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ABSTRACT 

The sugars that coat the outsides of viruses and host cells are key to successful disease 

transmission, but they remain understudied compared to other molecular features. 

Understanding the comparative zoology of glycosylation - and harnessing it for predictive 

science - could help close the molecular gap in zoonotic risk assessment. 

 

INTRODUCTION 

Due to recent encounters with zoonotic viruses like Ebola virus and SARS-CoV-2, efforts to 

forecast the zoonotic risk of wildlife viruses - and, more broadly, to understand the biological 

constraints on cross-species transmission - are increasingly appealing (1). To date, most of 

these efforts rely on easily-observed traits of hosts, like morphology, diet, or phylogeny (2, 3). 

Despite their distance from the molecular determinants of transmission, these traits can be used 

to build models that have surprising predictive accuracy (4).  
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Many microbiologists have expressed a healthy skepticism of these approaches, which often 

entirely lack predictors that consider the molecular biology of hosts or any viral traits, and 

therefore, only coarsely infer the cellular processes of infection through other proxies that are 

correlated across evolutionary space. As a rare exception, genomic approaches are increasingly 

being used to close this gap (5, 6), and can help identify salient mechanisms of host-virus 

interactions (e.g., CpG dinucleotide depletion in vertebrate viruses appears to help them evade 

innate immune responses like the zinc finger antiviral protein (7)). However, as predictive 

features, genomic traits are often confounded by evolutionary signals (8, 9), and genomic data 

only offer limited insights into the actual three-dimensional structural compatibility of viral 

and host cell surfaces, a “lock-and-key” type process. This lock-and-key interaction not only 

allows efficient infection of susceptible hosts, but also limit cross-species viral transmission. 

Structural modeling approaches have been used to examine the binding of viral proteins and 

host cell receptors, often in the context of research on SARS-CoV-2, but many of these 

simulations neglect key information: the glycosylation of these structures. Indeed, the handful 

that do address this aspect have revealed unexpected and important roles for glycosylation in 

these processes (10, 11).  

 

The sugars, or glycans, that decorate host cell surface macromolecules are often critical ligands 

that viruses associate with to enter cells (12). Viral proteins from different virus families exhibit 

substantial variation in binding affinity towards host glycan receptors, and the compatibility 

between different viral proteins and host glycosylation varies between host and virus species, 

across tissues and organ systems, and even over time or between individuals (12-14). Some 

viral surface proteins become glycosylated by host cell machinery during infection, and in the 

process can mimic host cell surfaces or shield proteins from antibody recognition, helping 

viruses evade the host’s immune system (15, 16). The glycans on viral surfaces are also 
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recognised by host glycan-binding proteins on immune cells that capture viruses, either 

preventing or promoting infection (17, 18). These aspects of host-virus compatibility can create 

or unlock barriers to transmission, but are poorly characterized as an underlying structural 

determinant of host-virus networks because glycan structures are subject to rapid regulation 

and are sometimes perceived as being analytically challenging. We suggest an undertaking to 

describe the comparative zoology of glycoproteins, and their role in structuring the global 

virome. 

 

WHAT SUGARS DO, AND HOW 

Glycans are a key feature of the cell surface and extracellular matrix of eukarya, archaea, and 

bacteria (19). Glycans can be found on proteins or lipids, and technological advances (20) in 

the 21st century have greatly increased our ability to identify, characterise, and manipulate 

glycosylation, which has in turn supported deeper insights into the multitude of diverse roles it 

plays (21). Glycans can constitute a substantial proportion of the molecular mass of a protein 

(22), contributing to their biophysical properties and influencing protein targeting, folding, 

structure and secretion (22, 23). Moreover, glycans are mostly located on secreted proteins and 

at the cell surface, and are therefore key determinants in molecular recognition events (24). 

 

Glycans exhibit tremendous structural diversity (25). Unlike proteins, whose sequences can be 

predicted from gene sequences, the biosynthesis of glycans is not directly template-driven; 

glycans are built, modified and trimmed by an extensive network of co-expressed enzymes that 

are differentially expressed in cells and tissues, and can be affected by factors intrinsic and 

extrinsic to the cell. Glycan structures are therefore specific to various organisms, tissues, and 

cells, and the resulting structures can be highly heterogeneous, imparting additional complexity 

to the structural and functional properties of proteins (24). 
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Glycans act as receptors, coreceptors or attachment factors for numerous viruses (13) including 

HIV, dengue (26), MERS-CoV (27), influenza (28), and SARS-CoV-2 (29). For example, both 

avian and human-adapted influenza viruses bind to glycans that terminate with sialic acid, but 

avian influenza preferentially binds to sialic acid with α2-3-linkages, while human-adapted 

influenza prefers α2-6-linkages, which are expressed in the human upper respiratory tract (28, 

30). When avian-origin influenza lineages jump directly into humans, infections mostly 

become established in the lower lungs where cells express α2-3-linkages, leading to rare 

infections that are generally more severe but less transmissible (31). Animal bridge hosts that 

can be infected by different influenza subtypes (including avian species) or express both types 

of sialic acid - for example, swine - provide an environment where viral lineages may directly 

undergo mutation to adapt to α2-6-binding (32), or where human and avian lineages co-

circulate and undergo reassortment (Figure 1a). These hosts therefore provide an evolutionary 

stepping stone for avian lineages to switch to α2-6-binding, opening a transmission route for 

harmful zoonoses and producing more transmissible strains that pose epidemic or pandemic 

threats in humans (33). 

 

In cases like these, glycosylation is a key driver of host range and zoonotic risk, but one that is 

often neglected or folded into the “black box” of host-virus interactions and evolutionary 

dynamics in systems that are less well-characterized than influenza. However, the general 

importance of glycosylation in host-pathogen interactions is well established (15, 34). Given 

that potential differences in glycosylation presence and structure can have profound effects on 

molecular interactions, we suggest there is a clear need to measure the glycomes of potential 

hosts as part of broader efforts to describe viral ecology and emergence. 
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Figure 1. Glycosylation underlies the evolutionary shift towards zoonotic emergence of 

influenza. A. When avian influenza makes the jump directly to humans, preferential binding 

to α2-3-linked sialic acid expressed in the lower lung leads to rarer infections that can be more 

severe but less transmissible. In intermediate hosts that express both α2-3-linked and α2-6-

linked sialic acid, viruses can undergo an evolutionary shift that facilitates emergence in 

humans, who express α2-6-linked sialic acid in the upper respiratory tract. B. An array of 

different tools can be used to study the glycosylation profiles of tissues, cells or proteins from 

a global level down to the glycan level. Figure created with BioRender (biorender.com). 

 

CHARACTERIZING GLYCANS AT DIFFERENT SCALES 

The inherent structural complexity and heterogeneity of glycans across species, individuals, 

organ systems, tissues, and even time and space make them an analytically challenging subject. 

Additionally, and in contrast to other biomolecules, they can have extraordinarily high 

structural complexity due the variety of monosaccharide building blocks and the multiple ways 
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they can attach to each other, both in bond configuration (α and β) and in the positions of the 

inter-saccharide linkages within the molecules (35). Nevertheless, a number of techniques can 

be used individually or in combination to characterise protein glycosylation, with mass 

spectrometry being a powerful and widely used tool that can be incorporated at various levels 

(Figure 1b). Generally, the overarching aim of glycosylation analyses is to deduce one or more 

of the following: the monosaccharide composition of the glycans, the order and branching of 

monosaccharides in a glycan, the types of glycosidic linkages and monosaccharide 

anomericity, or the location of the glycosylation sites on a protein. The functional roles of 

glycans can also be assessed by measuring non-covalent interactions between specific proteins 

and glycans. A global view can be obtained from antibody or lectin binding to selectively 

identify glycan epitopes or motifs in tissues, cells and proteins. Lectins can be used in array-

based platforms (36) enabling high-throughput analyses with the caveat that they do not 

provide comprehensive structural information. The most effective way to obtain structural 

details of glycans is to use a glycomic workflow whereby the glycans are chemically or 

enzymatically released from glycoproteins. The released glycans are typically chemically 

labelled with fluorescent tags and analysed by liquid chromatography or capillary 

electrophoresis with a mass spectrometer used for enhanced detection (20). These methods for 

studying the glycome can provide monosaccharide composition and sequence information, and 

at times, linkage position. Coupling these analytical techniques with enzymes that cleave 

specific monosaccharide linkages provides additional precise structural information. 

 

A limitation of glycomic approaches is that protein- and site-specificity is lost with glycan 

release. Nevertheless, these techniques are the most powerful for providing the basic 

information about glycan structure that will likely form the basis of future predictive models 

(see below). This is because the same glycan structures or epitopes can often be found on many 
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different sites and proteins from the same cell, because they share the same glycan biosynthetic 

pathways. In addition, a key benefit of glycomics, compared to proteomics or glycoproteomics 

(the study of proteins and glycosylated proteins, respectively), is that analysis of released 

glycans does not require prior knowledge of the genome. Although glycan biosynthesis is non-

template driven and millions of possible glycan structures can be predicted (35), there are 

comparatively few glycan structures actually observed on glycoproteins (37), and these can be 

predicted or de novo structurally determined without knowledge of the genome (38). If the 

annotated genome is available, mass spectrometry glycoproteomics can also be used to identify 

and measure peptides with attached glycans. In this case, fine structural detail of the glycan 

structure is lost but the site of attachment and the level of site occupancy is retained. 

 

BUILDING GLYCOSYLATION INTO PREDICTIVE SCIENCE  

Understanding the landscape of host glycosylation might help scientists build better predictive 

tools to understand the broader rules of viral cross-species transmission or even the special case 

of zoonotic risk. This could be accomplished in a number of ways, most of which are untested. 

Glycosylation could be represented as data in several ways, ranging from simple (e.g., the 

presence or absence of a specific set of glycan structures) to complex (generating quantitative 

features using graph representations of the glycan structure (39)). These data can then be used 

several ways. For example, recent attention on SARS-CoV-2’s use of the ACE2 receptor has 

sparked the development of models that predict host susceptibility based on receptor sequences 

(40), but glycosylation is a missing element; incorporating glycan structures as receptor or co-

receptor “metadata” might help researchers better understand viral attachment (Figure 2a). For 

instance, sialic acid and heparan sulfate are key cell surface glycans that are co-receptors for 

SARS-CoV-2 (41, 42). Conversely, from the host perspective, similar glycosylation might help 

explain pathogen sharing between different animals (Figure 2b), and (according to some 



 8 

preliminary evidence (43)) might even help unpack some of the microbiology inside the black 

box “phylogenetic distance effect” that broadly structures the viral sharing network (3). If viral 

glycosylation helps evade host immune system detection, these dimensions of similarity may 

help explain how particular bridge host “stepping stones” are possible, including in cases of 

zoonotic emergence. (During early characterization, glycan motifs or structures can even be 

proactively searched to identify homology in human and animal hosts, and linked to viruses 

where glycan-binding preferences have been established). Similarly, understanding the role of 

viral mutations that alter the viral surface glycoproteins (Figure 2c) may lead to more targeted 

insights about how glycosylation relates to zoonotic risk (as in the example of influenza and 

sialic acid; Figure 1a). 
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Figure 2. Adding glycosylation to microbiology-smart modeling. (top) Different animals 

have different combinations of glycans, which may help unpack how specific glycans 

contribute to susceptibility to a given pathogen. In this example, species B’s lack of glycans 4 

and 5 could explain its lack of susceptibility to the pathogen. (middle) When the mechanism is 

understood in better detail, the glycosylation of a single structure (e.g., the ACE2 receptor) 

might help predict cross-species transmission potential for a specific virus (e.g., SARS-CoV-

2) - if the structural similarity of a given glycan can be converted into machine-readable 

features. (bottom) Understanding mechanisms in greater detail may improve other kinds of 

predictions about cross-species transmission: for example, mutations in the hemagglutinin 

structure of influenza viruses limit their binding efficiency to the glycosylation of human sialic 

acid receptors, allowing prediction of the zoonotic potential of specific influenza A strains 

based on a few point mutations. Figure created with BioRender (biorender.com). 

 

Most of these examples are still hypothetical, but in limited cases, these types of model-based 

exploration have shown tremendous promise. For example, a recent study used graph 

representations of glycans and multiple kinds of advanced machine learning (graph 

convolutional neural networks and natural language models) to predict host identity and glycan 

immunogenicity, and was able to predict influenza and rotavirus binding affinity for host 

receptors from different species (43). Studies like these are exciting proofs-of-concept, and 

point to the idea that feature representations of glycans may eventually be useful as part of a 

broader palette of cell- and virus-level trait predictors used to make even more advanced (and 

crucially, microbiology-driven) machine learning or network models. 

 

In order to power these kinds of approaches, more data is needed about the “global glycome.” 

While the human glycome is well studied (44), the glycomes of animal reservoirs are severely 
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understudied - a major problem when, for example, host range is extensive (e.g., influenza A 

virus can infect captive and wild animals including birds, dogs, cats, pigs, horses, bats, seals 

and even some reptiles (45)). Wild reservoir populations should be a priority for glycosylation 

analyses, particularly those that are endemically infected, at the human-animal interface and 

those likely to act as an intermediate “mixing vessel” for cross-species transmission. Tissues, 

cells and fluids that are the routes of entry for infectious agents or are predicted to be involved 

in tropism and systemic spread should be a focal point of analysis. These may include the 

mucosal epithelial tissue of the gastrointestinal, urogenital and respiratory tracts and cells of 

the skin, lymphatic system and blood vessels. The types of data to be incorporated from these 

sample types could range from global glycome analyses to precise glycan structure and site 

occupancy information. Ultimately, the types of experiments conducted will be determined by 

the capabilities of the laboratory. In depth protocols are available for global structural (46, 47) 

and protein- and site-specific (48-52) characterisation of glycans. Given the versatility of liquid 

chromatography mass spectrometry to study glycosylation, this approach seems most 

accessible with costs predicted to be in the low to medium range depending on the level of 

structural characterisation achieved. With unlimited sample availability and technical 

resources, multiple tissues from multiple species could be characterized and this data used for 

modeling. Tissue types may be limited due to the requirements for lethal or non-lethal 

sampling, the ability to dissect out specific tissues, or even the capacity to sample all species, 

though many field researchers have suitable samples already collected and in storage. As with 

most field work, sample availability will be dictated by each situation, but a balance should be 

struck between accessible biofluids (such as blood) and relevant tissues (such as lung tissue for 

respiratory viruses). On the other hand, given the ever-growing frequency of glycomic and 

glycoproteomic techniques (lectin-arrays or mass spectrometry-based), it is possible that the 

analytical work could be accomplished collaboratively at low to medium cost as part of broader 
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comparative zoology and viral ecology. Critically, depositing the datasets generated by this 

work into existing public repositories like GlycoPOST and GlyTouCan, which is becoming 

standard practice in the glycobiology field (53), will allow their value to grow exponentially 

for comparative and predictive research. 

 

Recent viral epidemics and pandemics have highlighted a need for increased surveillance at the 

animal-human interface and forward planning of biochemical countermeasures (54-56). 

Characterizing the global glycome will help microbiologists and ecologists understand the 

broader dynamics of viral ecology, and these data could also easily be applied to understanding 

other pathogens. Moreover, as work during the COVID-19 pandemic has highlighted, 

understanding glycosylation as a viral phenotype is a key part of understanding pathogenesis 

and developing effective countermeasures (57, 58), and we suggest that building more 

glycomics into viral surveillance is a feasible, cost-effective, and impactful way to expand the 

body of basic science that forms the basis for epidemic preparedness. 
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