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Abstract

Bond bundle analysis is used to investigate enzymatic catalysis in the KSI active site. We
calculate the precise redistribution of electron charge density and other property fields, between
atoms and bonds, that accompanies enhancement (and inhibition) of the catalytic activity. In
two examples—direct inspection of bond bundle regional properties, and correlation between
those properties and reaction barrier height—we arrive at similar conclusions, that catalytic
enhancement is the result of moving electron density between bonds in a way that closely
resembles our mechanistic understanding of the catalyzed reaction.
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1 Introduction

Enzymes are biological macromolecules that can accelerate chemical reactions in mild conditions

by dozens of orders of magnitude compared to the reaction in solution. Our ability to understand

and manipulate this process, which results from a diverse set of concerted mechanical and chemical

factors, continues to grow at an increasing pace. The past decades have been especially fruitful

thanks jointly to two significant advances. First are increasingly accurate structural studies that

stem from and inform our functional and mechanistic understandings, leading to yet more pointed

structural studies. Second is the incorporation of computational methods in enzymology at all

scales, from predicting the conformation and energy of folded proteins, to the accurate quantum

mechanical prediction of reaction dynamics within enzyme active sites. These advances include the

generation of massive amounts of experimental and theoretical data, which is useful for extracting

statistical correlations and leveraging machine learning algorithms towards immediate predictive

power. Though less straightforward, this wealth of data can also be useful for identifying new
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structures and structure-property relationships to the benefit of our chemical intuition. As we test

and refine our methods in the pursuit of enzyme design, it is clear that such models—that can fit in

a researcher’s head—are essential.

Yet, gaining an intuitive and practical understanding of enzyme activity is no trivial task. At-

tributing catalytic activity to one enzyme characteristic or the other—that is, achieving a one-to-one

quantitative energetic understanding of the key features in enzymatic catalysis—is complicated and

paradoxical due to the lack of underlying energetic additivity. For example, the change in catalytic

activity induced by a pair of amino acid alterations cannot be predicted by simply knowing the

change induced by one or the other separately. This can lead to under- or overestimating the roles

at play depending on the investigative approach, which narrows the scope of application of the re-

sults, instead shifting emphasis to our ability to ask “well-honed” questions about “well-described”

systems in order to gain a deeper and more intuitive understanding of enzymes [1]. This also mo-

tivates the pursuit of tools and methods with which to better associate enzyme features with their

respective catalytic effects, especially those that do possess energetic additivity.

Here we present on such a tool with a case study on the electrostatic preorganization in ketosteroid

isomerase (KSI), the focus of numerous experimental and computational investigations (see Reference

2 for additional references). Electrostatic preorganization is a strong, non-uniform external electric

field (EEF) inherent to the arrangement and composition of amino acids about the active site [3–

6]. Only recently has accurate assessment of electrostatic preorganization become computationally

feasible, and researchers are now exploring available methods for such assessment. Meanwhile, the

effects of applied electric fields on chemical reactivity have been experimentally and computationally

observed for a variety of chemical reactions [7–26], many of which are also catalyzed enzymatically.

Hence the specific problem of electrostatic preorganization, and the general problem of electric field

catalysis, are of interest to enzymologists. Here we build upon previous work elucidating the local

structure underlying KSI’s catalytic activity, and how that activity can be augmented or hindered

[2, 27, 28].

The tool used in this investigation, called bond bundle analysis, reduces a system into a set of

chemical bonding regions whose energy, extent, electron count, and many other properties can be

readily assessed [29, 30]. In organic systems, understood using valence bond theory, bond bundle

analysis often leads to chemically expected conclusions, but with a level of precision and generality

not attainable through conventional methods [24, 28, 30]. The results of this two-part investigation
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Scheme 1: Steroid isomerization reaction catalyzed by KSI.

include firstly those of direct inspection of bond bundle property distributions in the KSI active site

in the presence and absence of a uniform EEF known to enhance its catalytic activity. We will see

that the redistribution of electron charge density, ρ(r), between bonds is that which facilitates the

forward reaction direction; that the catalyzing effects of the field result from it “pushing” charge in

the right direction. Second, we consider a set of KSI systems with varying catalytic activity, using

a statistical approach to show that bond bundle analysis can highlight the active-site regions that

most strongly correspond to catalytic enhancement or inhibition, and that these correlations are

immediately interpretable using chemical intuition. In both parts, the discussion of bond bundle

properties is necessarily framed with the language and concepts of chemical bonding, and it is this

ability of bond bundle analysis to leverage and inform—but not presuppose—our intuition that

makes it a promising tool for chemical analysis.

2 Background

2.1 Ketosteroid isomerase

The well-studied steroid isomerization reaction that KSI catalyzes involves the repositioning of a

double C C bond in the steroid substrate [1, 2, 27, 31–33]. As shown in Scheme 1, this occurs by

the removal of a proton from the secondary β-carbon, which is redeposited at the adjacent secondary

carbon. Focusing on the first step, deprotonation is accompanied in the substrate by a shift of charge

though the substrate π system from the β-carbon to the carbonyl oxygen. In KSI this concerted

atomic and electronic rearrangement is facilitated, the former by the ideal positioning of Asp40,

providing a general base to receive the proton, and the latter by the oxyanion hole that activates

the carbonyl and stabilizes the charged enolate intermediate state. KSI has also recently been used

as a test-bed for computational analysis and assessment of electrostatic preorganization using ρ(r)
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Figure 1: The full KSI protein (PDB code 1O10 [34]) with docked steroid substrate shown from two
angles. The tyrosine (Y or Tyr; cyan), aspartic acid (D or Asp; orange) and tryptophan (W or Trp;
blue) residues included in the small scale calculation are shown relative to the substrate (colored by
element). The Lewis diagram of the system is shown with the “locations” of the 3-chlorotyrosine for
the KSI variant systems (Trp120 not shown).

and other QM-determined property fields.

Fuller et al. investigated the effects of applied EEFs to this process using the small-scale KSI

active site shown in Figure 1, and found that a field applied parallel to the substrate carbonyl bond,

pointing from O to C, augmented the electrostatic preorganization, lowering the reaction barrier,

and that a field in the opposite direction had the opposite effect [27]. This agrees with classical

intuition, that an EEF should push charge opposite the field direction, in this case combining

constructively with the KSI oxyanion hole to more readily shift charge to the carbonyl oxygen—

further stabilizing the enolate intermediate state—and away from the β carbon, increasing its acidity

and thus facilitating deprotonation.

Hennefarth and Alexandrova were then able to show similar reaction barrier effects in KSI vari-

ants that had a tyrosine mutated to a 3-chlorotyrosine [2]. Because the tyrosines of interest are

involved in the extended hydrogen bonding network around the oxyanion hole (see Figure 2), this

affects carbonyl activation, altering electrostatic preorganization. They found that a mutated Tyr32

lowered the barrier, and that a mutated Tyr57 raised the barrier relative to the wild enzyme.

The present investigation uses the small-scale KSI active site, EEF directions, and 3-chlorotyrosine

KSI variants from References 2 and 27 as the starting point for our calculations, and we explicitly

use the same calculated reaction barrier energies. The five systems: wild KSI (a.k.a. NEF: no elec-

tric field), KSIr+, KSIr-, KSI-Y32, and KSI-Y57, provide a minimum example set of KSI enhancement

and inhibition via global and local perturbations; oriented EEFs in one case, and amino acid atomic
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Figure 2: Closer depiction of the arrange-
ment of amino acids forming the “oxyan-
ion hole” about the substrate in KSI (top)
and the positioning of the 3-chlorotyrosines
in the KSI mutants (bottom) with Cl· · ·O1
distance (Å) indicated.

Figure 3: Reaction profiles for the
systems in this study. Ordering at top-
left is the same as in the TS1 column.
aData for the NEF and EEF systems
taken from Fuller et al. [27]. bData for
KSI–Y systems taken from Hennefarth
and Alexandrova [2].

substitution on the other. The regional changes in charge density and energy underlying the reaction

barrier shifts should be accessible using this limited sample.

2.2 Assessing the local charge density origins of KSI catalytic enhance-

ment

A source of difficulty in the discovery of local charge density structure property relationships is

the selection of points or regions to investigate. The points and paths of ρ(r), recovered using

QTAIM, have no volume and hence no energy, complicating the process of associating changes in

these structures to changes in system energy. Meanwhile, if a volumetric region is used for analysis,

the chemical significance of the region’s size, shape, and location must be justified. Together, in

references 2 and 27 both points and regions were scrutinized to better understand the enhancement

and inhibition of this particular catalyzed reaction.

Fuller et al. checked for correlations between KSI-catalyzed reaction barrier shifts due to EEFs

and a number of local properties, such as interatomic distances and values of ρ(r) at bond critical

points (CPs) [27]. The strongest correlation found was that of the O2–H1 bond length,1 which

correlated positively with the change in reaction barrier, while the value of ρ(r) at the corresponding

1Using the atomic numbering in the present manuscript
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bond CP anti-correlated, indicating that direct facilitation of the deprotonation step affects the

barrier energy shift more than activation of the carbonyl O atom and other changes in the substrate.

A weaker positive correlation was found with the O1–H2 bond length indicating, as anticipated, that

activation of the carbonyl O atom—by decreasing the Asp40–substrate distance—also has a lowering

effect on the reaction barrier.

Given the catalytic role of electrostatics in KSI, Hennefarth and Alexandrova investigated the

electric field itself, E(r), in the KSI active site using both point and regional properties [2]. Here, the

set of systems included those exposed to oriented EEFs, and also two 3-chlorotyrosine KSI mutants

with respectively higher and lower catalytic activity than wild KSI. They found that the electric

field magnitude, |E(r)|, at the O2–H1, C2–H1, and C1 O1 bond CPs correlated strongly with the

change in reaction barrier, but only for the wild KSI structures; KSI-Y32 and KSI-Y57 were outliers

to this trend. This indicates that the KSI mutants augment/hinder catalysis through a different

ρ(r) mechanism than do EEFs. Furthermore, the correlation at the carbonyl bond CP showed a

nearly constant relationship between |E(r)| and reaction barrier energy.

Hennefarth and Alexandrova also conducted a type of regional electric field curvature analysis

within two separate rectilinear volumes, one containing the carbonyl C1 O1 atoms, and the other

containing the C2–H1· · ·O2 atoms of the reaction site. By evaluating the total curvature along E(r)

streamlines within each volume, they generated histograms that reflect the relative occupations of

high and low curvature regions; a sort of regional E(r) curvature fingerprint. Though the region

boundaries are arbitrary, it was confirmed that the results changed little with adjustments to re-

gional extent. Each volume could then be compared pairwise to its counterparts by computing the

corresponding histogram distances, thus providing a scalar similarity metric also useful for statistical

evaluation.

Using this similarity metric, Hennefarth and Alexandrova found that the E(r) curvature about

the carbonyl bond had a stronger correlation with reaction barrier than that of the reaction site, with

3-chlorotyrosine mutants included in the analysis. This result is counter to the results from point

properties (and those of Fuller et al.) that the strongest correlations occur in the reaction site rather

than within the substrate. The regional results indicate that activation of the carbonyl enhances

the reaction rate, where point-based analysis results emphasize changes at the deprotonation site.

That is, a regional approach seems to better reveal the underlying chemistry at work common to

both the EEF and mutant KSI systems [6, 35].
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Here, we will build on these previous studies with another regional approach for property analysis

and correlation exclusively utilizing atomic basins and bond bundles. These regions are uniquely

defined according to ρ(r), each yielding a set of scalar values that can be directly inspected, compared

across systems, or correlated against system properties. This set of attributes makes them ideal

regional candidates to aid in the discovery of local charge density structure property relationships.

2.3 The chemical bonding structure of the charge density

Figure 4: Cartoon depictions
of the atomic basins and bond
bundles analyzed in this study.
Red and green spheres represent
bond and ring CPs respectively.

QTAIM defines a natural partitioning of ρ(r) into non-overlapping

atomic regions called atomic basins, with associated atomic vol-

umes, energies, and charges [36, 37]. It also provides the conven-

tional framework for the chemical interpretation of zero-, one-, and

two-dimensional topological ρ(r) features including: critical points

(CPs) designated as nuclear, bond, ring, or cage type; bond paths;

and inter-atomic surfaces respectively. QTAIM comprises the stan-

dard approach for inspecting local and (atomic) regional ρ(r) prop-

erties in a chemical context, and it has been utilized alongside other

charge density analysis methods to shed light on the phenomena of

electrostatic preorganization [2, 27, 38–41].

The ability to compute the energy of an atomic basin is owed to

its satisfaction of a particular boundary condition, that the flux of

the charge density gradient (∇ρ) through its bounding surfaces be

everywhere zero. For an arbitrary region in ρ(r), one may calculate

the total regional kinetic energy using the gradient or Laplacian

representation of the quantum mechanical kinetic energy operator,

but these values will not match one another. For a region bounded

by zero-flux surfaces, however, these values will agree, and hence

the regional energy is unambiguous [36]. Zero-flux surfaces can be constructed arbitrarily, and a

region bounded by zero flux surfaces is called a gradient bundle. Owing to its radial symmetry very

close to an atomic nucleus, one can decompose ρ(r) within an atom into a conceptually infinite

number of infinitesimal gradient bundles, to perform what is called a gradient bundle decomposition

[42, 43]. Each differential gradient bundle is created such that it occupies the same amount of area
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on a reference sphere centered at an atomic nucleus.

This type of ρ(r) produces a continuous distribution of charge and energy within an atom, an

“unambiguous energy space,” the topology of which in turn defines a unique set of intra-atomic

regions called bond wedges. Bond wedges of adjacent atoms combine conceptually to form the

chemical bonding regions of ρ(r), called bond bundles [30, 44]. Figure 4 illustrates the eight atomic

basins and seven bond bundles considered in this study, as well as the bond and ring CPs that lie

along or interior to their boundaries (more realistic graphical representations of these features are

provided in the supplementary information). We will appeal to this sort of abstract representation

of gradient bundles for the remainder of this manuscript. Each bond bundle has a set of properties

commonly associated to a chemical bond, such as an energy and a number of electrons, which, when

taken over all bonds in a system, recover the system energy and electron count. Additionally, each

bond wedge has an associated solid angle (α), which is the percent area of the nucleus-centered

reference sphere occupied by the bond wedge. For example, in a methane molecule, each bond

wedge on the C atom would have a solid angle equal to 1⁄4. Like atomic basins, bond bundles have

precise, non-overlapping boundaries that combine to fill all space.

3 Results and discussion

3.1 KSI charge density response to a catalyzing EEF

To illustrate the concrete nature of gradient bundle properties, we begin by directly inspecting ρ(r)

redistribution in the KSI active site due to a catalyzing uniform EEF of magnitude 10MV⁄cm. Table 1

contains regional electron counts for atoms and bonds in the KSI active site, as well as their change

due to the catalyzing r- EEF. These regional property changes are graphically depicted in Figure 5,

where regions are shaded orange or blue (with hash lines) to indicate ρ(r) EEF-induced accumulation

or depletion respectively.

The KSI active site response to the EEF is nonuniform, and the bond bundle perspective (Fig-

ure 5; center) of this response simplifies its interpretation. The field activates the carbonyl O atom,

but its primary effect is to redistribute charge as prescribed by our mechanistic understanding of

the reaction that it catalyzes. The activation of the O atom is evidenced by the accumulation of

charge in the O atomic contribution to the O· · ·H bond bundles and the depletion of charge in the
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Table 1: Regional electron counts in the KSI active site with (EEF) and without (NEF) an applied
external electric field of 10MV⁄cm pointing from the O nuclear position to the C; the r- direction. Un-
numbered atoms were not included in the study. All regions are truncated at the ρ = 0.001 isosurface.
Complete gradient bundle integration tables are available in the SI.

Electron count (ρ) [e]

Atomic basin decomposition NEF EEF %∆ ∆

C1 5.15 5.19 0.035 0.67

C2 6.21 6.19 -0.021 -0.33

C3 6.18 6.25 0.073 1.18

H1 0.86 0.85 -0.017 -1.92

H2 0.37 0.37 -0.001 -0.22

H3 0.38 0.37 -0.013 -3.46

O1 9.25 9.26 0.013 0.14

O2 9.32 9.33 0.005 0.05

Total 37.72 37.80 0.074 0.20

Bond bundle decomposition NEF EEF ∆ ∆

C1 — C bond wedge 2.05 2.01 -0.040 -1.93

C1 — C2 bond bundle 3.44 3.52 0.089 2.58

↪→ C1 bond wedge 2.07 2.16 0.084 4.07

↪→ C2 bond wedge 1.36 1.37 0.004 0.31

C1 — O1 bond bundle 3.36 3.35 -0.009 -0.28

↪→ C1 bond wedge 1.03 1.02 -0.010 -0.99

↪→ O1 bond wedge 2.33 2.33 0.001 0.04

C2 — H bond wedge 1.63 1.57 -0.051 -3.16

C2 — C3 bond bundle 3.21 3.17 -0.042 -1.31

↪→ C2 bond wedge 1.57 1.56 -0.004 -0.25

↪→ C3 bond wedge 1.65 1.61 -0.038 -2.32

C2 — H1 bond bundle 2.47 2.48 0.013 0.52

↪→ C2 bond wedge 1.65 1.68 0.030 1.84

↪→ H1 bond wedge 0.81 0.80 -0.018 -2.17

C3 — C bond wedge 1.77 1.84 0.073 4.15

C3 — C bond wedge 2.77 2.80 0.038 1.37

H1 — O2 bond bundle 3.66 3.62 -0.046 -1.25

↪→ H1 bond wedge 0.05 0.05 0.001 2.15

↪→ O2 bond wedge 3.61 3.57 -0.047 -1.30

H2 — Asp103 bond wedge 0.33 0.33 0.000 0.12

H2 — O1 bond bundle 3.54 3.54 0.005 0.13

↪→ H2 bond wedge 0.04 0.03 -0.001 -3.46

↪→ O1 bond wedge 3.50 3.51 0.006 0.17

H3 — Tyr16 bond wedge 0.32 0.30 -0.022 -6.77

H3 — O1 bond bundle 3.47 3.48 0.014 0.42

↪→ H3 bond wedge 0.06 0.07 0.009 14.66

↪→ O1 bond wedge 3.41 3.41 0.006 0.17

O2 — Asp40 bond wedge 2.11 2.11 -0.005 -0.24

O2 lone pair wedge 3.60 3.65 0.057 1.58

Total 37.72 37.80 0.074 0.20

carbonyl bond bundle. This was also observed in a previous investigation into the EEF response of

formaldehyde as a prototypical carbonyl [28]. Due to the electrostatically locked environment of the

oxyanion hole, however, the O-atom internal redistribution is hindered compared to that observed
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Figure 5: The atomic basins, bond bundles, and bond wedges of KSI (left, middle, and right respec-
tively) shaded according to the changes in their regional electron count due to a 10MV⁄cm oriented EEF,
which are listed in Table 1. The center image includes the electron-pushing arrows of the deprotonation
reaction step.

in formaldehyde. Instead, the majority of redistribution occurs at the other end of the conjugated

system, interior to the substrate. The C1–C2 bond bundle, which must increase its bond order from

single to double in the deprotonation step, accumulates nearly 0.09 electrons in response to the field,

offset by decreases in the carbonyl bond and more so in the C2–C3 bond. This very nearly recovers

the motion described through electron-pushing arrows (Figure 5; center).

These results are consistent with previous findings investigating EEF catalysis of a simple Diels-

Alder reaction, where the redistribution of charge density within molecules was found to be greater

than between molecules, and the catalyzing (barrier-lowering) EEF was that which primarily shifted

charge between bond bundles consistent with the understood reaction mechanism [24]. Here too, the

catalyzing r- field is lowering the energy barrier for the deprotonation reaction step by transitioning

bonds and lone pair regions primarily in the anticipated directions. At the reaction site, however,

the C2–H1 bond, which is “broken” in the deprotonation step, accumulates charge due to the EEF,

while the “growing” O2· · ·H1 bond loses charge, seemingly the reverse of the anticipated motion.

In the Diels-Alder investigation as well, the EEF-induced changes in the forming bond bundles was

opposite of that prescribed by the known mechanism. This suggests that reactant state, intra-

molecular charge redistribution in the forward reaction direction has a greater catalytic effect than

does redistribution in the inter-molecular space, at least for the exothermic reactions considered

thus far. In KSI, as chemically anticipated, the r- EEF facilitates deprotonation by activating the

carbonyl and transitioning bonds in the conjugated system in the necessary directions, as directly

observed though bond bundle ρ(r) redistribution.

Upon closer inspection of the bond wedge values (Figure 5; right), however, we can see that
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the behavior at the deprotonation site does not exactly oppose our intuition. While the C2–H1

bond bundle electron count did increase, this was due to the contribution of the C2 atom. The H1

bond wedge component of the C2–H1 bond, however, decreased by 0.018 electrons. Because the H1

atom’s other bond wedge, corresponding to the O2· · ·H1 bond, only increased by 0.001 electrons,

we can conclude that the remaining 0.017 electrons—the amount lost by the H1 atomic basin—was

transferred to the C2 atom rather than redistributed within the H1 atom. That is, shared covalent

charge density in the C2–H1 bond was lost by the H1 atom, responsible for at least half of the charge

density gained in the corresponding C2 bond wedge. Furthermore, given the much lower electron

counts of the O-bonded H atoms—around 0.37e in this case—we can assume the H1 atom, at 0.86e,

must lose roughly half an electron during its abstraction to Asp40. The EEF-induced decrease of

0.17e constitutes over a third of the necessary H1 atomic charge depletion as dictated by the reaction,

so here too the ρ(r) response appears to facilitate deprotonation.

A chemically insightful interpretation of the atomic basin results can be had using a functional

group—rather than an atomic—framework. While we cannot speculate about transitions in bond

order from an atomic basin perspective, it does seem clear that the carbonyl bond is activated (the O1

and C2 atoms both increasing density). Also, the decrease in charge in the C2 atom should increase

the acidity of this β C, promoting deprotonation. If the large ρ(r) accumulation in the C3 atom

is ignored, we have a general picture of the r- EEF shifting charge through the conjugated system

towards the carbonyl that is activated. This approach, however, necessitates the use of deeper

chemical concepts, convention, and prior assumptions. The results from inspecting bond bundle

redistribution, however, would have indicated the same inter-bond charge redistribution whether or

not we had drawn our arrows ahead of time.

Lastly, here we can see how atomic basins and bond bundles are merely different unions of

bond wedges, each providing its own chemical perspective. It can be visibly seen in Figure 5 (or

numerically in Table 1) that the bond wedge ρ(r) changes combine to give the atomic basin or bond

bundle change, which is definitionally the case. Yet owing to their distinct underlying language,

concepts and models, a very different interpretative process unfolds depending on which is taken to

be the irreducible, building block structure of the charge density.
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Figure 6: Sampling of atomic basin and bond bundle properties correlated against KSI-catalyzed
isomerization reaction barrier energy. Center: Schematic representation of the atomic basins (top) and
bond bundles (bottom) shown. Sides: Plots of regional properties vs barrier energy.

3.2 KSI catalytic enhancement and inhibition

While the direct inspection of regional properties can be useful for comparison between small numbers

of systems, as above, it can become convoluted with larger datasets or multiple perturbations. As

in References 2 and 27, we instead take a statistical approach, checking for correlations between the

property of interest (e.g. system energy) and regional properties.

Figure 6 shows a selection of some of the fits of reaction barrier height as a function of different

gradient bundle condensed properties. Atomic basin correlations were strongest for the C2 and

H1 atoms. Specifically, the electronic population of the H1 atom correlates positively with reaction

barrier, as does the atomic volume of C2. The bond bundle picture, however, indicates that property

shifts within the substrate play an important role, as chemically anticipated. In this case, positive

correlation of the O1–C1 bond kinetic energy and negative correlation of the C1–C2 bond population

together indicate that, to lower the reaction barrier, charge should increase in the C1–C2 bond, and

kinetic energy should decrease in the C1–O1 bond (thus increasing total energy, weakening the

carbonyl bond and activating the O atom), in agreement with the anecdotal results in the previous
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section.

As there are a number of regional properties that can be calculated for bond bundles, bond

wedges, and atomic basins, it is helpful to simplify and plot multiple correlation coefficients simulta-

neously, to see at once how e.g. volume and energy each correlate, and to access a more immediate

chemical interpretation. Inspired graphically by Reference 41, we have included correlations of re-

gional ρ(r) along with regional volume (V ), kinetic energy (T ), and solid angle (α; Section 2.3)

in Figure 7. These stacked and sorted correlations are used to shade representative regions as in

Figure 5. Note that the shading has opposite meaning between the two figures, in regards to ener-

getic significance. In Figure 7 a blue-hashed region anti-correlates with reaction barrier energy, so

an increase in regional properties should lower the reaction barrier. Unlike in Figure 5, where an

orange region was one in which ρ(r) increased in response to a catalyzing EEF.

In this case, the rate enhancement of the reaction in the KSI active site, resulting from applied

electric fields or active-site atomic substitution, is achieved by redistributing charge density between

bond bundles in a way that, again, closely resembles our mechanistic understanding of the reac-

tion. Specifically, the C1–C2 bond most anti-correlates with reaction barrier energy, indicating that

promoting (or hindering) its transition from single to double bond generally lowers (or raises) the

reaction barrier. The O1 C1 and O1· · ·H3 bond bundles respectively correlate and anti-correlate

with barrier height, indicating that activation of the O atom—or at least increasing its lone pair

density and decreasing the carbonyl bond density—lowers the barrier. At the deprotonation site,

the C2–H1 bond properties anti-correlate with barrier height, suggesting paradoxically that increas-

ing the property content of the “breaking” bond facilitates its own breaking. Altogether, the bond

bundle property correlations seem to indicate the same underlying catalytic charge density shifts

as those resulting from an applied EEF, including the reversed behavior at the deprotonation site.

Here the results indicate a structure property relationship between reactant state substrate bond

bundle properties and the barrier height of the KSI-catalyzed reaction, regardless of the source of

bond bundle property perturbation.

Another conclusion, similar in part to the previous section, can be arrived at from the inspection

of atomic basin correlations. In this case, the C2 and H1 atoms at the deprotonation site correlate

with barrier height, indicating their combined atomic properties should be lowered, as resulted from

the applied r- field, in order to facilitate deprotonation. The O atom anti-correlates, suggesting

again that it should be activated via accumulating charge density, but only slightly. However, while
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Figure 7: Atomic basin, bond bundle, and bond wedge (top; left to right) property correlations with
reaction barrier energy, signed as positive or negative to indicate correlation and anti-correlation. Above
are cartoon, schematic depictions of the overlaid on the Lewis representation of the active site, with
electron pushing arrows in the center pane denoting the deprotonation reaction step from Scheme 1.
Regions are shaded above, and sorted in the plots below, according to the sign and magnitude of their
electron population (ρ) correlations with reaction barrier. The regional kinetic energy (T ), volume (V ),
and normalized solid angle (α) are plotted as well.
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the conjugated carbon system experienced the greatest amount of inter-atomic ρ(r) redistribution

due to the EEF (Figure 5), the C1 and C3 atomic properties show almost no correlation with

reaction barrier. Instead, the H1 and C2 atoms most strongly correlate. This disparity suggests

that the atomic basin ρ(r) redistribution accompanying the catalytic r- EEF is not indicative of that

which generally produces a catalytic effect. On the other hand, the r- EEF-induced bond bundle

redistribution seems quite indicative of the general behavior.

Indeed, the (anti)similarity between bond bundle correlations and EEF-induced bond bundle

property shifts is stark. With very few exceptions, regions of ρ(r) accumulation due to the r-

field are those that anti-correlate with reaction barrier. Likewise, regions of ρ(r) depletion due to

the field correlate positively with reaction barrier. Additionally. the C1–C2 bond bundle, which

experienced the greatest increase in ρ(r) due to the EEF, also most strongly anti-correlates with

barrier height. Given that the r- system was included in the regional correlations, and that it is the

most rate-enhancing system in the (small) sample, it is no surprise that it should be represented

in the resulting correlations. However, as noted above, atomic basin regional correlations share less

similarity with their r- field-induced redistribution in KSI.

A final and somewhat unexpected similarity to the results of the previous section is the additivity

of bond wedge property correlations to predict those of bond bundles and atomic basins. For

example, the two H3 bond wedges strongly correlate and anti-correlate respectively, and the H3

atomic basin as a whole has nearly zero correlation, as if its bond wedges combined deconstructively

to give the whole. The same deconstructive behavior is apparent in the C1 and C3 atoms, while

the H1 atom is clearly an outlier to this trend. Bond wedge correlations combine to predict those

of bond bundles in a similar way, and in this case without exception; the correlation of each bond

bundle appears to be the sum of its bond wedge correlations. While gradient bundle properties

are definitionally additive, it cannot be said that gradient bundle energetic significance is additive.

Here we have the H1 atom—whose bond wedge correlations would sum to negative rather than

positive atomic basin correlation—as our proof by contradiction against such additivity in general.

Regardless, bond wedge regional energetic significance does seem to typically combine to predict

bond bundle significance.

Regarding the nearly uniform agreement between the correlations of different regional properties

with reaction barrier energy, we have previously observed that the regional volume, kinetic energy,

and solid angle tend to correlate strongly with the charge density, at least in organic chemical sys-
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Figure 8: Property correlations within a selection of gradient bundles. Electron density (ρ), kinetic
energy (T ), volume (V ), and solid angle (α) are included.

tems [30]. It is then somewhat expected that these properties should yield similar correlations with

respect to reaction barrier height, as is clearly the general case in KSI. Disagreement between reac-

tion barrier-property correlations for a particular region indicates an underlying lack of correlation

between the properties themselves across the set of systems. In the C1—O1 bond bundle, for ex-

ample, where kinetic energy (T ) and solid angle (α) correlate more strongly with reaction barrier

than do charge density (ρ) and volume (V ), and by similar amounts. Inspecting regional property

correlations (shown in Figure 8) within the C1–O1 bond bundle, ρ and V correlate strongly with

each other but weakly with T and α, and the reverse is true. Hence the difference in reaction barrier

height correlations of these regional properties stems from the fact that they responded differently

to the applied EEFs than to the mutated amino acids in the KSI active site.

Furthermore, this is consistent for all regions in the study. The C1–C2 bond bundle, for example,

has very similar anti-correlation to reaction barrier height for all four properties, and in Figure 8 we

see they all strongly correlate. The H1 atomic basin has strong ρ and T barrier correlation but weak

V anti-correlation, and indeed ρ and T correlate strongly with each other and weakly with V . The

C2 atomic basin is similar in both respects to H1, but less pronounced. Instead, the two C2–H bond
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wedges are a good example because they experience the strongest overall correlations to reaction

barrier height, and both correlate more weakly with V than with ρ, T , or α. Likewise, in both C2–H

bond wedges, ρ, T , and α correlate strongly with each other and weakly with V . Because the cor-

relation among regional properties appears to be closely tied to their relative energetic significance,

we speculate that different types of system changes (e.g. an applied EEF vs. amino acid mutation)

enhance catalysis through different mechanisms that affect and utilize some properties more than

others within a given region. Further, we speculate that weak correlation between a region’s prop-

erties (e.g. the C1–O1 bond bundle) indicates the region is used by these different mechanisms in

functionally different ways. Conversely, strong correlation between a region’s properties, together

with strong correlation to reaction barrier height (e.g. the C1–C2 bond bundle) indicates that the

region has the same functional catalytic role regardless of the type of system change, i.e. that it

more fundamentally underlies the catalysis.

Overall, in regards to the mechanism and augmentation of the catalytic activity of KSI, this

statistical use of bond bundle property analysis leads us to chemically similar conclusions to those

of direct inspection of EEF-induced bond bundle property redistributions from the previous section.

Correlations of reaction barrier energy to bond bundle regional properties largely recover the known

redistribution of the catalyzed chemical reaction depicted with electron-pushing arrows. Bond bundle

analysis results invite interpretations firmly within existing bonding concepts the use of common

bond terminology. In this way, our conclusions were not arrived at using chemical intuition like

a rosetta stone to decipher raw data. Rather, because the raw data are explicitly descriptive of

bond properties, even the most basic sort of direct inspection and statistical analysis, in this case,

recovered our chemical intuition.

4 Conclusion

The pursuit of rational, computer-aided artificial enzyme design requires a robust understanding

of the chemical reactions catalyzed, down to the level of individual atom and bond energies. Here

we have presented one method of directly accessing the energies and energy-mediated properties of

real-space bonding regions in any chemical system, applied to the specific problem of KSI catalytic

augmentation. We inspected the redistribution of ρ(r) due to a catalyzing EEF, qualitatively and

quantitatively observing bond transitions similar to those of the known catalyzed reaction mech-
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anism, so the catalyzing field was that which shifted ρ(r), non-uniformly, in the forward reaction

direction. We also found that correlations between reaction barrier energies and bond bundle prop-

erties recovered a similar picture of the understood charge rearrangement.

Constructing a complete, descriptive network of enzyme ρ(r) structure-property relationships,

such that local changes in ρ(r) could be used to accurately predict catalytic rate enhancement, will

be a formidable task owing to the lack of underlying energetic additivity between the independent

properties of enzymes [1]. Bond bundles do possess spatial and energetic additivity, are uniquely

defined in any chemical system, and their analysis appears to naturally leverage our hard won un-

derstanding of chemical bonding. Furthermore, in this case the correlation of bond wedge properties

with rate enhancement did, in fact, appear to be additive, so there is a readily quantifiable sense in

which catalyzing features may have underlying energetic additivity. Bond wedge and bond bundles

are thus attractive tools for identifying, measuring, and contextualizing the redistribution of ρ(r)

and other properties that accompanies and underlies enzymatic catalysis.

Methods

All ab-initio calculations were performed using the ADF package of The Amsterdam Modeling Suite

[45–47]. Relaxed system geometries were obtained with initial coordinates from References 27 and

2 as mentioned above. Optimization of all five systems was performed using a triple-ζ STO all-

electron basis set with one polarization function [48], with the Minnesota’06-2X XC energy density

functional [49, 50] and “good” numerical integration quality. The NEF system relaxation also

included implicit COSMO solvation [51, 52] using Allinger solvent radii and a dielectric constant of

ε = 4.0. Subsequent single-point calculations were run with the same basis set and functional, with

the same COSMO settings now used for all systems. All applied electric fields were of magnitude

10MV/cm. The formaldehyde calculation results in Table 1 used a triple-ζ all-electron basis set with

the PBE functional [53].

Topological analysis, along with atomic basin and bond bundle/wedge decomposition was per-

formed with the Bondalyzer software suite of the Molecular Theory Group at Colorado School of

Mines [54], an add-on to the Tecplot360 visualization package [55]. Statistical analysis was performed

in Python, and the MatPlotLib [56] and SeaBorn [57] libraries were used for plotting line/scatter

and bar charts respectively. Chemical diagrams were composed in MarvinSketch [58]. Final figures
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were compiled in Affinity Designer [59].
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tions to Binding of Transition State Analogues Can Be Very Different from the Corresponding

Contributions to Catalysis: Phenolates Binding to the Oxyanion Hole of Ketosteroid Isomerase.

Biochemistry, 46(6):1466–1476, February 2007. doi:10.1021/bi061752u.

[34] Gregory M. Vath, Cathleen A. Earhart, James V. Rago, Michael H. Kim, Gregory A. Bohach,

Patrick M. Schlievert, and Douglas H. Ohlendorf. The Structure of the Superantigen Exfoliative

Toxin A Suggests a Novel Regulation as a Serine Protease,. Biochemistry, 36(7):1559–1566,

February 1997. doi:10.1021/bi962614f.

[35] Matthew R. Hennefarth and Anastassia N. Alexandrova. Heterogeneous Intramolecular Elec-

tric Field as a Descriptor of Diels–Alder Reactivity. The Journal of Physical Chemistry A,

125(5):1289–1298, February 2021. doi:10.1021/acs.jpca.1c00181.

[36] R F W Bader, T T Nguyen-Dang, and Per-Olov Löwdin. Quantum Theory of Atoms in
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