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Abstract: A plethora of AI-based techniques now exists to conduct de novo molecule 14 

generation that can devise molecules conditioned towards a particular endpoint in the 15 

context of drug design. One popular approach is using reinforcement learning to update a 16 

recurrent neural network or language-based de novo molecule generator. However, 17 

reinforcement learning can be inefficient, sometimes requiring up to 105 molecules to be 18 

sampled to optimize more complex objectives, which poses a limitation when using 19 

computationally expensive scoring functions like docking or computer-aided synthesis 20 

planning models. In this work, we propose a reinforcement learning strategy called 21 

Augmented Hill-Climb based on a simple, hypothesis-driven hybrid between REINVENT and 22 

Hill-Climb that improves sample-efficiency by addressing the limitations of both currently 23 
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used strategies. We compare its ability to optimize several docking tasks with REINVENT 24 

and benchmark this strategy against other commonly used reinforcement learning strategies 25 

including REINFORCE, REINVENT (version 1 & 2), Hill-Climb and best agent reminder. We 26 

find that optimization ability is improved ~1.5-fold and sample-efficiency is improved ~45-fold 27 

compared to REINVENT while still delivering appealing chemistry as output. Diversity filters 28 

were used, and their parameters were tuned to overcome observed failure modes that take 29 

advantage of certain diversity filter configurations. Lastly, we find that Augmented Hill-Climb 30 

outperforms the other reinforcement learning strategies used on six tasks, especially in the 31 

early stages of training or for more difficult objectives. Overall, we hence show that AHC 32 

improves sample-efficiency for language-based de novo molecule generation conditioning 33 

via reinforcement learning, compared to the current state-of-the-art. This makes more 34 

computationally expensive scoring functions, such as docking, more accessible on a 35 

relevant timescale. 36 

Introduction 37 

Many generative model techniques and architectures applied to de novo molecule 38 

generation exist. These models range from purely symbolic approaches such as genetic 39 

algorithms [1, 2]  to more recent machine learning (ML) approaches such as recurrent neural 40 

networks (RNNs) [3–7], transformers [8–10], variational autoencoders [11–14], generative 41 

adversarial networks [15–17], graph neural networks [18, 19] and hybrid approaches that 42 

use ML to guide reinforcement learning (RL) in a heuristic action space [20]. These 43 

generative models can produce valid and novel molecules [21, 22] and condition molecule 44 

generation towards a particular endpoint [21] (e.g., predicted bioactivity towards a protein 45 

target [4]) via optimization techniques such as, RL [4, 20, 23], Bayesian optimization [11, 13], 46 

molecular swarm optimization [14] and Monte Carlo tree search [2, 6]. Although generative 47 

models still face many challenges for trusted and routine integration into drug discovery 48 

pipelines including practical relevance and more comprehensive evaluation [24].  49 
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Of the more recent ML-based approaches to de novo molecule generation, RNNs were one 50 

of the first to appear with the seminal approaches being published ~ 5 years ago. The first by 51 

Segler et al. [3] who fine-tuned an RNN on molecules of biological interest to generate 52 

molecules containing similar properties de novo. The second by Olivecrona et al. [4] who 53 

instead used RL to update the RNN to generate molecules de novo that maximized 54 

predicted properties (e.g., predicted bioactivity of molecules). These results were obtained 55 

by representing molecules using the SMILES language [25] which emulates the RNN’s 56 

designed application for use in natural language processing [26, 27]. When trained on a 57 

large dataset of SMILES (>105), an RNN can predict the next symbol in a sequence 58 

conditional upon previously seen symbols. Thus, by supplying a start symbol, new symbols 59 

can be sampled from the probability distribution corresponding to the next symbol (output by 60 

the RNN), which is then recursively fed back into the network resulting in de novo molecules.  61 

Despite a wave of newer approaches since (e.g., JT-VAE [12], DrugEx [28], GENTRL [29], 62 

GraphINVENT [19, 30]), RNNs are still frequently used and investigated for de novo 63 

molecule generation (e.g., [31–33]). Furthermore, they still match the state-of-the-art on 64 

several de novo molecule generation benchmarks [21, 22, 34, 35].  65 

Although it is possible to optimize RNN de novo molecule generation via fine-tuning on a 66 

smaller dataset of molecules relevant to a particular endpoint (as in [3]), such a priori 67 

knowledge is not always available or may bias de novo molecule generation too much 68 

towards what is already known resulting in a lack of novelty. Whereas reinforcement learning 69 

(RL) can be used to optimize de novo compounds to maximize/minimize a numerical reward 70 

which can be provided by either a single or a combination of scoring functions. Several RL 71 

strategies have been combined with RNNs including Hill-Climb (HC) [21, 36], REINFORCE 72 

[37] (used in [5]) and REINVENT [4]. Two of these RL strategies (REINVENT and HC) have 73 

been shown to rank top one or two in optimization tasks compared to other generative 74 

models [21, 34, 35]. Monte Carlo tree search approaches have also been proposed to 75 

search a trained RNN’s sample space [6, 38, 39]; however, no RNN parameters are updated 76 
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(no RNN learning takes place) during this process and so task optimization is rather an 77 

optimized search within the RNNs current generative domain.  78 

Despite excellent performance on benchmarks, RNN de novo molecule optimization using 79 

RL can be very sample-inefficient often requiring 10s or 100s of thousands of molecules to 80 

optimize a task. For example, 163,840 molecules were sampled during HC optimization for 81 

GuacaMol benchmark tasks [21] and 192,000 molecules were sampled during REINVENT 82 

optimization of DRD2 predicted activity [4] (although neither study specified at which point 83 

the task was ‘sufficiently’ optimized, which could have been before optimization finished). 84 

While low sample-efficiency is not a problem for easily computed scoring functions such as 85 

property calculation, it significantly hinders the use of scoring functions requiring a significant 86 

amount of computation such as molecular docking and computer aided-synthesis planning. 87 

This is becoming increasingly important with recent growth in interest in using molecular 88 

docking scoring functions to guide de novo molecule generation [40–48]. This approach has 89 

shown to result in more diverse and novel compounds with a broader coverage of known 90 

active space than an equivalent QSAR model trained on known ligands [47]. Other studies 91 

have used ML to model molecular docking or other physics-based scoring functions which is 92 

less computationally expensive [34, 49, 50]. However, use of a model of a model reduces 93 

the advantages of such scoring functions by being less able to extrapolate novel chemical 94 

space and adds prediction uncertainty on top of pre-existing inaccuracies [51, 52]. 95 

Therefore, it is attractive to improve the sample-efficiency of RL optimization to enable 96 

routine use of such docking-based scoring functions directly. 97 

Previous work has explored RL strategies and parameters for RNNs de novo molecule 98 

generation to varying degrees. Niel et al. [36] compared different RL strategies (including 99 

REINFORCE, HC and REINVENT) and optimized a selection of tasks. However, the 100 

difference in sample-efficiency was not clear and their code was not published. A 101 

comparison of REINVENT versions 1.0 and 2.0 shows that the default sigma parameter 102 

value was increased. This effectively increases the reward contribution compared to the prior 103 



5 
 

contribution and theoretically improves sample-efficiency, although this was not discussed in 104 

the publication [53]. Fialková et al. [54] investigated more significant modifications to the 105 

REINVENT loss function which did not result in any significant improvement. Meanwhile, 106 

Atance et al. [19] modified the loss function by adding a best agent reminder (BAR) 107 

mechanism to the loss function resulting in ‘significantly improved learning’ (although this 108 

was not further quantified by the authors and it pertained to use on a graph-based 109 

generation model). 110 

Here, with the aim to improve the sample-efficiency of SMILES-based RNNs, we make a 111 

very simple change to the REINVENT strategy to ameliorate overpowered regularization by 112 

introducing elements of the HC strategy. We call this novel hybrid approach Augmented Hill-113 

Climb (AHC) and investigate it’s use for RNN de novo molecule generation. We further 114 

compare AHC to previously mentioned RL strategies that are implemented in published 115 

studies and make the code freely accessible [55].  116 
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Methods 117 

The evaluation of AHC and comparison to other RL strategies was built around four key 118 

experiments which are summarised in Figure 1 (the details of which follow in the remainder 119 

of the Methods): Experiment 1, comparison between AHC and REINVENT on the ability to 120 

minimize the docking score against the D2 receptor (DRD2) over a very limited number RL 121 

updates. Experiment 2, comparison between AHC and REINVENT on the ability to minimize 122 

the docking score against four different receptors over an extended number of RL updates 123 

relative to Experiment 1. Experiment 3, investigation of diversity filters and their parameters 124 

for use in combination with AHC by optimizing toy tasks proposed by the GuacaMol 125 

benchmark suite [21]. Experiment 4, benchmark comparison between AHC and other RL 126 

strategies on six tasks of varying difficulty. 127 

 128 

Figure 1: Schematic of the four experiments conducted in this work with the focus of each experiment 129 

in bold face. In each case the Prior and Agent refer to an RNN. 1) Comparison of AHC to REINVENT 130 

on a single docking task over 100 RL updates. 2) Comparison of AHC to REINVENT on four different 131 

docking tasks over 500 RL updates. 3) Diversity filter and parameter search for use in combination 132 

with AHC on three toy tasks proposed by GuacaMol benchmark suite. 4) Benchmark comparison of 133 

AHC to other RL strategies across a six optimization tasks of varying difficulty. 134 
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Recurrent neural network datasets 135 

RNNs were trained using either a modification of the MOSES dataset or the GuacaMol 136 

dataset. Firstly, the MOSES dataset [22] is derived from ZINC15 clean leads [56] and 137 

contains a library of ‘drug-like’ small organic molecules. It is designed to benchmark 138 

generative model de novo molecule generation. The MOSES dataset applies several filters 139 

during curation including: molecular weight between 250–350 Da; number of rotatable bonds 140 

not greater than 8; XlogP [57] not greater than 3.5; no atoms besides C, N, S, O, F, Cl, Br, 141 

H; no cycles larger than 7 members; molecules adhering to custom medicinal chemistry [58, 142 

59] and PAINS filters [60]. In addition, charged species are removed; here however, we 143 

deviate from this curation by neutralising charged species and hence avoid a bias towards 144 

non-protonatable groups. To distinguish this from the original MOSES dataset, we refer to 145 

this as MOSES neutralized (MOSESn)[47]. This resulted in a training set of 2,454,087 146 

molecules. The GuacaMol train dataset [21] (1,273,104 molecules) is derived from 147 

ChEMBL24 and contains real molecules both in the ‘drug-like’ domain and others such as 148 

peptides and natural products. This dataset was designed to benchmark both generative 149 

model de novo molecule generation and subsequent objective optimization. The GuacaMol 150 

dataset applies the following filters during curation: salt removal; charge neutralization; 151 

molecules with SMILES strings < 100; no atoms besides H, B, C, N, O, F, Si, P, S, Cl, Se, 152 

Br, and I. Therefore, the GuacaMol dataset results in a training set with a much broader 153 

variety of chemotypes present than MOSESn.  154 

Recurrent neural network 155 

Recurrent neural networks are deep neural networks composed of layers of either long 156 

short-term memory units or gated recurrent units, which store and transfer information from 157 

one state to the next. In de novo molecule generation, SMILES symbols are one-hot 158 

encoded into a binary vector which is used as input to the network. These networks are then 159 

trained to predict the conditional probability of a SMILES subsequent symbols given a 160 

sequence of previously seen SMILES symbols. This is achieved by training the network 161 
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using maximum likelihood estimation (equivalent to minimizing the negative log likelihood), 162 

whereby the model must maximize the likelihood assigned to the correct symbol 𝐱 at time 𝐭 163 

conditional upon all previously observed symbols. The resulting loss function L 164 

parameterized by the network parameters θ is shown in Equation 1. For further details we 165 

refer the reader to [4]. 166 

𝐿(𝜃) =  − ∑ 𝑙𝑜𝑔𝑃(𝑥𝑡|𝑥𝑡−1 … 𝑥0)

𝑇

𝑡=0

 167 

( 1 ) 168 

The RNN implemented in this work is the same as [3, 4, 53, 61]. Specifically, three RNN 169 

configurations were used, either trained on MOSESn or GuacaMol train. The first RNN 170 

configuration consisted of an embedding layer of size 128 and three gated recurrent unit 171 

(GRU) layers of size 512 with no dropout – implemented using the code shared in the 172 

original work [4]. This implementation was only used with the original REINVENT RL 173 

strategy in experiment 2, as a comparison to older work. The second configuration consisted 174 

of an embedding layer of size 256 and three long short-term memory (LSTM) layers of size 175 

512 with no dropout – consistent with the REINVENT 2.0 implementation [53]. The third 176 

configuration consisted of three LSTM layers of size 512 with a dropout rate of 0.2, 177 

consistent with the GuacaMol implementation [21] as found on the corresponding GitHub 178 

repository [62]. The first and second configurations were trained on the MOSESn dataset for 179 

5 epochs using a batch size of 128 with an ADAM optimizer and learning rate of 0.001, while 180 

the third configuration was trained on GuacaMol train for 10 epochs using a batch size of 181 

512 with an ADAM optimizer and learning rate of 0.001. 182 

Reinforcement learning 183 

We will in the following briefly review reinforcement learning strategies for recurrent neural 184 

networks in order to embed our methodological changes into context. 185 
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RL introduces the paradigm of an episodic task where an agent (here the RNN) decides an 186 

action (𝐚𝐭 ∈ 𝐀) (here, the next SMILES symbol) at time step 𝐭 based on interaction with an 187 

environment which informs the agent on the current state (𝐬𝐭 ∈ 𝐒) (here, the SMILES string) 188 

and corresponding reward (𝐫𝐭) (here, computed at the end of the episode (𝐑𝐓 ∈ [𝟎, 𝟏]) by the 189 

scoring function) in a Markov Decision Process [63]. Different RL strategies can then be 190 

used to describe how to navigate this landscape. These usually fall into one of two 191 

categories: value-based strategies focus on estimating the value of an action given a 192 

particular a state (or value of being in a state) and selecting an action so as to maximize the 193 

final estimated return (𝐺 = ∑ 𝑟𝑡
𝑇
𝑡 ), while policy-based RL focusses on identifying the best 194 

policy (𝝅) for selecting actions without necessarily consulting a value function to estimate the 195 

absolute value of that state/action.  196 

The practical nature of SMILES-based RNN molecule generation complicates the use of 197 

value-based RL strategies as incomplete SMILES generated at different time steps do not 198 

always result in a valid molecule for which a reward can be assigned. In contrast, policy 199 

methods do not require a reward for each action/state and as such are typically used in this 200 

setting [4, 5, 21]. Furthermore, as discussed by Olivecrona et al. [4], an RNN is first trained 201 

on a large dataset of example molecules which effectively constitutes a prior policy for 202 

molecule generation, thus only small changes to the prior policy may be needed. 203 

As a simple baseline strategy, we implemented REINFORCE [64] which is also used in [36, 204 

65]. This is an ‘all-actions’ policy-based method because the policy update only requires a 205 

sum over all actions and the return for the whole episode (final molecule) – important due to 206 

potentially invalid partial smiles during generation. The loss function is described in Equation 207 

2 where it can be interpreted as a scaling of the policy (here the negative log likelihood, also 208 

described in Equation 1) by the reward given to the complete molecule (𝐑𝐓). 209 
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𝐿(𝜃) = [− ∑ 𝑙𝑜𝑔𝑃(𝑎𝑡|𝑠𝑡−1)

𝑇

𝑡=0

] 𝑅𝑇 210 

( 2 ) 211 

In this work, we implemented REINVENT [4, 53] (depicted in Figure 2) which is a popular 212 

strategy used in the literature, and the strategy we used in our previous work [47]. 213 

REINVENT is a REINFORCE type strategy that explicitly regularizes optimization by adding 214 

a prior policy to the loss function. This prior policy is derived by computing the negative log 215 

likelihood from a fixed copy of the initially trained RNN (the prior). This regularization 216 

ensures that the RNN being optimized (the agent) maintains what was initially learnt by the 217 

prior i.e., how to generate valid SMILES corresponding to the training distribution. A 218 

combination of this prior policy and scaled reward (scaled by scaling coefficient sigma (σ)) is 219 

then used to define an augmented likelihood, as shown in Equation 3. This augmented 220 

likelihood then acts as a target policy for the agent and the loss function is now defined as 221 

the difference between the agent policy and target policy, shown in Equation 4. Note that we 222 

have replaced − ∑ 𝑙𝑜𝑔𝑃(𝑎𝑡|𝑠𝑡−1)𝑇
𝑡=0  by the equivalent term 𝑙𝑜𝑔𝑃(𝐴). 223 

𝑙𝑜𝑔𝑃𝕌(𝐴) = 𝑙𝑜𝑔𝑃𝑝𝑟𝑖𝑜𝑟(𝐴) +  𝜎𝑅𝑇 224 

( 3 ) 225 

𝐿(𝜃) =  [𝑙𝑜𝑔𝑃𝕌(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)] 2 226 

( 4 ) 227 

Recently a strategy was proposed that offered modest performance improvement over 228 

REINVENT called ‘best agent reminder’ (BAR) [19], although this was implemented on a 229 

graph-based generative model. We have implemented it for an RNN using the same 230 

principle to compare it to the other strategies used here as another baseline strategy. This 231 

mechanism keeps track of the best agent so far, updating it periodically. During optimization, 232 

a batch of molecules m (of batch size S) is sampled from both the current agent (𝑀𝑎𝑔𝑒𝑛𝑡) and 233 
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best agent (𝑀𝑏𝑒𝑠𝑡), to serve as a reminder of high scoring molecules. Although the loss 234 

function is the same as Equation 4 for the respective agents, the loss weighted average is 235 

taken across agents scaled by α, as shown in Equation 5. This effectively acts to minimize 236 

the agent policy difference to the ‘best agent optimal policy’ and the ‘prior optimal policy’, 237 

scaled by α.  238 

𝐿(𝜃) =
(1 − 𝛼)

𝑆
∑ [𝑙𝑜𝑔𝑃𝕌𝑝𝑟𝑖𝑜𝑟

(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)]  2

𝑚∈𝑀𝑎𝑔𝑒𝑛𝑡

239 

+
𝛼

𝑆
∑ [𝑙𝑜𝑔𝑃𝕌𝑏𝑒𝑠𝑡

(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)] 2

𝑚∈𝑀𝑏𝑒𝑠𝑡

 240 

( 5 ) 241 

Hill-Climb (HC) [36] is an alternative policy-based strategy benchmarked in [21, 35] that 242 

shows state-of-the-art or near state-of-the-art performance. HC can also be interpreted as a 243 

form of iterative fine-tuning (where fine-tuning molecules are selected by the scoring function 244 

rather than e.g., known activity against a certain target). The agent RNN first samples a 245 

batch of molecules, and then the RNN is fine-tuned using the same loss function as 246 

Equation 1 but using only the top k molecules from the batch, as ranked according to some 247 

reward assigned to each molecule. This algorithm is depicted in the top part of Figure 2.  248 

In this work, we define a new strategy we call Augmented Hill-Climb (AHC), depicted in 249 

Figure 2 with its constituent parts shown at the top (for HC), and bottom (for REINVENT). 250 

This strategy is a simple hybrid between the HC and REINVENT strategies where the loss is 251 

calculated as in REINVENT (by defining the augmented likelihood) but only on the top k 252 

molecules, as ranked by reward as in HC. The rationale behind this strategy is based on 253 

practical limitations of the REINVENT loss function: when low scoring molecules (𝑅𝑇 → 0) 254 

are sampled the score contribution goes to zero and 𝑙𝑜𝑔𝑃𝕌(𝐴) ≈ 𝑙𝑜𝑔𝑃𝑝𝑟𝑖𝑜𝑟(𝐴). In this 255 

situation, as the loss function (Equation 4) is a distance, the agent policy will, in-fact, trend 256 

back towards the prior policy which may negate useful learnings. This situation of low 257 

scoring molecules being present will occur especially either early in the learning process or 258 
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when a difficult or highly constrained scoring function is used. Therefore, the heavy 259 

regularization effect of low scoring molecules significantly contributes to slow learning in 260 

these situations. In turn, focussing learning only on the high scoring molecules (𝑅𝑇 → 1) will 261 

improve learning. It is worth noting that, high scoring molecules are still regularized by the 262 

prior policy, as shown in Equation 3, ensuring prior learnings are not ‘forgotten’.  263 

 264 

Figure 2: Depiction of the REINVENT, Hill-Climb (HC) and Augmented Hill-Climb (AHC) optimization 265 

algorithms and subsequent loss functions L as parameterized by network parameters θ. AHC is a 266 

hybrid algorithm that combines elements of REINVENT and HC.  267 

As the RL strategies REINFORCE and HC are not explicitly regularized (as they are in 268 

REINVENT, BAR and AHC), cost terms can be added to the loss function to achieve 269 

regularization. This step is important in practice to maintain some similarities to the training 270 

distribution but also to not catastrophically forget chemical principles which will result in 271 

invalid structures (due to valency errors etc.). To assess the effectiveness of this, we 272 

evaluated the addition of the Kullback-Leibler (KL) divergence between the prior and agent 273 

scaled by a scaling coefficient λ, as shown in Equation 6 and as implemented in [36, 66]. 274 

This adds a constraint to ensure the distribution of agent action probabilities does not differ 275 

too much from the distribution of prior action probabilities.  276 
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𝐶(𝐾𝐿) =  𝜆𝐾𝐿𝔼 [∑  

𝑇

𝑡=0

∑ 𝑃𝑎𝑔𝑒𝑛𝑡(𝑎𝑖|𝑠𝑡−1)𝑙𝑜𝑔
𝑃𝑎𝑔𝑒𝑛𝑡(𝑎𝑖|𝑠𝑡−1)

𝑃𝑝𝑟𝑖𝑜𝑟(𝑎𝑖|𝑠𝑡−1)

 

𝑎𝑖∈𝐴

] 277 

( 6 ) 278 

Unless otherwise specified, the hyperparameters used for the different RL strategies are 279 

those reported in each individual study. They are listed in Table S1. The number of RL 280 

update steps was adjusted to result in an approximately equal number of molecules sampled 281 

during training. Hill-Climb* was included to investigate the effect of a smaller batch size in 282 

line with AHC. 283 

Diversity filters 284 

Applying diversity filters (DFs) is a way of penalizing the reward for an associated molecule 285 

based on the molecular similarity to previously generated molecules resulting in diminishing 286 

returns for exploitation, therefore encouraging exploration outside of local minima. Blaschke 287 

et al. [67] introduced several DFs for RNN molecule generation based on different measures 288 

of similarity including compoundsimilarity (Tanimoto similarity of compound ECFP 289 

[68]fingerprints), identicalmurckoscaffold (matching Bemis-Murcko scaffolds [69]), 290 

identicaltopologicalscaffold (matching Bemis-Murcko scaffolds with all atoms treated as 291 

carbon atoms and bonds as single bonds) and scaffoldsimilarityatompair (Tanimoto similarity 292 

of scaffold atom pair fingerprints [70]). More specifically, if generated molecules receive a 293 

high enough score by a scoring function (minimum score threshold) then the molecules are 294 

added to bins based on similarity as defined by any of the above-mentioned DFs. Molecules 295 

assigned to a bin are subsequently penalized according by a binary, sigmoid or linear score 296 

transformation (output mode) based on the maximum allowed bin size. Blaschke et al. [67] 297 

showed that they result in increased diversity of de novo compounds as measured by an 298 

increased number of analogues to known molecules.   299 

In addition, we investigated the use of the following DFs: 300 
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1) unique – a simple DF to serve as a baseline. This DF transforms a molecule’s score to 301 

zero if the molecule is non-unique.  302 

2) occurrence – This DF linearly penalizes non-unique molecules based on the number of 303 

previous occurrences, which acts as a more lenient version of the unique DF. The score 304 

is transformed according to the number of previous occurrences (𝐎𝐜𝐜) beyond an 305 

allowed tolerance (𝐓𝐨𝐥) until a hard threshold is reached, referred to as the buffer (𝐁𝐮𝐟𝐟). 306 

This is shown in Equation 7.  307 

Filtered reward = {
RT×

Occ-(Tol+Buff)

Tol+Buff
if  Tol < Occ < Buff

RT if  Occ ≤ Tol
0 if  Occ ≥ Buff

 308 

( 7 ) 309 

3) scaffoldsimilarityecfp – This DF is a modification to those scaffoldsimilarityatompair 310 

introduced in [67] that uses the same parameters except for measuring similarity based 311 

on the Tanimoto similarity of the Bemis-Murcko [69] scaffold ECFP4 [68] fingerprints as 312 

implemented by RDKit [71].  313 

The DFs and parameters used in this work (i.e., DF1, DF2 and DF3) for tasks other than the 314 

parameter search in Experiment 3 are shown in Table S2. 315 

Scoring functions and benchmarking tasks 316 

Several scoring functions were used in this work to guide optimization and benchmark RL 317 

strategies. These are summarized in Table 1 and are described in more detail in the 318 

subsequent sections. All scoring functions were implemented using the MolScore platform 319 

[55] (manuscript in preparation).  320 

  321 
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Table 1: Summary of all objectives / tasks used in this work and for which experiment (see Figure 1). 322 

Experiment Aim Objective type Objective target Performance measure 

1 
Compare REINVENT and 

AHC for varying values of σ 
Docking DRD2 Docking score & uniqueness 

2 

Compare REINVENT and 

AHC against different target 

systems 

Docking DRD2 Docking score & uniqueness 

Docking OPRM1 Docking score & uniqueness 

Docking AGTR1 Docking score & uniqueness 

Docking OX1R Docking score & uniqueness 

3 

Investigate and identify 

optimal DF and respective 

parameters for use with 

AHC 

Similarity Aripiprazole Tanimoto similarity, uniqueness & wall time 

Isomer C11H24 Isomer score, uniqueness & wall time 

Similarity & PhysChem (MPO) Osimertinib MPO score, uniqueness & wall time 

4 

Benchmark AHC to other 

commonly used RL 

strategies 

PhysChem Heavy atoms # Heavy atoms, validity, uniqueness & wall time 

Similarity Risperidone Tanimoto similarity, validity, uniqueness & wall time 

Activity DRD2 Predicted activity, validity, uniqueness & wall time 

Docking DRD2 Docking score, validity, uniqueness & wall time 

Dual activity (MPO) DRD2 & DRD3 Average predicted activity, validity, uniqueness & wall time 

Selectivity (MPO) DRD2 > DRD3 Average predicted activity, validity, uniqueness & wall time 

 323 
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Target preparation and docking tasks 324 

Four different targets were used to setup molecular docking scoring functions to evaluate 325 

docking score optimization by RNNs in combination with RL strategies (Experiments 1, 2 326 

and 4 in Figure 1).  The four targets and corresponding x-ray crystal structures used in the 327 

docking tasks were D2 (DRD2, PDB: 6CM4 [72]), µ (OPRM1, PDB: 4DKL [73]), AT1 (AGTR1, 328 

PDB: 4YAY [74]) and OX1 (OX1R, PDB: 6TO7 [75]) receptors.  329 

All target crystal structures were first prepared using Schrodinger Protein Preparation Wizard 330 

[76] using default parameters which included: addition of protein and ligand hydrogens (pH 331 

7±2, Epik [77]), optimization of hydrogen bond networks (pH 7, PROPKA [78]), restrained 332 

minimization using the OPLS3e force field [79], and waters except for OPRM1 (which 333 

performed better retrospectively with crystallographic waters, data not shown). A default grid 334 

was defined using the respective co-crystallized ligands as the centre except for OX1R 335 

which had additional positional restraints defined based on consensus sub-pocket 336 

occupation by the following overlayed co-crystallized ligands, Suvorexant (PDB: 6TO7), 337 

Filorexant (PDB: 6TP6), Daridorexant (PDB: 6TP3), GSK1059865 (PDB: 6TOS), 338 

ACT462206 (PDB: 6TP4), Compound-16 (PDB: 6TQ4), Compound-14 (PDB: 6TQ6), EMPA 339 

(PDB: 6TOD) and Lemborexant (PDB: 6TOT) [75].  340 

Before docking, ligands were prepared using Schrodinger LigPrep [80] to enumerate 341 

unspecified stereocentres, tautomers and protonation states, with up to 8 variants generated 342 

per molecule, based on a pH range of 7±1. Variants were then docked using Glide-SP [81] 343 

with default settings, except for OX1R where docked poses were only accepted if they 344 

satisfied four out of five grid constraints. The lowest (i.e., best) docking score achieved by 345 

any molecule variant was returned as the final docking score. Docking score was normalized 346 

between the values of 0 and 1 based on all previously observed docking scores.  347 

Retrospective performance was assessed by docking known active and inactive molecules 348 

extracted for each human target from the ExCAPE-DB [82]. When more than 10,000 labelled 349 

molecules were present, a random subset of 10,000 molecules was taken. To better 350 
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represent de novo molecules docked which adhere to property constraints imposed by 351 

MOSESn, molecules above 500 Da were filtered out, stereo information removed, and any 352 

resulting duplicates removed. The final number of downloaded and docked molecules is 353 

shown in Table S3. Classification accuracy, precision and recall were assessed by varying 354 

docking score decision thresholds (Figure S1). In each case a threshold corresponding to 355 

~80% precision was identified, i.e. ~80% of molecules below this threshold are true actives 356 

retrospectively. The typical recall of true actives at this level was ~10-30%. 357 

Diversity filter parameter optimization tasks 358 

To investigate the effect of DF and parameter choice, less computationally expensive 359 

scoring functions were required than docking. Therefore, three diverse tasks from the 360 

GuacaMol benchmarking suite [21] were chosen and re-implemented according to the 361 

original work [21]. The goal the Aripiprazole similarity task is to optimize similarity to 362 

Aripiprazole beyond a similarity threshold in order to generate as many similar enough 363 

compounds as possible. The goal of the C11H24 isomer task is to generate all 159 molecules 364 

with a molecular formula of C11H24, a task involving a more limited pool of molecules. The 365 

goal of the Osimertinib MPO task is to optimize similarity to Osimertinib to a certain extent, 366 

while ensuring molecules are not too similar and that both lipophilicity and polarity are within 367 

a suitable range. The performance of DF parameters was measured by the area under the 368 

training curve of three different endpoints: uniqueness (number of unique molecules 369 

generated, a proxy of chemical space explored), goal (the score returned by the scoring 370 

function/s) and run time (a practical measure to identify if some DFs are slower to compute). 371 

QSAR model training 372 

Active and inactive molecules against DRD2 and against DRD3 were extracted from the 373 

ExCAPE-DB [82]. This corresponded to 4,609 and 2,758 active molecules and 343,026 and 374 

402,524 inactive molecules respectively. A further unique subset was defined for each target 375 

by excluding molecules with measured activity against the other target to ensure no domain 376 

overlap between DRD2 and DRD3 models for the dual and selective tasks, resulting in in 377 
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2,282 and 373 active molecules and 5,161 and 64,717 inactive molecules for DRD2 and 378 

DRD3 respectively. To tackle data imbalance, a maximally diverse selection of 5,000 379 

inactive molecules were selected for DRD2 and DRD3, respectively, via a MaxMin algorithm 380 

[83] on ECFP4 fingerprints with 2,048 bits, implemented in RDKit. Three random forest (RF) 381 

classification models were trained to predict probability of activity (with 100 estimators, max 382 

depth of 15 and minimum leaf sampled of 2), one on all DRD2 data with the diverse inactive 383 

subset and two on DRD2 and DRD3 unique data with diverse inactive subsets, all 384 

implemented in scikit-learn [84]. In each case model performance was estimated by 385 

stratified, active cluster split (inactive molecules were split randomly due to being a 386 

maximally diverse selection) 5-fold cross-validation with GHOST decision threshold 387 

identification [85] resulting in the performance shown in Figure S2.  388 

Reinforcement learning strategy benchmark tasks 389 

Six further tasks of varying difficulty were used to benchmark the different RL strategies at 390 

three levels of objective complexity: 391 

1) # Heavy atoms – This ‘easy’ task aims to maximize the number of heavy atoms in a 392 

molecule calculated by RDKit [71]. This probes the RL strategy’s ability to extrapolate 393 

beyond the training dataset which contains molecules with a limited number of heavy 394 

atoms. However, this task is irrelevant to real drug discovery objectives. 395 

2) Risperidone similarity – This ‘easy’ task aims to maximize the Tanimoto similarity to 396 

Risperidone (a DRD2 inverse agonist and co-crystallized ligand in PDB: 6CM4) 397 

according to ECFP4 fingerprints with a bit length of 1,024 (as implemented in RDKit). 398 

While this tests the ability to move to a precise region of chemical space, it is unlikely to 399 

be relevant as a real drug discovery objective due to lack of novelty. 400 

3) DRD2 activity – This ‘medium’ task aims to maximize the QSAR predicted probability of 401 

activity against DRD2 (Equation 8). This task is representative of a real objective during 402 

early-stage hit finding, providing that known ligand data is available.  403 
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𝐷𝑅𝐷2 𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑅𝐹(𝐷𝑅𝐷2) 404 

( 8 ) 405 

4) DRD2 docking score – This ‘medium’ task aims to minimize the Glide-SP docking score 406 

(predicted binding affinity) against DRD2. This task is representative of a real objective 407 

during early-stage hit finding, providing that a crystal structure or homology model is 408 

available. It was implemented as described above with the exception that molecules 409 

were instead prepared by enumerating up to 16 stereoisomers using RDKit [71] and then 410 

conducting protonation using Epik (pH 7.4) to only protonate the most abundant state per 411 

stereoisomer.  412 

5) DRD2-DRD3 dual – This ‘hard’ task aims to maximize the QSAR predicted probability of 413 

activity against both DRD2 and DRD3 (Equation 9). This task is representative of real 414 

drug discovery projects requiring polypharmacological activity, providing that ligand data 415 

for both is available. 416 

𝐷𝑅𝐷2 − 𝐷𝑅𝐷3 𝑑𝑢𝑎𝑙 =  
𝑃𝑅𝐹(𝐷𝑅𝐷2𝑢𝑛𝑖𝑞𝑢𝑒) + 𝑃𝑅𝐹(𝐷𝑅𝐷3𝑢𝑛𝑖𝑞𝑢𝑒)

2
 417 

( 9 ) 418 

6) DRD2/DRD3 selective – This ‘hard’ task aims to maximize the QSAR predicted 419 

probability of selective activity against DRD2 over DRD3 (Equation 10). This is 420 

representative of real drug discovery projects that must avoid off-target effects for toxicity 421 

or efficacy reasons, providing that ligand data for both is available. 422 

𝐷𝑅𝐷2 𝐷𝑅𝐷3⁄ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 =  
𝑃𝑅𝐹(𝐷𝑅𝐷2𝑢𝑛𝑖𝑞𝑢𝑒) + (1 − 𝑃𝑅𝐹(𝐷𝑅𝐷3𝑢𝑛𝑖𝑞𝑢𝑒)

2
 423 

( 10 ) 424 
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Results & Discussion 425 

Optimization of DRD2 docking score by Augmented Hill-Climb compared to 426 

REINVENT 427 

Optimization ability and sample-efficiency was assessed using the procedure described in 428 

Methods (Experiment 1, Figure 1). Specifically a RNN was trained on the MOSESn dataset 429 

[22, 47], an agent was initialized which then underwent RL updates to optimize the docking 430 

score of de novo molecules against DRD2. The REINVENT strategy and docking protocol 431 

was identical to our previous work [47]. 432 

To increase optimization power, the easiest proposal is to increase the score contribution to 433 

the augmented likelihood used by REINVENT by increasing the scalar value σ. The original 434 

work [4] had a default value of 60, however, the subsequent update (REINVENT 2.0 [53]) 435 

increased this value to 120 - suggesting that sample-efficiency was sub-optimal. Therefore, 436 

we first varied the value of σ between 30 and 240 and updated an agent for 100 RL steps 437 

only (6,400 samples), to minimize computational expense. However, as shown in Figure 3a, 438 

we found little improvement in optimization of DRD2 docking scores using this approach with 439 

REINVENT. The maximum docking score optimization achieved (best mean score relative 440 

prior mean score) was 128% with σ=60 or 127% with σ=240, concluding that changing σ 441 

values alone did not significantly improve optimization over limited RL updates.  442 

AHC was then implemented in an effort to improve sample-efficiency, while also varying σ 443 

for over the same amount of RL updates (Figure 3a). This consistently led to improved 444 

optimization ability for every σ value compared to REINVENT, with a maximum of 205% 445 

optimization with σ=240. In total, we found a 1.39-fold improvement in optimization ability 446 

compared to REINVENT averaged across all values of σ. Moreover, AHC required 447 

approximately 80 fewer steps to achieve the mean docking score achieved by REINVENT 448 

over 100 steps, evidencing a large improvement in sample-efficiency. However, learning was 449 
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stifled by a drop in uniqueness observed (Figure 3b) i.e., AHC was more prone to mode 450 

collapse.  451 

To address the mode collapse, a diversity filter (DF1) [67] was applied to both strategies to 452 

penalize exploitation and hence encourage exploration. DF1 penalizes the score of any of 453 

the top 20% of de novo molecules that were similar to previously generated molecules, a 454 

threshold chosen based on the nature of docking-based virtual screening where only the 455 

very top ranked molecules are considered. This stabilized learning and rescued the drop in 456 

uniqueness in most cases (Figures 3c and 3d). With DF1, AHC evidenced a σ-averaged 457 

1.45-fold improvement compared to REINVENT (with a maximum optimization of 192% at 458 

σ=180 for AHC, compared to 119% at σ=180 for REINVENT). Similar to without the DF1, 459 

AHC still required 80-90 fewer RL steps to achieve a mean docking score achieved by 460 

REINVENT over 100 steps. 461 

Although increasing the σ value increases the score contribution to the loss, it also 462 

decreases the prior contribution and thus decreases regularization during optimization. As 463 

such, we expect that larger values of σ result in further extrapolation outside the domain of 464 

the training set and prior, which is the aspect of the generated molecules we analysed next. 465 

Figures 3e-g show the properties of de novo molecules generated during optimization and 466 

the property space not occupied by molecules in the MOSESn dataset – serving as a proxy 467 

to assess extrapolation. AHC in combination with DF1 is more sensitive to changes in σ, 468 

where larger values of σ do result in extrapolation into property space that is absent in 469 

MOSESn, more so than REINVENT in combination with DF1. In practice, this extrapolation 470 

can be both favourable (by identifying novel chemical space) or unfavourable (by enabling 471 

exploitation of scoring function flaws, such as molecules with more heavy atoms providing 472 

better docking scores simply due to the additive nature of docking scoring functions [86]). In 473 

either case, it is advantageous to have greater control over this trade-off, which is achieved 474 

as variations in σ show more impact for AHC over REINVENT. Importantly, AHC still 475 
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improves 1.47-fold over REINVENT at σ=60, where both strategies are sufficiently 476 

regularized and maintain the property space as defined by MOSESn.  477 
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 478 

Figure 3: Comparison between REINVENT and Augmented Hill-Climb learning strategies to optimize DRD2 docking scores at varying levels of σ. (a) 479 

Augmented Hill-Climb is more efficient at optimizing docking score at all levels of σ but (b) undergoes increased mode collapse via a drop in uniqueness. (c) 480 

Docking score optimization can be stabilized and (d) mode collapse rescued by applying a diversity filter. (e-g) Augmented Hill-Climb in combination with DF1 481 

is more sensitive to changes in σ, this affects the extent to which de novo molecules occupy property space which is not present in the prior training set (grey 482 

shaded area) i.e., extrapolation.  483 
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Despite improvement in the optimization ability by AHC, it is irrelevant if the resulting de 484 

novo structures are invalid or implausible (e.g., incorrect valences, unstable or idiosyncratic 485 

functional groups or strained ring systems). The chemistry generated by RNNs has been 486 

evaluated previously [3, 22, 32, 87, 88] and has usually been considered reasonable with 487 

respect to overall topology, fragments, substructures and property space. On the other hand, 488 

a comparison of chemistry between AHC and REINVENT is complicated by the scoring 489 

function and its suitability for an objective e.g., greater optimization may actually lead to 490 

unreasonable chemistry due to scoring function exploitation rather than as a function of the 491 

RL strategy. We note that this analysis of scoring function suitability is out of the scope of 492 

this work but we aim to cover this in future work. On the other hand, the REINVENT strategy 493 

has been shown to maintain similar chemistry to the prior RNN [4, 47, 48, 67]. Therefore, we 494 

visually compared some of the top molecules generated at different values of σ, shown in 495 

Figure S3. At lower values of σ (30-120) and with no regard for prior knowledge of DRD2 496 

ligand topology, the molecules are mostly indistinguishable as to which RL strategy was 497 

used. With regard for DRD2, both strategies learn to generate benzyl / bicyclic moieties with 498 

a protonatable amine above. This chemotype is consistent with the co-crystallised inverse 499 

agonist risperidone [72] and required interactions to D1143x32 for ligand activity [89–91], 500 

where the cyclic moiety would sit deep in the hydrophobic sub-pocket and the amine would 501 

form a salt bridge with D1143x32. The only difference between the RL strategies appears to 502 

be the better docking scores achieved by AHC. However, as σ increases (180-240), de novo 503 

molecules are clearly much larger and therefore exploiting the additive nature of the docking 504 

scoring function [86]. This corroborates the observation of extrapolation into restricted 505 

property space seen in Figure 3e and g, which enables this exploitation. In this scenario 506 

added constraints would be necessary in a multi-parameter optimization setting, such as 507 

also defining a suitable molecular weight range as this knowledge is no longer imposed by 508 

the prior dataset. We believe these results highlight the balance that is required in the trade-509 

off between regularization and optimization, which is better achieved by AHC than 510 

REINVENT. 511 
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Optimization of docking scores for multiple GPCR targets 512 

Previously, we used REINVENT to optimize the docking score against other GPCR targets 513 

(DRD2, OPRM1, AGTR1 and OX1R) over the course of 3,000 RL updates, the first 500 514 

updates of which are shown in Figure 4. DRD2 [72] (same data as previously published [47]) 515 

contains a deep hydrophobic sub-pocket and requires a salt bridge interaction with D1143x32 516 

for ligand activity. OPRM1 [73] similarly forms a salt bridge interaction via D1473x32 (a 517 

structurally conserved position in aminergic receptors [89, 90]) but with a more open pocket 518 

than DRD2. AGTR1 [74] requires important salt bridge and hydrogen bond interactions to 519 

R1674x65 (e.g., via acidic tetrazole of co-crystallised ligand ZD7155) as well as hydrogen 520 

bonds to Y351x39 on the opposite side of the pocket. Meanwhile OX1R [75] contains four well 521 

defined hydrophobic sub-pockets and sometimes a hydrogen bond to N3186x55 and water 522 

mediated hydrogen bond to H3447x38, ligands are found to adopt a horseshoe conformation 523 

via π-stacking to satisfy these sub-pockets as in the co-crystallised ligand suvorexant. The 524 

first two targets’ respective docking scores were able to be minimized similarly (Figure 4a 525 

and 4b), while the latter two targets’ respective docking scores were more challenging and 526 

showed little minimization (Figure 4c and 4d) (especially with respect to the distribution of 527 

docking scores for known actives). This suggests that the docking score optimization ability 528 

of REINVENT was system dependent or that the MOSESn dataset used for RNN pretraining 529 

did not contain chemistry amenable to minimizing the docking score for these systems.  530 

Given the improved optimization power of AHC in combination with DF1 seen with fewer RL 531 

updates against DRD2, AHC in combination with DF1 was compared to these REINVENT 532 

results to see if improvement was consistent over 500 RL updates and for different GPCR 533 

targets (Experiment 2, Figure 1). For every target, AHC in combination with DF1 (Figure 4) 534 

resulted in faster and further minimization of the docking score. For reference, the 80% 535 

retrospective precision threshold was surpassed within 100 RL updates in all cases except 536 

for the particularly challenging OX1R. However, docking score plateaus for AHC in 537 

combination with DF1 in later stages of training. This plateau signals mode collapse as 538 
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uniqueness drops, similar to training without a DF as shown in Figure 3a. Interestingly, a 539 

convergence of the normalized docking score towards the minimum score threshold of the 540 

DF occurs, and uniqueness then drops for all targets (Figure S4a). It appears that the model 541 

learns to generate molecules with a score just below the minimum score threshold to avoid 542 

DF penalization and is thus vulnerable to mode collapse as observed without the DF (Figure 543 

S2a-b).  544 

Therefore, we conducted a search of DFs and parameters to identify a more optimal 545 

configuration that would successfully and robustly rescue mode collapse (Experiment 3 in 546 

Figure 1). Various DF parameters were tested against 3 example optimization objectives 547 

taken from the GuacaMol benchmark suite [21]. The prior was therefore trained on the 548 

GuacaMol train set with and identical RNN configuration to the GuacaMol LSTM baseline 549 

model and trained for the same number of epochs [62]. The tasks were optimized using AHC 550 

in combination with DF1 for 500 RL updates. The area under the training curve of three 551 

endpoints measured (uniqueness, goal/score and run time) are shown in Figures S5-7. In all 552 

cases, we found that too high a minimum score threshold (> 0.5) leads to poorer 553 

performance. For uniqueness, linear and sigmoid output modes performed best (and better 554 

with lower bin sizes) in the Aripiprazole and Osimertinib tasks. However, with respect to the 555 

objective, there was less discrepancy between output modes and the bin size relationship 556 

reversed (with higher bin sizes showing better performance). In these tasks, the 557 

identicalmurckoscaffold and scaffoldsimilarityecfp DFs outperformed the other DFs, while 558 

scaffoldsimilarityatompair seemed to result in an unusually long run time. Based on these 559 

results, as well as the rationale of softening the gradient of penalization, we decided to 560 

continue using scaffoldsimilarityecfp but lowered the minimum score threshold to 0.5, 561 

changed the output mode to linear and increased the bin size to 50. This configuration is 562 

from here on referred to as DF2. 563 

Using DF2 we re-ran the previous experiment on the four targets as before, shown in Figure 564 

4. The change in DF stabilized learning over the full length of training while still resulting in 565 
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similar optimization of docking score. Moreover, there was no convergence of normalized 566 

docking score to the minimum score threshold and thus uniqueness stayed relatively high 567 

(Figure S4b). To gain a quantitative understanding of improvement in sample-efficiency, 568 

Table 2 compares the number of steps (and samples) required by AHC in combination with 569 

DF2 and REINVENT to reach various thresholds during optimization. This shows that the 570 

largest improvement over REINVENT is made early, where AHC in combination with DF2 571 

requires 19.8-fold fewer training steps until the mean surpasses 120% optimization, 572 

however, both strategies sample a single molecule with a docking score exceeding this 573 

threshold within the first batch. Meanwhile, AHC in combination with DF2 took 71.8-fold 574 

fewer samples than REINVENT until a molecule surpassed 160% optimization. At 180% and 575 

200% optimization, REINVENT only sampled molecules surpassing the threshold for OX1R 576 

and thus fold-improvement could not be calculated, however a minimum estimate is shown 577 

based on the maximum number of training steps or samples generated. On average, AHC in 578 

combination with DF2 required 7.4-fold fewer training steps and 45.5-fold fewer samples 579 

across all targets and all optimization thresholds.  580 
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 581 

Figure 4: Improved learning efficiency of Augmented Hill-Climb against four targets: (a) DRD2, (b) OPRM1, (c) AGTR1 and (d) OX1R. (top left panel) 582 

Distribution of known active and inactive molecule docking scores. (top right panel) Optimization of de novo molecule docking score via reinforcement 583 

learning. (bottom right panel) The top 500 REINVENT generated scaffolds with the corresponding time of generation by REINVENT or by Augmented Hill-584 

Climb (in combination with DF2) if co-generated. Blue lines represent scaffolds generated by REINVENT first and green lines generated by Augmented Hill-585 

Climb (in combination with DF2) first. Scaffolds with a difference in generation time of < 100 RL updates are more transparent. Augmented Hill-Climb in 586 

combination with DF2 shows improved learning efficiency compared to REINVENT and optimizes past a docking score threshold corresponding to a 587 

retrospective classification precision of 80% (black dashed line) in all cases. 588 



29 
 

Table 2: Number of steps taken before the mean exceeds certain internal and external thresholds (earliest sample exceeding threshold is shown in brackets). 589 

The final row lists the Augmented Hill-Climb in combination with DF2 fold improvement over REINVENT. Where a threshold was not reached within the 590 

maximum number of training steps (or samples) it has been annotated as being greater than 500 (or 32,000). 591 

592 

  
Number of steps required for optimization beyond prior at a given 

threshold 

Number of steps required for optimization 

beyond external thresholds 

 Threshold 120% 140% 160% 180% 200% 
Inactive 

mean 

Active 

mean 

80% precision 

threshold 

DRD2 

REINVENT 
> 500 

(15) 

> 500 

(685) 

> 500 

(22,292) 

> 500 

(> 32,000) 

> 500 

(> 32,000) 

1 

(1) 

163 

(15) 

> 500 

(15) 

Augmented Hill-Climb + DF2 
19 

(2) 

6 

(49) 

105 

(1,248) 

> 500 

(3,009) 

> 500 

(23,150) 

2 

(2) 

19 

(2) 

48 

(2) 

OPRM1 

REINVENT 
133 

(7) 

> 500 

(868) 

> 500 

(7,663) 

> 500 

(> 32,000) 

> 500 

(> 32,000) 

4 

(2) 

80 

(4) 

> 500 

(7) 

Augmented Hill-Climb + DF2 
3 

(16) 

17 

(22) 

45 

(29) 

150 

(34) 

> 500 

(2,759) 

6 

(16) 

17 

(22) 

33 

(28) 

AGTR1 

REINVENT 
> 500 

(25) 

> 500 

(510) 

> 500 

(5,596) 

> 500 

(> 32,000) 

> 500 

(> 32,000) 

1 

(2) 

> 500 

(8) 

419 

(6) 

Augmented Hill-Climb + DF2 
62 

(27) 

318 

(869) 

396 

(3,404) 

> 500 

(5,207) 

> 500 

(27,979) 

2 

(1) 

62 

(27) 

46 

(2) 

OX1R 

REINVENT 
5 

(1) 

52 

(1) 

> 500 

(7) 

> 500 

(142) 

> 500 

(490) 

1 

(2) 

9 

(1) 

> 500 

(490) 

Augmented Hill-Climb + DF2 
9 

(1) 

15 

(2) 

31 

(2) 

87 

(31) 

382 

(557) 

2 

(1) 

14 

(2) 

494 

(557) 

Average fold improvement 
19.8 

(2.5) 

11.2 

(38.7) 

8.3 

(71.8) 

2.8 

(240.6) 

1.1 

(3.8) 

0.5 

(1.0) 

5.5 

(2.1) 

9.7 

(3.2) 
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To investigate if similar chemistry was generated by the RL strategies, we identified the top 593 

500 scaffolds generated by REINVENT for each target and plotted at what stage they were 594 

first generated by either RL strategy, shown in Figure 4 (bottom part of each panel of the 595 

figure). This shows a general trend where AHC in combination with DF2 tends to generate 596 

scaffolds appearing in REINVENT at a later stage much sooner, and scaffolds appearing in 597 

REINVENT much earlier. That is, AHC in combination with DF2 identifies chemistry where 598 

the mean docking score has improved more than 100 steps sooner, while early chemistry 599 

typically achieved due to batch variance more than 100 steps later – likely because of the 600 

DF encouraging exploration and re-visiting sub-optimal chemistry.  601 

A visual comparison of the centroids of the top 100 compounds for each target for AHC in 602 

combination with DF2 and REINVENT is shown in Figure 5. With disregard to prior 603 

knowledge of target ligands and suitability of the scoring function, the quality of chemistry 604 

generated is again indistinguishable between the two RL strategies. However, regarding co-605 

crystal ligands and known important residue interactions, the scoring function is not always 606 

suitable as shown in the case of AGTR1. Here we can see no acid moieties are generated 607 

for AGTR1 by either strategy (Figure 5) which will be in part due to the docking algorithm 608 

targeting only the Y351x39 sub-pocket and out towards the extracellular surface (Figure S8c) 609 

as opposed to the sub-pocket surrounding R1674x65 as required for ligand activity [74].  610 

In addition, we investigated property space occupied by AHC generated de novo molecules 611 

(Figure 6) which shows that the property space is still maintained in all cases except for 612 

increasing molecular weight seen with OX1R. Here, the mean is slightly above 350 Da which 613 

is however consistent with OX1R antagonists [75]. In fact, in some cases (for OPRM1 in the 614 

case of molecular weight and number of rotatable bonds, and for OX1R in the case of the 615 

number of rotatable bonds) the property space shifts in the opposite direction to that which 616 

would be expected by an exploitation of the scoring function. Overall, de novo chemistry is 617 

still reasonable and sufficiently regularized by AHC in combination with DF2 and can even 618 
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be more heavily regularized by reducing σ to 30, yet still outperform REINVENT at all σ 619 

values as seen in Experiment 1. 620 

 621 

Figure 5: Centroid of the 5 largest clusters for the top 100 molecules according to docking score 622 

against DRD2, OPRM1, AGTR1 and OX1R receptors. Cluster size (CS), centroid docking score (DS) 623 

and the average cluster docking score (AvDS) is annotated below. In each case Augmented Hill-624 

Climb generates clusters with lower (better) docking scores, while maintaining reasonable 625 

chemotypes that are indistinguishable to those generated by REINVENT. Note that protonation 626 

states, tautomers and stereoisomers are enumerated by the docking protocol (see Methods). 627 
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 628 

Figure 6: REINVENT compared to Augmented Hill-Climb (in combination with DF2) property space 629 

according to molecular weight, LogP and the number of rotatable bonds for molecules optimized to 630 

minimize the docking score against four targets. The grey shading indicates property space not 631 

represented in the prior training set.  632 

Benchmarking Augmented Hill-Climb against other reinforcement learning strategies 633 

The performance of Augmented Hill-Climb was compared to other RL strategies commonly 634 

used for language-based RNN de novo molecule generation, namely, REINFORCE [5], 635 

REINVENT [4, 53], BAR [19] and Hill-Climb [21], as well as in combination with KL 636 

regularization for non-regularized strategies (Experiment 4, Figure 1). In the interest of 637 

standardisation, the prior was trained on the GuacaMol train dataset. The RL strategies were 638 

applied to six tasks of varying difficulty (see Methods). DF2 was used in all cases except for 639 

the Risperidone similarity task which uses a lower minimum score threshold due (DF3) to 640 

low similarity values.  641 

The performance of task optimization is shown in Figure 7. AHC is the most efficient of all 642 

RL strategies at all tasks except for maximizing the number of heavy atoms (Figure 7a). It is 643 
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particularly better than the other RL strategies during early-stage optimization (e.g., Figure 644 

7b) and in more difficult objectives (e.g., Figure 7e, f). AHC even outperforms un-regularized 645 

RL strategies. This observation is true also for performance by wall time (Figure S9), a more 646 

practical measure. Intriguingly, AHC seems to achieve maximization towards the end of 647 

training in the heavy atom task (seen to a lesser extent with REINVENT 2.0), suggesting it 648 

will eventually be able to extrapolate outside the training domain. As AHC uses a 649 

considerably smaller batch size than HC and therefore undergoes more frequent network 650 

updates, we applied the same batch size to HC to investigate this effect, denoted as HC*. 651 

This smaller batch size did in-fact improve sample-efficiency, similar to AHC, in early stages 652 

of training, but then quickly underwent mode collapse as evidenced by a drop in validity and 653 

uniqueness (Figures S10 and S11). Moreover, KL regularization did not rescue mode 654 

collapse in any case, and sometimes worsened performance, suggesting it is not a sufficient 655 

regularization method in this context. Interestingly, our re-implementation of BAR performed 656 

particularly poorly in most cases except for DRD2 activity (the case study in the original 657 

implementation [92]). We propose that the best agent memory in this method may actually 658 

inhibit learning without notable improvements in-between updating the ‘best agent’; in effect 659 

having two ‘regularizers’ inhibiting learning. As a result, decreasing the ‘best agent’ update 660 

frequency (from 5 as originally implemented) may improve performance. Overall, AHC 661 

shows a sample-efficiency well beyond other RL strategies for all tasks of practical 662 

importance (i.e., excluding the heavy atom task). 663 

Figures S12-17 show the centroids of the largest clusters for the top 100 molecules 664 

generated during the six benchmark optimization tasks. Firstly, all strategies are more prone 665 

to generating unrealistic chemistry due to the broader training domain of the GuacaMol [21] 666 

training set e.g., increasing molecular weight seen in the DRD2 docking score optimization 667 

task (Figure S15). This is even observed for the more heavily regularized REINVENT 668 

strategy but is not present when using the MOSESn
 training set (Figure 5). Moreover, KL 669 

regularization as proposed previously [36, 66] does not seem to improve chemistry 670 
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generated by REINFORCE and HC and instead shows a tendency to increase molecular 671 

weight (Figure S14). On the other hand, AHC results in chemistry similar to REINVENT and 672 

is typically more reasonable than REINVENT 2.0 (e.g., longer linker chains in Figure S16), is 673 

less prone to idiosyncratic tendencies of HC (e.g., large molecules and long chains in Figure 674 

S16), yet more sample-efficient than either. Overall, we believe AHC strikes the right 675 

balance in the trade-off between extrapolation and sample-efficiency due to effective, 676 

tunable regularization that can maintain training set properties and therefore the generation 677 

of sensible and realistic molecules de novo. 678 

We also acknowledge that other ‘tricks’ can be used to improve the sample-efficiency of RL. 679 

For example, experience replay can be used to remind the agent of ‘good’ molecules [53, 680 

93] or a margin guard [94] can be employed to dynamically change α durin RL updates.  We 681 

believe AHC is a more direct, principled approach to improve sample-efficiency and could 682 

even be used in combination with these tricks to further improve sample-efficiency. 683 
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 684 

 685 

Figure 7: Per-molecule optimization of different RL strategies against different objective tasks of varying difficulty: (a) number of heavy atoms, (b) Similarity to 686 

Risperidone (DRD2 inverse agonist), (c) predicted probability of DRD2 activity, (d) Glide-SP docking score against DRD2, (e) predicted probability of dual 687 

activity against DRD2 and (f) predicted probability of selective activity towards DRD2 over DRD3. In all cases, except the number of heavy atoms, AHC 688 

outperforms all other RL strategies with respect to objective optimization while maintaining validity and uniqueness. Only valid molecules are plotted, 689 

therefore gaps seen with HC* denote regions where no valid molecules were generated.  690 
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Conclusion 691 

In this work, we have proposed a modification to the REINVENT [4, 53] RL framework for 692 

language-based RNN de novo molecule generation that exhibits improved sample-efficiency. 693 

This method, referred to as Augmented Hill-Climb, improves optimization ability ~1.5-fold 694 

over REINVENT for the task of optimizing DRD2 Glide-SP [81] docking score. While more 695 

susceptible to mode collapse, this can be successfully ameliorated by application of an 696 

appropriate diversity filter. This new strategy can optimize the docking score for other 697 

systems beyond DRD2 including OPRM1, AGTR1 and OX1R where it improved sample-698 

efficiency ~45-fold on average. When compared to other common RL strategies used in 699 

language-based RNN de novo molecule generation [5, 21, 36], it was found to outperform 700 

REINFORCE, REINVENT, BAR and Hill-Climb with respect to optimization ability, sample-701 

efficiency, regularization and resulted in chemically reasonable molecules. We believe this is 702 

achieved by circumventing unwarranted regularization in REINVENT, but it can also be 703 

viewed as applying essential regularization to Hill-Climb. The improvement in sample-704 

efficiency enabled by Augmented Hill-Climb will be especially useful when using 705 

computationally expensive scoring functions such as molecular docking or computer-aided 706 

synthesis planning tools. We believe these results highlight there is still scope for 707 

improvement in early generation ML-based generative models and that designing more 708 

complex generative models is not the only path to advance the field of molecular de novo 709 

design.  710 
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