum-inspired annealing, and deep reinforcement 

learning (DRL). Chemical structures were converted into binaries by molecular fingerprint 

(MFP). Structures with a higher target parameter were explored based on the regression 

potential, 𝑬𝐫𝐞𝐠 , and user preference features, 𝑬𝐑𝐁𝐌 , constructed by a restricted Boltzmann 

machine. 

 

We developed a heuristic material exploration system of supervised/unsupervised 

learning and quantum-inspired annealing, which can suggest experimentally valid molecular 

structures (Figure 1b). In a similar way to ordinary materials informatics, a regression model 

predicting a specific parameter from structural information was constructed and yielded a 

search potential for a higher target parameter, 𝐸reg (steps 1–3 in Figure 1b). Simultaneously, a 

restricted Boltzmann machine (RBM)[17] was trained to build a potential, 𝐸RBM, so that the 

energy of the user-inputted structures decreased (steps 1’–3’).  
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Crucially, users caninput existing compounds that had already been evaluated for the 

intended application, and thus the molecules usually satisfy applicable criteria. Structures 

designed de novo were examined with a linear sum of the potentials, 𝐸 = 𝑐(𝑟𝐸reg +

1/𝑟 ∙ 𝐸RBM) (𝑐, 𝑟 ∈ ℝ). Chemicals with a higher target parameter and similar user preference 

structures maintained lower energy in the potential. A unique architecture, our digital annealing 

unit (DAU), was essential in discovering the solutions from the search space 

(2𝑛 combinations, 𝑛 ≥ 2048, steps 4–7).  

A new lithium-ion-conducting polymer with a unique design and promising 

performance was experimentally examined to confirm our concept. The system paves the way 

for automated molecular design, which is expected to promote the more frequent finding of new 

materials. 

 

2. Automated molecule generation system 

2.1 Semi-reversible conversion of chemical structures to numbers 

This section describes the idea of automated molecular design using quantum-inspired 

annealing. First, molecular information must be converted into numbers for machine learning 

(Figure 1b).[1] The 512-dimensional Avalon molecular fingerprint (MFP),[18] which is a 

traditional chemoinformatics algorithm, was used to express molecules with binary numbers 

(Figure 2a). This MFP was selected because of its compatibility with RBM and quantum-

inspired annealing, discussed later.  

Because MFPs indicate the specific fragments in a molecule, inverse conversion to 

molecular structures is not strictly accessible.[18] However, a carefully pretrained DRL model 

could reconstruct molecules from MFP with reasonable accuracy (Figure 2b, c, Supporting 

Data: Sheet 1).[5, 6] We rebuilt 150 random molecules with a DRL model[5] and calculated the 

Tanimoto similarity to check the reconstruction precision (Figure 2b). The average score was 

93%, indicating that the inverse conversion was roughly accessible. This allowed the generation 

of molecules from ideal binaries sampled by quantum-inspired annealing (steps 6 and 7 in 

Figure 1b). 
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Figure 2 Semi-reversible conversion of molecular structures into numerical information. a 

General scheme. The molecular fingerprint (MFP) algorithm encodes molecular structure 

information into binary data. DRL decodes molecular structures from binaries. The variational 

autoencoder (VAE) reversibly converts molecules into continuous vectors. b Results for 

molecule reconstruction. MFP/DRL or VAE were used to encode and decode 150 randomly 

selected molecules. The distribution of the Tanimoto similarities to the original structures is 

shown (a comparison using the cosine similarity of the molecular descriptors is shown in Figure 

S1). MFP and MFP’ are the Avalon and Morgan MFPs, respectively. Average similarities were 

0.93, 0.90, and 0.72 for MFP, MFP’, and VAE, respectively. c Example original and 

reconstructed structures. Full results are given in Supporting Data: Sheet 1. 

 

The 2048-dimensional Morgan fingerprint algorithm (MFP’)[18] and a recent popular 

deep learning model, junction tree VAE,[8] were used as the controls for MFP/DRL. VAE 

converted chemical structures into 56-dimensional continuous vectors reversibly. The average 

Tanimoto similarities were 90% and 72% for MFP’/DRL and VAE, respectively. 

Reconstruction errors were more frequently detected (Figure 2b, c). The trend was the same for 

the cosine similarities of the molecular descriptors (Figure S1). A carefully designed Avalon 

MFP[18] expressed the molecules most accurately, and it could be decoded precisely by DRL. 
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2.2. Preparation of regression potential Ereg 

The next task is preparing the regression potential, 𝐸reg , which corresponded to a 

machine learning model, �̂� = 𝑓ML(𝒙), for estimating a specific parameter, 𝑦, from structural 

data 𝒙 (steps 1–3 in Figure 1b). The prediction model should follow quadratic equation (1) for 

the subsequent quantum annealing.[19] 

𝐸reg = −�̂� = −𝑓ML(𝒙) = ∑ 𝐽reg,ij
𝑁
𝑖≠𝑗 𝑥i𝑥j + ∑ ℎreg,i

𝑁
𝑖=1 𝑥i     (1) 

𝐽reg,ij, ℎreg,i = constants, 𝑁 = dimension of 𝒙, 𝐸reg = −�̂� for compounds with higher 𝑦 

 

A regular chemical database, Bradley’s dataset,[20] containing over 3000 experimental 

records, was used to train the model. The experimental melting point, 𝑦 , was predicted 

successfully, even without quadratic terms (𝐽reg,ij = 0, ℎreg,i ≠ 0  Figure 3 and Figure S2). 

Partial least squares (PLS) regression yielded a mean absolute error (MAE) of around 40 °C for 

10% of the test data that were randomly selected (Figure 3a). Similar results were observed 

with a sparse modeling algorithm, Lasso (Figure 3b).[3] 

 

Figure 3 Predicting experimental melting temperature by supervised learning. a Partial least 

squares (PLS), b Lasso, c factorization machine, and d random forest were used as the 

regression algorithms. Melting temperature in Bradley’s dataset was predicted from the MFPs. 

The test data consisted of the top 10% of compounds in the dataset and 10% of randomly 

selected compounds. The other 80% of the records were inputted into the models for training. 

The full results are shown in Figures S2 and S3. 
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The introduction of higher-order interaction terms improved the prediction for the 

training data, but decreased the accuracy in extrapolating regions. The factorization machine is 

an algorithm yielding a quadratic formula for binaries (𝐽reg,ij ≠ 0, ℎreg,i ≠ 0).[21] The quadratic 

term reduced MAE for the training data and randomly selected test data (Figure 3c and Figures 

S2 and S3). However, the quadratic term could not predict a test dataset as the top 10% of 

records in the original database (extrapolation regions, Figure 3a–c). Because pristine linear 

prediction models were compatible with extrapolation, the quadratic term was probably the 

main reason for overfitting the training data and for limiting �̂� up to the observed maximum. A 

similar result was obtained with the random forest decision tree model (Figure 3d).[3]  

We selected the PLS algorithm with linear terms to construct 𝐸reg  because of its 

compatibility with the extrapolation region.[1] Regression potentials were similarly constructed 

with other properties, namely, the partition coefficient (MolLogP) and topological polar surface 

area (TPSA), for the subsequent compound exploration tasks. MolLogP and TPSA are known 

as facilely calculable molecular properties by computers. Their successful prediction supported 

the validity of the PLS model (see Supporting Discussion for details). 

 

2.3. Construction of user preference potential ERBM and exploration of minimum solutions 

Methodically evaluating various criteria of candidate materials is not feasible. Instead 

of predicting each parameter, a more human approach was proposed in this study. Experimental 

researchers usually take inspiration for new materials from existing ones, which are already 

used in specific applications. New materials tend to satisfy the property criteria because of their 

structural similarity to existing materials. However, conventional computational molecule 

design has been done from scratch because of the difficulty of mimicking the heuristic approach 

(i.e., quantifying synthetic and practical feasibilities is difficult, as discussed in the 

introduction).[1] Our method can solve this problem by using unsupervised learning and 

quantum-inspired annealing. 

RBM is crucial to obtaining new chemicals from the existing ones (Figure 1b). RBM is 

a probabilistic unsupervised learning model,[17] which constructed 𝐸RBM for the MFP of the 

user-inputted structures (Figure 4a). The essential features of the inputted data (i.e., MFP) were 

learned by RBM. During unsupervised learning, the model weighed the bias (ℎRBM,i) and 

connection terms (𝐽RBM,ij) for the visible and hidden layers (Figure S4 and S5, see Supporting 

discussion for hyperparameter optimization). RBM automatically constructed 𝐸RBM so that the 
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energies of the inputted chemicals decreased (step 3’ in Figure 1b). RBM yielded quadratic 

equation (2) for 𝐸RBM. 

𝐸RBM = ∑ 𝐽RBM,ij
𝑀
𝑖≠𝑗 𝑥i𝑥j + ∑ ℎRBM,i

𝑁
𝑖=1 𝑥i + ∑ ℎRBM,i

𝑀
𝑖=𝑁+1 𝑥i    (2) 

𝑀 = total dimensions of RBM 

 

To demonstrate the method, new chemical structures were generated from example 

starting compounds toluene, tetrafluoromethane, and acetic acid (Figure 4b–d). This was a mini 

task without using 𝐸reg in the integrated system (steps 3’–7 in Figure 1b). First, the MFPs of 

the three compounds were inputted into RBM, which had 512- and 1488-dimensional visible 

and hidden layers, respectively. Then, the solutions that gave lower energies were explored by 

annealers. Finally, DRL decoded the chemical structures from the binaries. 
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Figure 4 Generation of new chemicals by the restricted Boltzmann machine (RBM) and 

quantum-inspired annealing. a Configuration of RBM, consisting of visible and hidden layers. 

b Distribution of binary solutions obtained by DAU, D-Wave, and simulated annealing 

samplers. The sampling potential, 𝐸RBM , was generated by inputting toluene, 

tetrafluoromethane, and acetic acid into RBM. Multiple solutions were obtained by DAU with 

the Boltzmann sampling mode and different values of sampling parameter c. Randomly selected 

records were used for the following decoding task by deep reinforcement learning (DRL; shown 

as larger blue points). DAU is compared with Markov chain Monte Carlo solvers in Figure S6. 

c Comparison of calculation time and energy for the sampling tasks. “DAU (min)” indicates 

the global minimum exploration mode. d Structures generated from the sampled solutions using 

DRL. Full results are shown in Figure S7 and Supporting Data: Sheets 2 and 3.  

 

In informatics, a fundamental challenge in exploring chemical structures has been 

finding appropriate solutions in the astronomically huge chemical space, corresponding to 2M 

patterns in this case (M = 2048, 22048 ≅ 10600). Brute force exploration is impractical because 

there are too many combinations.  
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We introduced quantum-inspired annealing machines to acquire reasonable solutions 

from the enormous space. Annealers are emerging massively parallel computing hardware that 

can find minimums for the quadratic formulas.[19, 21-24] The superposition principle or its 

computational equivalent enables efficient solution exploration within a practical time range.[19, 

21-24] 

To acquire solutions, we examined quantum (developed by D-Wave),[22] 

quantum/digital hybrid (D-Wave),[22] our quantum-inspired DAU,[23, 25] simulated bifurcation 

machine (SBM; Toshiba),[24] standard CPU-based simulated annealing, and conventional 

Markov chain Monte Carlo (MCMC) solvers. Except for the D-Wave (quantum mode) and 

MCMC solvers, all the solvers provided solutions with an energy around -40 and the norm 

∑ 𝑥𝑖 ≅ 700. The results indicated that the solvers almost reached the global minimum (Figure 

4b, Table S2, Supporting Data: Sheet 2). The calculation times for the methods (DAU: 0.3 s; 

D-Wave-hybrid: 5.2 s; SBM: around 1 s) were much shorter than that for CPU-based annealing 

(19 s). A genuine quantum solver for D-Wave was unavailable for the problem because of the 

limited qubit connections.[22] 

An advantage of DAU is its ability to sample solutions quickly according to the 

Boltzmann distribution, in addition to finding global minimums. Local minimums were 

obtained from 𝑐𝐸RBM , where 𝑐  was a scaling factor (𝑐 = 0.1, 1, 10, 100, Figure 4b). The 

solutions were similar to the regular MCMC for 𝑐 = 0.1–10, indicating successful Boltzmann 

sampling by DAU (Figure S6). In contrast, the results differed significantly for sampling at 𝑐 =

100. For DAU, the solution energy was around -38, whereas, for conventional MCMC, higher 

solution energy of -35 was obtained. The traditional approach could not reach the equilibrium 

solutions in a short time range (108 iterations in 3.5 min). Only DAU quickly accessed both 

global and local minimums with a broad energy range (0.3 s). In contrast, D-Wave (hybrid 

mode) and SBM did not support the Boltzmann sampling (Figure 4c). 

Using the local minimums found by Boltzmann sampling was critical to generating 

molecules with user preference. When the global minimum binary solutions were inputted into 

the DRL model, many perfluoroalkane derivatives were proposed (Figure 4d, Figure S7, 

Supporting Data: Sheet 3). The initial molecule tetrafluoromethane was emphasized too heavily 

when the global minimum was used. In contrast, mixtures of the three initial molecules (toluene, 

tetrafluoromethane, and acetic acid) were generated more frequently from the local minimums 

obtained by DAU with Boltzmann sampling. Local minimums with slightly higher energies 

than the global minimum were essential to reflect the user preferences. 
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2.4. Generation of molecules from Ereg and ERBM 

New molecules with a specific high target parameter were generated from multiple user-

inputted structures by integrating the potentials of regression 𝐸reg and user preference 𝐸RBM 

(Figure 1c). For example, we generated new structures with higher TPSA from toluene (TPSA 

= 0.0, Figure 5a). 𝐸reg was considered by supervised learning of Bradley’s dataset (Figure S2b). 

𝐸RBM was generated by RBM, trained with the MFP of toluene. Binary solutions were sampled 

from the potentials of 𝐸 = 𝑐(𝑟𝐸reg + 1/𝑟 ∙ 𝐸RBM), with 𝑐 = 0.1, 1, 10, and 100 and 𝑟 = 1/16, 

1/8, 1/4, 1/2, 1, 2, 4, 8, and 16, to generate diverse chemical structures (Figure S8, see Method 

section for details).  

Larger 𝑟  emphasized the effects of TPSA, promoting structures with higher 

performance but more challenging structures with respect to criteria including stability and 

synthetic accessibility. In contrast, smaller r generated more toluene-like structures that were 

feasible yet unremarkable. Most previous molecular design systems used 𝑟 → ∞, where only 

one target parameter was considered for molecule generation.[1, 22] Scaling factor 𝑐 correlated 

with the randomness of the generated molecules, and structures that were more randomized 

were obtained with smaller 𝑐. 

After DRL constructed new molecules, they were sorted according to their similarity to 

the original compound and predicted TPSA (Figure 5b, c). Representative records showing the 

highest predicted TPSA �̂� within the specific range of similarity were extracted as the final 

outputs (larger points in Figure 5b). The chemical structures are shown in Figure 5d and Figure 

S9. Toluene derivatives with higher TPSA (6–160) were generated. The regression model even 

predicted the TPSA of the newly generated molecules with high accuracy (R2 = 0.92, Figure 

5b, c, Table S3). 
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Figure 5 De novo generation of molecules by our system. a A sample query for obtaining new 

chemical structures with higher topological polar surface area (TPSA) based on toluene. b 

Distribution of new chemical structures mapped by logarithmic similarity to the original 

molecule and TPSA (predicted and actual values are shown). Molecules with high predicted 

TPSA (larger points) were extracted as the final outputs, and the chemical structures are shown 

in d. c Relationship between the actual and predicted TPSA. d Example chemical structures 

generated by the system using deep reinforcement learning (DRL). Variational autoencoder 

(VAE) results are shown as the control. Full data are given in Figure S9. 

 

The comparison with the conventional VAE approach highlights the advantages of the 

proposed system. A linear regression model for predicting TPSA was prepared using the 

continuous vectors encoded by VAE. A similar regression accuracy was observed with MFP, 

indicating the comparable capability of interpreting molecular structures as numbers (Figures 

S2 and S3). For VAE, toluene-like molecules with higher TPSA were constructed by decoding 

a vector, 𝒙𝐧𝐞𝐰 = 𝒙𝐭𝐨𝐥𝐮𝐞𝐧𝐞 + 𝒂𝛿 + 𝝈, with VAE, where 𝒙𝐭𝐨𝐥𝐮𝐞𝐧𝐞 was the vector for toluene, 𝒂 

was the slope of the regression model, 𝛿 was a random constant, and 𝝈 was a random vector as 

noise (Figure S10). 

Although new molecules were generated from toluene, most proposed structures were 

far from the original. Aromatic heterocycles were unexpectedly generated by VAE, whereas 

most molecules generated by the MFP/DRL system contained single benzene rings (Figure 5d, 
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Figure S9). Statistically, 76% of the molecules obtained by DRL had single benzene rings, 

whereas only 20% of those obtained by VAE did (about 4-times improvenent, Table S3 and 

S4).  

Because there are significant differences in synthetic pathways and properties among 

aromatic rings, heterocyclic structures can disappoint experimental researchers. The 

automatically trained VAE model[8] could not distinguish the chemical features properly. In 

contrast, the carefully designed MFP algorithm and ideal solution sampling by DAU satisfied 

user expectations.  

De novo molecule generation was also conducted with targets of TPSA or MolLogP, 

and with starting compounds of toluene, toluene and tetrafluoromethane, and toluene, 

tetrafluoromethane, and acetic acid (Figures S9 and S11). Although satisfying all requests was 

not easy, especially with the three-component input, DRL generated higher TPSA or MolLogP 

structures from the starting compounds. The extraction scores and manual criteria for checking 

user preference satisfaction were higher with DRL than VAE (Table S3 and S4). Higher R2 

values were also obtained with DRL than VAE during the property prediction tasks with the 

new molecules (Table S3). 

An essential advantage of our system is its improved interpretation of multiple user 

preferences. Even with VAE, new molecules could be sampled by, for instance, decoding vector 

𝒙𝐧𝐞𝐰 = ∑ 𝜆i 𝒙𝐢 + 𝒂𝛿 + 𝝈 , where 𝒙𝐢  represents an original molecule and 𝜆i  is a constant 

satisfying ∑ 𝜆i = 1 (Figure S10). However, most proposed structures were dissimilar to the 

originals (Figure S9). Because there was effective no restriction of 𝜆i , the constants were 

randomly taken from the ample search space, which resulted in junk structures being proposed. 

In contrast, our system interpreted multiple starting compounds to generate new ones using 

RBM. This should be the first human-inspired computational method of designing new 

compounds from versatile knowledge of conventional materials. 

 

3. Synthesis of new polyelectrolytes from the suggested structures 

This section examined a new polymer automatically designed by the system. Solid-state 

lithium-ion-conducting electrolytes, represented by the complex of polyethylene oxide (PEO) 

and a lithium salt, have been attracting attention as an essential component for next-generation 

secondary batteries. However, despite their facile processability and mechanical robustness, 

their solid-state ionic conductivity around room temperature (typically 10-6 S/cm) is much lower 

than that of liquids (>10-3 S/cm) without plasticizers.[14] New materials are being designed to 

overcome these limitations of polymer electrolytes. 



  

14 

 

A linear regression model for predicting logarithmic ionic conductivity from the 

electrolyte structures was constructed, and was also regarded as a regression potential, 𝐸reg. 

Our original database, containing experimental records of solid-polymer and liquid lithium-ion-

conducting electrolytes,[10, 26] was used for machine learning (>1000 cases at room temperature, 

Figure 6a). Most electrolytes consist of multiple components, including lithium salts, solvents, 

and other components. The MFPs of the two primary compounds, used as additives to lithium 

salts, were set as 𝒙. For simplicity, the lithium salt structure, weight ratio, and other component 

information were ignored. R2 scores for the 80% trained and 20% untrained datasets were 0.65 

and 0.57, respectively. Thus, the accuracy was sufficient for 𝐸reg. 

 

Figure 6 Exploration of new lithium-ion-conducting polymer electrolytes. a Predicted and 

experimental logarithmic ionic conductivity. The conductivity was predicted from the MFP of 

the electrolyte components using a PLS model. b Query to generate molecules de novo from 

electron donor and acceptor molecules in the electrolyte database. All chemical structures are 

shown in Figures S12 and S13. A derivative of a phenothiazine polymer, enclosed by the red 

square, was selected for the subsequent chemical experiments. c Structures and photograph of 

the experimentally synthesized electrolyte. d Nyquist plot for the electrolyte. e Arrhenius plot 

for the electrolyte. As the control, the conductivity of a complex, polyethylene oxide 

(PEO)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) (PEO/salt = 30), is shown, taken 

from a previous report.[27] The rapid increase in conductivity was attributed to the partial 

melting of the electrolyte, whereas the new electrolyte was solid, even at high temperatures. 
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User preference potential 𝐸RBM  was constructed by inputting electron donor and 

acceptor molecules from the database (Figure 6b, Figure S12). The charge-transfer complexes 

of the two species have been studied extensively as electron conductors, not ionic 

conductors.[28] However, our prior machine learning and experimental study indicated that their 

polarised structures could induce ion dissociation and even superionic properties.[10, 26] We 

focused on the de novo automated design of charge-transfer complex electrolytes in the present 

study. 

New polymers and molecules for solid-state electrolytes were generated, followed by 

sampling solutions from 𝐸 = 𝑐(𝑟𝐸reg + 1/𝑟 ∙ 𝐸RBM), and the structures were decoded by DRL. 

Most structures were electron donor or acceptor molecules (Figure 6b, Figure S13). In contrast, 

when molecules were sampled based on only their ionic conductivity, almost all candidates had 

poor chemical stability and synthetic accessibility.[29] 

The system suggested an exciting structure was a phenothiazine polymer, where the 

donor molecules were attached to a PEO backbone (Figure 6b, marked red). The phenothiazine 

unit, an acceptor molecule, was not recorded in the initial user preference, but was proposed by 

the system. Introducing a PEO backbone is reasonable because it could enhance ion dissociation, 

migration, and mechanical properties.[14]  

We experimentally examined a new phenothiazine polymer from the proposed structure 

(Figure 6c). The polymer was synthesized readily from polyepichlorohydrin and phenothiazine 

by a polymerization reaction. For more accessible synthesis, an extra halogen group in the 

original aromatic ring was removed. The introduction ratio x of phenothiazine was changed by 

tuning the synthetic conditions (Figure S14). A self-standing polymer electrolyte film was 

prepared by combining lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), the donor 

polymer, and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a strong acceptor.[26, 28] 

Commercially available TCNQ was selected instead of the proposed chemicals for synthetic 

ease. 

The new electrolyte exhibited promising ionic conductivity at room temperature during 

the impedance measurements (Figure 6d). The highest conductivity of around 7 × 10-6 S/cm 

was achieved when the density of the charge-transfer complex was maximized (x = 0.6, Figure 

S14). The conductivity was lower than the predicted value (1 × 10-4 S/cm, using a model 

considering salt structures, Figure S15) partially because of the use of the simple regression 

model and the difference in the chemical structures (x = 1 for the predicted structure and 0.6 
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for the synthesized structure). The results indicated the importance of the polarized structure in 

the charge-transfer complex for ion conduction. 

The conductivity was reasonably high considering that the polymer had a glass 

transition point (86 °C) above room temperature; the thermal motion of polymers was almost 

frozen during ion conduction. Although the mechanism is unknown, the polarisation in the 

polymer may have contributed to the dissociation and migration of ions.[10, 26] The conductivity 

was higher than a conventional PEO electrolyte around room temperature (Figure 6e). The PEO 

electrolyte exhibited higher conductivity at higher temperatures than the new electrolyte.  

However, the increase was due to the partial melting of PEO,[27] whereas the 

phenothiazine electrolyte remained in the solid phase, at least 150 °C. The mechanically robust 

PEO backbone enabled the self-standing film property regardless of the high glass transition 

temperature. Our polymer was self-standing and moderately flexible, while previous glassy 

polymer conductors (transition temperatures of > 100 oC) were powdery and brittle.[10] 

The new electrolyte's electrically insulating properties and electrochemical robustness 

allowed us to build and test a prototype solid-state lithium-ion battery, with lithium iron 

phosphate as a cathode and lithium titanate oxide as an anode (Figure S14). Reversible redox 

peaks appeared around the formal potential E0 = 1.9 V because the conductivity and stability of 

the electrolyte were sufficient.  

The experimental conductivity was not so high as the state-of-art polymer electrolytes 

(10-3 S/cm),[14] indicating that the heuristic potentials (i.e., regression model from the limited 

data and starting compounds of donors and acceptors in Figure 6b) were not best for 

conductivity. However, our method generated practically useful molecular structures without 

additional molecular filtering (i.e., satisfying conductivity, mechanical, thermal, chemical 

robustness, and synthetic accessibility): this has been difficult to achieve in materials 

informatics.[1, 2] We continue synthesizing and validating new functional polymers designed by 

the automated molecule generation system. 

 

4. Conclusion 

We developed a new automated functional molecule/polymer design system, which can 

generate structures de novo according to multiple user preference structures. Similar to how 

humans generate new structures, new designs were inspired by existing chemicals. Our 

approach could satisfy material screening criteria, such as stability and synthetic difficulty. 

Unsupervised machine learning and quantum-inspired annealing allowed complex search 

potential generation and quick solution sampling. A new solid polymer electrolyte for lithium-
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ion batteries was experimentally demonstrated using the system. Our human-inspired molecule 

exploration system will help experimental researchers discover new and practically useful 

materials more frequently. 

 

 

5. Experimental Section 

General information 

Calculations were conducted on an Ubuntu 18.04 workstation unless noted otherwise (CPU: 

Ryzen Threadripper 3990X, AMD; GPU: RTX 3090 × 2; memory: 256 GB). A Python 3.7 

environment was used to process the data. Molecular information was recorded by using a 

simplified molecular input line entry system (SMILES) and treated with open-source 

chemoinformatics software, RDKit 2019.09.3.  

 

Conversion of chemical structures into binary data and vice versa  

For the reconstruction task, 150 randomly selected types of organic molecules recorded in an 

open database (Jean-Claude Bradley Open Melting Point Dataset)[20] were used (Figure 2, 

Supporting Data: Sheet 1). Chemical structures were converted into binary data by MFP 

algorithms, Avalon (512-dimensional, expressed as an MFP) or Morgan (2048-dimensional, 

defined as an MFP’), implemented in RDKit. An open-source molecular DRL program, 

REINVENT, was used for the inverse transformation.[5] The model was pretrained with our in 

silico molecule and polymer database. The model yielded new molecular structures displaying 

higher Tanimoto similarity to the target binary data. A molecule with the highest similarity and 

prior probability was selected as the final output. 

 

VAE as the control for MFP/DRL  

The conventional VAE algorithm was examined as a control for MFP/DRL and was used to 

convert chemical structures reversibly into continuous numeric vectors (Figure 2, Supporting 

Data: Sheet 1). A pretrained model for junction tree VAE,[8] implemented in an open-source 

library (dgllife 0.2.6), was used. The model encoded molecular structures into 56-dimensional 

vectors and decoded them into structures. The Tanimoto similarity of the MFP was used as the 

criterion for the reconstruction accuracy. If decoding failed, the score was set as 10-5. The 

original and reconstructed molecules were also evaluated by average cosine similarity for the 

200 basic molecular descriptors generated by the RDKit module (Figure S1). 
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Preparation of regression models  

Regression models that predicted a specific target parameter, 𝑦  (melting point, TPSA, or 

MolLogP), from molecular structures were prepared using Bradley’s dataset (Figure 3). 

Experimental melting points were recorded in the database. RDKit calculated TPSA and 

MolLogP. For machine learning, the structural information was converted into 512-dimensional 

MFPs or 56-dimensional continuous vectors by VAE (= 𝒙). The original database was split into 

training and test datasets. The test dataset contained the records for the molecules with the top 

10% of target parameters and 10% of randomly selected cases in the database. The other 80% 

was training data, with which the regression models were trained. The random splitting and 

model evaluation were repeated five times to check the statistical significance (Figure S3). 

An open-source machine learning library, scikit-learn 0.23.2,[30] was used to construct PLS 

(hyperparameter: n_components = 30, others were default), Lasso (alpha = 0.01), Bayesian 

ridge, and random forest regression models. The factorization machine algorithm, yielding 

quadratic regression models, was implemented by pyFM 0.0.0. For the linear models (PLS, 

Lasso, and Bayesian ridge), 𝒙 and 𝑦 were inputted as z-scores, with means of 0 and standard 

deviations of 1. MAE or R2 scores were calculated with scikit-learn to evaluate the models. 

 

Construction of user preference potentials ERBM and sampling with quantum-inspired annealing 

1) Construction of potential 

User preference potential 𝐸RBM was constructed from the MFPs of toluene, tetrafluoromethane, 

and acetic acid (Figure 4). The fingerprints were inputted into an RBM with 512-dimensional 

visible and 1488-dimensional hidden layers. The total dimension was 2000 because of the input 

limit of the D-Wave device.[22] The model was implemented with a deep learning library, 

PyTorch 1.8.1 (GPU mode), and trained with a contrastive divergence (k = 3) algorithm with a 

minibatch size of 2. Hyperparameters (total dimension N + M, k, and minibatch) were 

preliminarily optimized by evaluating the reconstruction losses of the models, which were 

trained with 128 random molecules in Bradley’s dataset ten times (Figure S4).  

2) Quantum-inspired sampling 

From the constructed potential, 𝐸RBM, local minimums were sampled with different solvers. 

CPU-based simulated annealing was conducted with a module in the dwave-system 1.4.0 

package. Quantum annealing was tested with a D-Wave machine (DW_2000Q_6). 

Quantum/classical hybrid-mode annealing was performed using the same D-Wave package 

(LeapHybridSampler). Toshiba SBM 1.2.2[24] was implemented via Amazon Elastic Compute 

Cloud (Amazon). DAU[23] operated on our private server. DAU found near-global minimums 
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with a normal annealing mode and local minimums with a constant-temperature Boltzmann 

sampling mode. As the control, Boltzmann sampling was implemented using a conventional 

MCMC program (Metropolis–Hastings algorithm), compiled using the numba 0.53.1 package. 

The distribution of the solution was tuned by coefficient 𝑐. Larger 𝑐 led to the global minimum, 

and smaller c offered random solutions.  

3) Reconstruction of new molecules 

Chemical structures were decoded by DRL from the first 512-dimensional data of the sampled 

2000-dimensional binaries (Supporting Data: Sheet 3). DAU could yield 128 different solutions 

from one annealing query. Randomly selected solutions for each sampling condition were used 

for DRL (larger blue points in Figure 4b).  

 

Molecule generation from Ereg and ERBM 

1) Construction of potential 

Molecules were generated from 𝐸reg and 𝐸RBM (Figure 5). 𝐸reg was constructed by preparing a 

PLS regression model to predict TPSA or MolLogP from MFP. Bradley’s dataset was used for 

machine learning. 𝐸RBM was generated by training RBM (512-dimensional visible and 1536-

dimensional hidden layers). MFPs of toluene, toluene and tetrafluoromethane, or toluene, 

tetrafluoromethane, and acetic acid were inputted to train the model. 

2) Molecule generation 

Local minimums were sampled from the potentials, 𝐸 = 𝑐(𝑟𝐸reg + 1/𝑟 ∙ 𝐸RBM), where 𝑐 = 0.1, 

1, 10, and 100 (four conditions in total) and 𝑟 = 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, and 16 (nine 

conditions). Molecules with higher target parameters were more frequently obtained by larger 

𝑟. The DAU with the Boltzmann sampling mode was used as the solver. Up to 20 solutions 

were extracted from the binary solutions (128 × 4) for the same 𝑟, namely, the minimum energy 

solution and 19 solutions with random energy. Here, lower energy solutions could be sampled 

more preferably with higher 𝑐, according to the Boltzmann distribution. Twenty independent 

DRL models generated five molecules from each solution (i.e., 20 × 5 = 100 molecules). 

Because 𝑟 had nine variations, up to 100 × 9 = 900 molecules, including duplicates, were 

generated. 

3) Extraction of final candidates 

The generated molecules were prefiltered to exclude excessively complex molecules. The 

synthetic accessibility score[15] was calculated with an open module available at 

https://github.com/rdkit/rdkit/tree/master/Contrib/SA_Score (version Oct 31, 2019). The 
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candidate was excluded if the accessibility score was over four or the string length for its 

SMILES was over 30. 

The trained regression model predicted TPSA or MolLogP of the generated molecules. 

Similarities to the user-inputted chemicals were calculated according to log(∏ 𝑓sim (𝒙𝐧𝐞𝐰, 𝒙𝐢)), 

where 𝑓sim was for cosine similarity of the vectors of the two chemicals, 𝒙𝐧𝐞𝐰 was the MFP for 

the generated molecule, and 𝒙𝐢  was for toluene, tetrafluoromethane, or acetic acid. The 

relationship between the predicted target parameter and similarity was plotted (Figure 5b). 

Molecules displaying the highest target parameters within specific similarity ranges were 

extracted as the final output (larger points in Figures 5b, c). R2 scores for the predicted and 

actual target parameters were calculated with the generated molecules (Table S3). Extraction 

scores were calculated according to the criteria shown in Table S4. 

4) Molecule generation by VAE 

VAE was also used to generate new molecules as the control for the annealing system. First, a 

56-dimensional vector expression of the starting compounds, 𝒙𝐢, was generated by the VAE 

encoder. The vectors were converted to z-scores using the data distribution of Bradley’s dataset. 

Then, a new vector, 𝒙𝐧𝐞𝐰 = ∑ 𝜆i 𝒙𝐢 + 𝒂𝛿 + 𝝈, was made, where 𝜆i was a random constant, 

satisfying ∑ 𝜆i = 1 and 𝜆i > 0, 𝒂 was the slope for the regression model, 𝛿  was a random 

scalar from the Gaussian distribution (mean = 0, standard deviation = 10), and 𝝈 was a random 

vector from the Gaussian distribution (mean = 0, standard deviation = 1). The vector was 

decoded to a molecular structure followed by inverse transformation. This random process 

generated 1000 new molecules. Final candidates were extracted according to the same 

procedure as the DRL approach. 

 

Exploration of new polymer electrolytes with DAU and DRL  

1) Preparation of regression model 

Our original lithium-ion-conducting molecular electrolytes database[10, 26] was used to construct 

potential 𝐸reg  and 𝐸RBM  (Figure 6). The database contained more than 1000 records of 

monomeric and polymeric lithium-ion-conducting electrolytes around room temperature. The 

basic algorithm for preparing the prediction model from our previous study was used.[26] The 

compounds in the electrolytes were sorted according to their types (salts appeared first and 

others later) and weight content ratio (higher to lower). For simplicity, up to the first three 

components in an electrolyte were considered. Weight ratio, molecular weight, and structural 

information for the polymers, and inorganic additives (e.g., SiO2) were ignored for 𝒙 because 

quantum annealing systems can input only binary variables, not continuous numbers.[19] 
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Experimental ionic conductivity around room temperature was predicted from the MFPs of the 

two additives to the salt, that is, a 512 × 2 = 1024-dimensional binary. The PLS algorithm was 

used to obtain a linear regression model. Logarithmic conductivity was converted into the z-

score during machine learning and prediction. Only during the prediction of the synthesized 

electrolyte, the model was trained by considering the salt structures (i.e., salt and two main 

additives, Figure S15).   

2) Molecule generation 

As the user preference structures, electron donor and acceptor molecules in the database were 

extracted systematically (Figure S12). The MFPs of donors and acceptors were set as the first 

and second information for the binary, respectively. The training RBM with the MFP yielded 

𝐸RBM. The model had a 1024-dimensional visible layer and a 3068-dimensional hidden layer 

(4096 dimensions in total). Local minimums were sampled by the DAU using potentials of 

𝐸 = 𝑐(𝑟𝐸reg + 1/𝑟 ∙ 𝐸RBM), where 𝑐 = 0.1, 1, 10, and 100, and 𝑟 = 1.5. Chemical structures 

were generated by DRL from the sampled solutions. For donor molecules, the DRL scoring 

function was tuned to predict polymer structures (higher scores were obtained when a generated 

molecule had two repeating unit atoms). 

According to the following criteria, a final candidate polymer was selected from the generated 

molecules (Figure 6c, Figure S13). a) Has facilely synthetical polymeric backbones (e.g., vinyl, 

glycidyl, siloxane, and vinyl ether). b) Has more potent donor properties (e.g., hetero-aromatic 

rings and phenyl amines). c) Chemically stable (e.g., avoid carbocations, anions, and excessive 

allyl groups). 

 

Chemical experiments for the new polymer electrolyte 

1) General information 

Polyepichlorohydrin (Mn = 1.8 × 104, Mw = 2.8 × 104) was synthesized by anionic ring-opening 

polymerization according to a literature procedure.[29, 31] Phenothiazine, potassium tert-

butoxide, and TCNQ were purchased from Tokyo Chemical Industry Co. LiTFSI was obtained 

from Kanto Chemical Co. Other solvents and chemicals were purchased from Tokyo Chemical 

Industry, Kanto Chemical, or Sigma-Aldrich. All reagents were used as received. The thermal 

properties of the materials were measured by differential scanning calorimetry using a 

calorimeter (Q200, TA Instruments). 

 

2) Synthesis of the phenothiazine polymer 
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Syntheses were conducted under a nitrogen atmosphere. Polyepochlorohydrin (0.5 g, 

corresponding to 5.4 mmol monomer units) and phenothiazine (1.6 g, 8.1 mmol) were dissolved 

in dry N,N-dimethylformamide (DMF; 10 mL). Potassium tert-butoxide (0.91 g, 8.1 mmol) 

dissolved in DMF (15 mL) was injected into the solution, and the mixture was stirred at 80 °C 

for one week. After the reaction, the solution was precipitated in methanol, and the powder was 

collected by filtration and washed with methanol. A pale brown powder was obtained after 

removing the solvent in vacuo overnight (46% yield). The phenothiazine introduction ratio, x = 

0.6, was estimated by 1H NMR. Polymers with different introduction ratios were synthesized 

by changing the molar ratio of phenothiazine and epichlorohydrin, and by stopping the reaction 

after one day. The introduction ratio, x, was 0.2, 0.3, and 0.4 for 

[phenothiazine]/[epichlorohydrin] preparation ratios of 0.6, 1.0, and 1.5, respectively. 

1H NMR (500 MHz, CDCl3): 7.22–6.95 (br, 2.4H, phenothiazine), 6.95–6.57 (br, 2.4H, 

phenothiazine), and 4.39–3.27 ppm (br, 5H, epichlorohydrin).  

 

3) Preparation of solid-state electrolytes 

Electrolytes were prepared in an argon-filled glove box to avoid water contamination (dew 

point of >-70 °C and O2 concentration of >10 ppm). The polymer (50 mg, x = 0.6) and TCNQ 

(32 mg, equiv with respect to phenothiazine) powders were mixed and heated to 200 °C to form 

the black charge-transfer complex. LiTFSI (68 mg, 1.5 equiv with respect to phenothiazine) 

was added and heated at 250 °C. The molten mixture was mixed and cooled to room 

temperature to yield the electrolyte as the product. 

 

4) Electrochemical measurements 

Solid-state cell equipment (Hosen Co.) was filled with electrolytes. The typical thickness of the 

electrolyte layer was 100 mm. The ionic conductivity was evaluated by sandwiching the 

electrolyte with stainless disks with a diameter of 5 mm. Electrochemical impedance spectra 

were recorded with an impedance gain-phase analyzer (1260, Solartron; 106 to 1 Hz). 

A conventional potentiostat (ALS 660D, BAS) was used for other electrochemical 

measurements. Electrical conductivity was evaluated by the Hebb-Wagner method. A prototype 

lithium-ion battery was fabricated using a LiFePO4 cathode and a Li4Ti5O12 anode. The 

electrolyte was sandwiched between a stainless-steel disk and lithium foil. The as-prepared 

electrodes were purchased from Piotrek Co. 
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Data and code availability 

Source code and databases are available at https://github.com/KanHatakeyama/anneal_project2. 

All related data supporting this study’s findings are available from the corresponding authors 

upon reasonable request. 

 

Data Source 

Original data for Figures 2 and 4 are provided as Supporting Data. 
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Supporting Tables 

 

Table S1 Comparison of the current work with conventional approaches. 

Filtering criteria Conventional  
This 
work 

This approach 

Specific parametera) + + Supervised learning 

Synthetic difficultyb) (+) + 
Unsupervised 

learningc) 

Stability (chemical, thermal, 
…) 

- + 
Unsupervised 

learningc) 

Other parameters - + 
Unsupervised 

learningc) 

a) Molecules can be screened according to a specific target parameter predicted by a machine 

learning model. 

b) Synthetic accessibility score is one of few practical approaches to screening chemicals. 

c) Molecules can be generated from user-inputted structures, satisfying the criteria of synthetic 

difficulty and other parameters. 
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 Table S2 Comparison of sampling results from user preference potential 𝐸RBM. 

Method Modea) c Time (s) Energy 

Simulatedb) Global minimum - 18.7 -39.4 

D-Wave (quantum)c) Global minimum - n/a n/a 

D-Wave (hybrid)d) Global minimum - 5.2 -39.6 

D-Wave (hybrid)d) Boltzmann distribution - n/a n/a 

SBMe) Global minimum - >1 -39.6 

SBMe) Boltzmann distribution - n/a n/a 

DAUf) Global minimum - 0.37 -39.4 

DAUf) Boltzmann distribution 100 0.37 -38.8 

DAUf) Boltzmann distribution 10 0.37 -8.3 

DAUf) Boltzmann distribution 1 0.38 74.7 

MCMCg) Boltzmann distribution 100 187 -36.0 

MCMCg) Boltzmann distribution 10 206 -8.0 

MCMCg) Boltzmann distribution 1 204 69.3 

a) Global minimum was explored by the minimum mode. Solutions were also randomly 

sampled according to the Boltzmann distribution under another mode.  

b) Simulated annealing by D-Wave API.  

c) Quantum annealing. This mode was unavailable because of the limited data connection by 

D-Wave. 

d) Quantum and digital hybrid annealing. Only global minimum sampling was available. 

e) Toshiba simulated bifurcation machine (SBM). Only global minimum sampling was 

available. The minimum annealing time could be set as 1 s. 

f) Fujitsu digital annealing unit (DAU). During the Boltzmann distribution mode, 128 samples 

were explored independently, using a potential of 𝑐𝐸RBM . Energy for a randomly selected 

solution is displayed. 

g) Markov chain Monte Carlo (MCMC). A conventional Metropolis-Hastings algorithm was 

implemented. A single-thread process was conducted using a CPU. 
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 Table S3 Generation of de novo molecules by the system.a) 

 
Methoda

) 
TPSA

-1 
TPSA

-2 
TPSA

-3 
MolLogP

-1 
MolLogP

-2 
MolLogP

-3 

R2 b) 
DRL 0.92 0.82 0.74 0.21 0.13 0.48 

VAE -1.60 -0.91 -0.81 -1.53 -0.66 -1.30 

Averag
e 

Score 

DRL 76 49 51 87 68 46 

VAE 20 22 39 43 45 44 

a) New molecules were generated from 1–3 starting chemicals to exhibit higher TPSA or 

MolLogP. Starting chemicals and scoring criteria are described in Table S4. 

b) R2 scores for the predicted and actual TPSA or MolLogP of final proposed molecules. 

DRL: deep reinforcement learning; VAE: variational autoencoder; TPSA: topological polar 

surface area; MolLogP: partition coefficient. 

 

 

Table S4 Starting compounds and scoring criteria for molecule generation tasks. 

 Starting compounds Scoring criteria 

Task 1 Toluene +100: Contains one benzene ring 

Task 2 Toluene, CF4 
+50: Contains one benzene ring 
+50: Contains more than one F atom 

Task 3 Toluene, CF4, CH3COOH 
+33.3: Contains one benzene ring 
+33.3: Contains more than one F atom 
+33.3: Contains more than one O atom 
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Supporting Figures 

 

 

 
Figure 1. Distribution of cosine similarity between the reconstructed and original molecules. 

An RDKit module was used to calculate 200 basic molecular descriptors, and their similarities 

were compared. The average similarities for molecular fingerprint (MFP), MFP’, and 

variational autoencoder (VAE) were 0.97, 0.96, and 0.90, respectively. 

 

 

 

 
a Melting temperature 
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b TPSA 

 

 
c MolLogP 

 

Figure 2. Prediction results for a melting temperature, b topological polar surface area (TPSA), 

and c partition coefficient (MolLogP). The target values were predicted from the molecular 

fingerprint. Molecules recorded in Bradley’s dataset was used for machine learning. Related 

data are shown in Figure 3. 
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a Melting temperature  b TPSA 

 

 
c MolLogP 

 

Figure 3. Mean absolute errors (MAEs) for the prediction of a melting temperature, b 

topological polar surface area (TPSA), and c partition coefficient (MolLogP). The target values 

were predicted from the molecular fingerprint or vectors encoded by variational autoencoder 

(VAE). MAEs for the test data of inner and extrapolating regions are displayed. The machine 

learning tasks were repeated five times along with the random train/test dataset splitting. Bayes: 

Bayesian ridge; RF: random forest; FM: factorization machine. 
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Figure 4. Training restricted Boltzmann machine with different learning conditions (total 

dimension-k-minibatch size). The molecular fingerprints of 128 randomly selected molecules 

in Bradley’s dataset were trained. The logarithmic reconstruction errors with 10 independent 

learning tasks are shown. The size of the visible layer was always 512. The hidden layer size 

was total dimension minus 512.  
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Figure 5. Example images of original and reconstructed molecular fingerprints (MFPs). 

Reconstructed data were generated by the trained restricted Boltzmann machine (RBM) (total 

dimension = 2028, k = 3, minibatch = 1). The original MFP was randomly extracted from the 

training dataset. 

 

 

 
 

Figure 6. Distribution of solutions sampled by the digital annealing unit (DAU) or Markov 

chain Monte Carlo (MCMC) according to the Boltzmann distribution from 𝐸RBM (related data 

shown in Figure 4). An enlarged view of the distribution is shown in the bottom panel. DAU 

yielded 128 samples with a single annealing query. Solutions were sampled per 105 steps during 

the 108 iterations of MCMC. 
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Figure 7. Example molecules generated from binary solutions found with different annealing 

conditions (related data shown in Figure 4). Solutions with larger c converged to the global 

minimum. More randomized molecules were generated by Boltzmann sampling with smaller c. 

DAU: digital annealing unit. 
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Figure 8. Scheme for generating chemical structures by the digital annealing unit (DAU) and 

deep regression learning (DRL). DAU explored binary solutions with different c (= 100, 10, 1, 

and 0.1). The solution with the minimum energy and 19 solutions with random energies were 

extracted. The DRL model generated five molecules per solution. 
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l MolLogP-3 (VAE) 

 

Figure 9. De novo molecules generated by deep regression learning (DRL) under the conditions 

in Table S4 (related data shown in Figure 5). Results for the variational autoencoder (VAE) are 

shown for comparison. Numbers under the structures show topological polar surface area 

(TPSA) or partition coefficient (MolLogP). a TPSA-1 (DRL), b TPSA-1 (VAE), c TPSA-2 

(DRL), d TPSA-2 (VAE), e TPSA-3 (DRL), f TPSA-3 (VAE), g MolLogP-1 (DRL), h 
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MolLogP-1 (VAE), i MolLogP-2 (DRL), j MolLogP-2 (VAE), k MolLogP-3 (DRL), and l 

MolLogP-3 (VAE) 

 

 

 

 
Figure 10. Scheme for exploring new chemicals by the variational autoencoder. A new vector 

obtained from the linear combination of the vectors for the three starting compounds was 

studied. 

 

 

 



  

25 

 

 
Figure 11. Distributions of newly generated structures under conditions in Table S4 (related 

data shown in Figure 5). Larger plots in the graphs were selected as the final outputs, and their 

structures are shown in Figure S9. a topological polar surface area (TPSA)-2, b TPSA-3, c 

partition coefficient (MolLogP)-1, d MolLogP-2, and e MolLogP-3. 
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Figure 12. Donor and acceptor molecules, set as the user preference compounds during the 

electrolyte exploration task. The substances were automatically extracted from the recorded 

ones in the lithium-ion conducting electrolyte database. The symbol “Y” represents a polymer 

repeating unit. 
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b Acceptors 

Figure 13. Representative polymer and molecular structures proposed by the system. a Donors 

and b acceptors. 
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Figure 14. Experimental properties of electrolytes. 

a 1H NMR spectrum of phenothiazine-substituted polyepichlorohydrin (PPEH), measured in 

CDCl3. 

b Differential scanning calorimetry curves for PEO, polyepichlorohydrin (PECH) and PPEH 

with different introduction ratios of phenothiazine x. Except for PEO, endothermic responses 

from the glass transition were detected. The scan rate was 10 °C/min.  

c Room-temperature ionic conductivity as a function of x. The control electrolytes without 

7,7,8,8-tetracyanoquinodimethane (TCNQ) were also examined. Higher conductivity by the 

charge-transfer complex electrolytes (PPEH/TCNQ/LiTFSI) indicated the importance of the 

polarised molecular structure induced by charge transfer. 

d Electron-induced current of the charge-transfer complex electrolyte (x = 60%) measured by 

the Hebb-Wagner method. The estimated electronic conductivity from the slope was 3.0 × 10-

9 S/cm, which was around 1000 times smaller than ionic conductivity. 

e Cyclic voltammograms of a prototype lithium-ion battery scanned at 5 mV/s (50 °C). The 

redox peaks appeared around the formal voltage E0 = 1.9 V. Larger current density after 

repeated cycles indicated the formation of improved conduction pathways by ion migration. 
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Figure 15. Conductivity prediction considering lithium salt structure. In this graph, 

conductivity was predicted from salt and two main additives in the electrolytes. In Figure 6a, 

conductivity was predicted by ignoring salt structures.  

 

 

 

Supporting Discussion 

Preparation of regression models 

Experimental melting point, topological polar surface area (TPSA), and partition coefficient 

(MolLogP) were predicted from the structural information for molecules recorded in Bradley’s 

dataset (Figure S2, S3). The partial least squares (PLS), Lasso, Bayesian ridge, random forest, 

and factorization machine regression models were examined. The Avalon molecular fingerprint 

(MFP) algorithm generated 512-dimensional binary data as the structural information. Similarly, 

the variational autoencoder (VAE) generated a 56-dimensional continuous vector. The PLS, 

Lasso, and Bayesian ridge models assumed only linear terms ∑ ℎreg,i
𝑁
𝑖=1 𝑥i  for prediction, 

whereas the factorization machine model used quadratic terms ∑ 𝐽reg,ij
𝑁
𝑖≠𝑗 𝑥i𝑥j.  

The prediction accuracy measured by mean absolute errors (MAEs) after repeated 

random regression tasks was examined (Figure S3). For melting temperature and TPSA, MFP 

exhibited smaller prediction errors than VAE, meaning that the molecular characteristics 

affecting the target parameters were described by MFP more precisely. Inner region prediction, 
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where actual 𝑦  existed in the range of the training dataset, was much easier than the 

extrapolation because smaller MAEs were obtained for the inner region; however, prediction 

for the unseen data region is challenging. 

Models that were more complex, namely, the random forest and factorization machine 

models, offered higher prediction accuracy for the inner regions. However, they could not 

correctly predict the extrapolation cases. The decision tree-based prediction algorithm of 

random forest and quadratic terms in the factorization machine model capped �̂�  up to the 

maximum of 𝑦 in the training data.  

A similar trend was observed with MolLogP, except for the reversed prediction 

accuracy for MFP and VAE in the extrapolation region. The MFP prediction models could not 

extract appropriate trends, contributing to higher MolLogP as successfully as VAE. The 

introduction of other MFP algorithms will solve this problem, which we intend to study in our 

future research. 

 

 

Hyperparameter exploration of the restricted Boltzmann machine  

The hyperparameters of restricted Boltzmann machine (RBM), which were total dimension M, 

repeating count k during contrastive divergence learning, and minibatch size, were optimized 

using Bradley’s dataset (Figure S4). Reconstruction tasks were repeated 10 times, using MFP 

for 128 randomly selected molecules in Bradley’s dataset. The size of the visible layer, N, was 

always 512, corresponding to the MFP dimension. The total dimension, M = (N + hidden layer 

size), was 1024, 2048, and 4096, the minibatch size was 1, 2, 4, and 8, and k was 1, 3, and 5. 

The learning epoch was set to 300. 

The logarithmic reconstruction error did not change drastically regardless of the training 

conditions (Figure S4). Considering the balance of expressiveness of the RBM model and 

calculation cost (including annealing), N was set as 2048 for single-molecule generation tasks 
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(N = 2000 in Figure 4 because of the input limit of D-Wave). We set k as 3 and minibatch size 

as 1 unless noted otherwise. The successful reconstruction is shown visually in Figure S5. 

 

 


