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Abstract

We report an analytical Bond Energy from Bond Orders and Populations (BEBOP)

model that provides intramolecular bond energy decompositions for chemical insight

into the thermochemistry of molecules. The implementation reported here employs
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a minimum basis set Mulliken population analysis on well-conditioned Hartree-Fock

orbitals to decompose total electronic energies into physically interpretable contribu-

tions. The model’s parameterization scheme is based on atom-specific parameters for

hybridization and atom pair-specific parameters for short-range repulsion and extended

Hückel-type bond energy term fitted to reproduce CBS-QB3 thermochemistry data.

The current implementation is suitable for molecules involving H, Li, Be, B, C, N, O,

and F atoms, and it can be used to analyze intramolecular bond energies of molecu-

lar structures at optimized stationary points found from other computational methods.

This first-generation model brings the computational cost of a Hartree-Fock calculation

using a large triple-zeta basis set, and its atomization energies are comparable to those

from widely used hybrid Kohn-Sham density functional theory (DFT, as benchmarked

to 109 species from the G2/97 test set and an additional 83 reference species). This

model should be useful for the community by interpreting overall ab initio molecular en-

ergies in terms of physically insightful bond energy contributions, e.g. bond dissociation

energies, resonance energies, molecular strain energies, and qualitative energetic contri-

butions to the activation barrier in chemical reaction mechanisms. This work reports a

critical benchmarking of this method as well as discussions of its strengths and weak-

nesses compared to hybrid DFT (i.e., B3LYP, M062X, PBE0, and APF methods), and

other cost-effective approximate Hamiltonian semi-empirical quantum methods (i.e.,

AM1, PM6, PM7, and DFTB3).

Introduction

The qualitative relation of bond energies to bond orders and hybridization is among the most

fundamental concepts of chemistry.1–3 It is therefore surprising that relatively few modern

computational quantum chemistry methods explicitly use these concepts. For example, the

natural bond order analysis (NBO) method of Weinhold4–6 transforms a variationally opti-

mized quantum mechanical wavefunction into a localized form that corresponds to one-center

lone pairs and two-center bonds that conveniently are related to chemical Lewis structures.
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Alternatively, reactive forcefield methods of Brenner,7 Pettifor,8 Tersoff,9 and van Duin and

Goddard10 begin from the ansatz that bond energies can be realized from a priori bond

orders approximated from fitted mathematical expressions.

To our knowledge, our BEBOP model is the first computational approach that starts from

a minimum basis set Mulliken orbital population analysis of HF calculations and then uses

those to construct total system energies (including approximate correlation and zero point

energies implicitly) in terms of a variety of insightful chemical bonding and anti-bonding

energy contributions. The net product is a “black-box” method that only requires the cost

of HF theory while giving the accuracy of higher level quantum chemistry methods. In

this way BEBOP relates to Miller and Manby’s OrbNet Denali method that uses machine

learning (ML) to map symmetry-adapted atomic orbital features from relatively low-cost

semi-empirical quantum mechanics (SQM) theory to energies of high-level DFT theory cal-

culations (i.e., ωB97X-D3/def2-TZVP).11 Key differences with the BEBOP approach are

that much more robust (and much more computationally expensive) HF orbitals are used

as a starting point, these are mapped to more accurate energies from higher-level ab ini-

tio thermochemical methods, and the system energies are partitioned into useful chemical

bonding quantities that go beyond what is done in NBO and energy decomposition anal-

ysis (EDA)12–16 methods. At the present time, we only recommend its use for studies of

thermochemical analyses of molecules whose geometries have been optimized to stationary

points from other computational methods. As explained below, the BEBOP method uses a

parametrization scheme that requires fewer parameters than most SQM and reactive force-

field methods and thus indicates promise for eventual transferability across large parts of the

periodic table. There are also clear deficiencies in the present first-generation model that

can be improved upon, though we note that many hybrid density functional methods also

suffer from similar deficiencies and still have been widely adopted.
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Theory: Bond Energy and Bond Order

Within the framework of an independent particle model such as HF or DFT, the total elec-

tronic energy can be expressed as a sum of one-electron energies. The relationship between

bond energy and bond order follows from the energy of an electron in a molecular orbital,

ϕ:

E =

〈
ϕ
∣∣∣Ĥ∣∣∣ϕ〉
〈ϕ|ϕ〉

, (1)

where Ĥ is the effective one-electron Hamiltonian. For simplicity we assume that for a

molecular orbital(MO), ϕMO, is a linear combination of just two atomic orbitals (AO), χAO1

and χAO2 :

ϕMO = c1χ
AO
1 + c2χ

AO
2 . (2)

Substitution of Eq.(2) in Eq.(1) gives:

E =
c21H11 + 2c1c2H12 + c22H22

c21 + 2c1c2S12 + c22
= c21H11 + 2c1c2H12 + c22H22, (3)

where S12 is the AO overlap integral, and we have assumed normalization of the molecular

orbital: 〈ϕ|ϕ〉 = 1. If each atom contributes one electron, the bond energy (BE) per electron

is the difference between the molecular energy and the average of the atomic energies:

BE = E −
(
H11 +H22

2

)
→ E = BE +

H11 +H22

2
. (4)

Substitution of Eq.(4) into Eq.(3) gives:

[
BE +

H11 +H22

2

]
= c21H11 + c22H22 + 2c1c2H12 (5)
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The bond energy is then:

BE = c21H11 + c22H22 + 2c1c2H12 −
[
H11 +H22

2
(c21 + c22 + 2c1c2S12)

]
(6)

Substituting the Mulliken bond order, P12,2,3 for 2c1c2S12 and consolidating terms gives:

BE = P12β12 + (c21 − c22)
(
H11 −H22

2

)
, (7)

where:

β12 =

(
H12

S12

− H11 +H22

2

)
. (8)

If we assume an Extended-Hückel-theory-like (EHT) relationship:17

H12(R12) ≈ λ12S12(R12), (9)

with H12 proportional to S12, then:

BE ≈ P12

(
λ12 −

H11 +H22

2

)
+ (c21 − c22)

(
H11 −H22

2

)
, (10)

where β12 is now independent of R12. The first term in Eq.10 represents the covalent bond

energy as a function of bond order (BEBO). The second term represents charge transfer

between atoms 1 and 2 as expressed through the atomic populations. The Coulomb attrac-

tion between the charges induced by this charge transfer tends to cancel the charge transfer

energy, except in the case of ion such as Li+ F– . If we set:

λ12 = 1.75
(H11 +H22)

2
, (11)

then Eq.11 represents EHT. The enormous (qualitative) success of EHT attests to the utility

of this fundamental relationship between bond energy and bond order.
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The BEBOP Model

We employ the linear relationship between the extended Hückel-type covalent bond energy

and bond order:17

EBond = P12βAB, (12)

where βAB is the linear parameter for elements A and B, and P12 is the bond order between

atoms 1 and 2.

The extended Hückel-type covalent bond energy method prominently appears in many

SQM methods. SQM methods compute approximate electronic structure energies efficiently

enough to be suitable for large-size systems (e.g., biochemistry, material science, macro-

molecules). The general formalism is similar to ab initio methods except that integrals are

reduced drastically by implementing and parametrizing analytical expressions to fit accurate

thermochemical data.18 Many chemical applications19–22 use SQM methods extensively for

qualitative studies. The quantitative results of these methods, in general, are unreliable

for compounds distinct from the training set from which parameters were obtained. This

indicates that SQMs are not reliable for extrapolating to large-scale systems.

The BEBOP model attempts to extrapolate the total system atomization energies and

bond energies using SQM-like formulas that employ reliable HF orbital populations. The

current model includes hybridization and short-range repulsion to describe the energy of

systems containing H, Li, Be, B, C, N, O and F. To generate the necessary population

data, including P12, ROHF/6-311+G(3d2f,2df,2p) calculations were used with the MinPop

algorithm,23 which projects an extended basis set onto a minimum basis set, providing

a reliable Mulliken population analysis for bond orders and hybridization. However, the

charges obtained are not always realistic. Since we observed that the charge transfer energy

was generally balanced by the resulting electrostatic interaction energy, both terms were

neglected. The parameters were determined by fitting restricted-open-shell (RO) model

chemistry based on the complete basis set (CBS)-quadratic Becke3 (QB3), or ROCBS-QB3
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for short, model of Wood and co-workers24 to 36 reference species, so that we were not limited

to experimentally known reference species. We were motivated to develop the BEBOP model

as a bond energy analysis tool capable of emulating the accuracy of ROCBS-QB3 model for

total atomization energies while also giving insights into other bond energy contributions.

This method in its current form is only meant to be used for single point energy calculations

on geometries using another computational method.

As the size of the molecules increased, inclusion of nonbonded steric effects became

increasingly important. The steric interactions were described by the same linear rela-

tionship in Eq.12 with the negative bond orders. Unless otherwise stated, we elect to

derive parameters for BEBOP for the geometry optimization obtained from UB3LYP/6-

311G(2d,d,p) calculations. All ROCBS-QB3 and ROHF calculations were performed in

GAUSSIAN16(Revision C.01).25

Orbital Hybridization

The concept of orbital hybridization was first introduced by Pauling.1 He referred to the

energy of hybridization as a change in quantization energy, which he calculated to be 9.3

eV for sp3 hybridization of carbon. The BEBOP hybridization energy contribution was

estimated from the 2s gross orbital occupations and the energies of appropriate atomic

states. The energy due to hybridization of molecular carbon is taken as the number of

2s electrons in a ground state carbon atom minus the number of molecular 2s electrons,

multiplied by the 3P→ 5S atomic excitation energy (4.26 eV):

E(A)hybridization =

[
n2s(A)ref −

MO∑
i

|Ci2sA|2
]

∆E(A)2s→2p (13)

As a consequence of using the depletion of the 2s occupation to measure the 2s → 2p

hybridization, the additional energy required to remove an electron completely is the 2p

ionization potential (IP).
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Short-Range Repulsion

When the linear bond-energy/bond-order relationship is applied to a diatomic molecule, a

fundamental deficiency becomes obvious. As nucleus 1 penetrates the exponentially decaying

electron density around atom 2, the electron 2- nucleus 1 attraction is reduced and is no longer

sufficient to cancel the nuclear-nuclear repulsion completely. Lennard-Jones26 proposed that

short-range repulsion could be expressed conveniently as a power law of the form 1/R12, but

London showed that an exponential form is more appropriate.27 Several exponential forms

have been proposed.28–33 A simple exponential form is employed in the BEBOP model:

Erepulsion = D0e
−ζ(Re−Rσ). (14)

This form ensures the correct energy at the classical turning point, Rσ, and the equilibrium

geometry, Re (Figure 1). The exponential parameters, ζAB, were evaluated by fitting the

potential energy curves of the reference molecules, HnA∼BHm (vide infra). The ROHF BE-

BOP model describes the potential energy curves for pairs of monovalent atoms remarkably

well, in spite of the improper dissociation of both the ROHF wave function and energy (Fig-

ure 1). The potential energy curves for polyvalent species such as carbon present a greater

challenge. Rather than increase the complexity of the BEBOP model, we have elected to

compromise and select a value for the exponent, ζCC, that reproduces the energies of ethane,

ethylene, and acetylene, at their equilibrium geometries, Re (Figure 2). Because the BEBOP

model cannot explicitly calculate zero-point vibrational energies (ZPVE), we have employed

the ROCBS-QB3 BDE value that includes ZPVE (i.e., D0).
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Figure 1: The BEBOP potential energy curve for H2; β = 144.77 kcal/mol, De = 104.45

kcal/mol, ζ = 8.19 Å−1,Rσ = 0.462 Å.
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Figure 2: The BEBOP potential energy curves for ethane, ethylene, and acetylene.

The short-range repulsion term in Eq.14 plays a significant role in maintaining the viabil-

ity of the linear BEBOP relationship expressed in Eq.12. Without this short-range repulsion,

we could not describe the wide variety of C∼C bonds (Figure 3), unless we employed a to-

tally unjustified nonlinear bond-energy/bond-order relationship. The physically necessary

short-range-repulsion term is thus
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Figure 3: The relation between C∼C bond energies and bond orders for various hydrocar-
bons.

included for practical reasons, even if we do not attempt to explore potential energy surfaces.

This is not the case for all atom pairs, AB. For example, we could describe C∼N bonds quite

adequately without the short-range repulsion (Figure 4). The optimum value for ζCN is

therefore very large (ζCN = 13.84 Å−1), effectively removing any influence from the region

around Re.
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Figure 4: The relation between C∼N bond energies and bond orders across various hetero-
organics.

The BEBOP model includes the attractive linear bond-energy/bond-order relationship in

Eq.12, the short-range exponential repulsion in Eq.14, and the atomic hybridization energy

in Eq.13. The model thus includes two fixed parameters (Re[A,B] and D0[A,B]), and two

adjustable parameters (βAB and ζAB) for each pair of elements, A and B.
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BEBOP Parameters

The BEBOP parameters could be assigned using either experimental or ab initio bench-

marks. We have elected to use total atomization energy from the ROCBS-QB3 model chem-

istry, ∆ATE0, with the minimum basis set Mulliken population analysis bond-orders and

populations [GAUSSIAN16 command: # Pop=(MBS,Bonding)] derived from the largest

SCF calculation employed in this model, ROHF/CBSB3 (CBSB3 is keyword in GAUS-

SIAN16 for 6-311+G(3d2f,2df,2p)). This is consistent with the intended role of BEBOP for

the interpretation of ab initio energies. A choice of either experimental benchmarks or more

accurate ab initio calculations (e.g. Wn and Gn models) would place greater restrictions on

the range of accessible comparisons. A faster but less reliable benchmark could introduce

spurious effects in the BEBOP bond energies.

The BEBOP model requires a hybridization parameter, ∆E(A)2s→2p, for each element,

A (except hydrogen), and four parameters, βAB, DAB, Re(A,B) and ζAB, for each pair of

elements, AB:

∆ATE0 =
∑
A 6=B

([
AO∑
µAνB

MO∑
i

CiµACiνBSµAνB

]
βAB +DAB exp(−ζAB

[
RAB −

Re(A,B)√
2

]
)

)

+
∑
A

[
n2s(A)ref −

MO∑
i

|Ci2sA|2
]

∆E(A)2s→2p

(15)

The BEBOP hybridization parameters are assigned to be the ROCBS-QB3 atomic 2s→

2p excitation energies given in Table 1. The reference molecules in Table 2 were used to

determine the remaining parameters. In most cases, they represent the strongest bond that

can be formed between the pair, A,B. However, in four cases (i.e., HBe–BeH vs. Be4, HBe-

OH vs. Be––O, HBe–F vs. FBe–F, and cyclo-BC2H3 vs. HB––CH2), we found significant

differences in parameter values for alternative reference choices and compromised with an

average for the species in Table 2.
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Table 1: ROCBS-QB3 ground and excited state energies.

Atoms n2s n2p ROCBS-QB3a ∆E2s→2p
b Source

H -0.4998179
He -2.9029321
Li 1 -7.4320270 42.479 Li 2S → 2P
Be 2 -14.6205403 65.008 Be 1S → 3P
B 2 1 -24.6019582 85.177 B 2P → 4P
C 2 2 -37.7855234 98.098 C 3P → 5S
N 2 3 -54.520439 134.827 N+ 3P → 5S
O 2 4 -74.9879809 172.055 O2+ 3P → 5S
F 2 5 -99.643349 209.517 F3+ 3P → 5S

a in hartrees. b in kcal/mol.

Table 2: Reference species used to determine the ζAB, DAB, Re(A,B), and DAB parameters
for BEBOP.

H Li Be B C N O F
H H2

Li LiH Li2
Be BeH2 Li-BeH HBe-BeH,Be4
B BH3 Li-BH2 HBe-BH2 cyclo-B3H3

C CH4 Li-CH3 HBe-CH3 cyclo-BC2H3,HB=CH2 H-C ≡ C-H
N NH3 Li-NH2 HBe-NH2 cyclo-B3N3H6 cyclo-C5H5N HN=NH
O H2O Li–OH HBeOH,Be=O cyclo-B3O3H3 H2C=O N=O O=O=O
F HF LiF BeHF,BeF2 HBF2 CF4 NF3 HOF F2

The bond energy parameter, βAB (Table 3), was constrained to reproduce the ROCBS-

QB3 atomization energy, ∆ATE0, of the reference species. These parameters are in general

qualitatively similar (i.e., ranging from 1/2 to 2 times) to the extended Hückel theory values,

(0.75[1/2(IPA + IPB)]). However, the value of βAB is artificially large for ion pairs because

we have not accounted for the Coulomb attraction between the ions. Note that these bond

energy parameters implicitly include ZPVE.
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Table 3: BEBOP β parameters including ZPVE in kcal/mol.

H Li Be B C N O F
H 144.77
Li 119.71 43.41
Be 143.19 86.36 122.27
B 168.44 121.82 147.88 160.70
C 178.45 178.60 193.93 201.30 225.87
N 192.39 207.00 217.45 233.62 233.16 215.55
O 258.42 342.56 298.97 316.25 291.28 271.38 257.25
F 372.61 760.99 474.24 468.04 403.33 322.98 252.10 289.78

The equilibrium bond length, Re(A,B) (Table 4), is the UB3LYP/6-311G(2d,d,p) opti-

mized A,B distance (i.e., the geometry employed in the ROCBS-QB3 model) for the reference

species. The best reference choice for Re(A,B) was generally the longest bond for the pair,

A,B. This provided an adequate estimate of Rσ ≈ Re/
√

2 for 31 pairs, A,B, but the five

exceptions indicated in Table 4 required adjustment to fit the short-range repulsion of the

HnA∼BHm potential energy curve.

Table 4: BEBOP Re parameters (Å).

H Li Be B C N O F
H 0.654a

Li 1.593 2.705
Be 1.327 2.399 2.080a

B 1.190 2.183 1.867 1.727
C 1.091 1.667a 1.673 1.553 1.532b

N 1.016 1.569a 1.495 1.388 1.392c 1.095d

O 0.962 1.570 1.518a 1.271 1.200e 1.148 1.207f

F 0.920 1.560 1.373 1.324 1.389 1.430 1.434 1.408

a Re adjusted to fit potential energy curve. b from H3C-CH3. c from H2CCH-NH2.
d from N ≡ N. e from H2C = O. f from ·O=O·.

The BEBOP bond dissociation energy at 0 K parameter, D0 (Table 5), is the ROCBS-

QB3 ∆ATE0 for the reaction: HnA∼BHm → AHn + BHm of the reference species in Table

2.
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Table 5: BEBOP bond dissociation energy with ZPE, D0, parameters (kcal/mol).

H Li Be B C N O F
H 104.45
Li 55.68 24.03
Be 92.28 42.30 71.67
B 104.54 44.48 82.44 136.32
C 103.60 46.45 92.03 143.93 226.85
N 105.93 72.02 120.86 177.14 157.24 122.65
O 117.73 102.88 147.18 219.44 179.47 150.43 119.71
F 136.01 136.27 176.64 169.55 110.06 69.31 48.44 37.44

In all cases of monovalent elements, the short-range repulsion exponent, ζAB (Table 6),

was adjusted to fit the potential energy curve as in Figure 1. Elements capable of multiple

bonds required a compromise as shown for C∼C bonds in Figure 2. We could fit several

species at their equilibrium bond length reasonably well, but the potential energy curves

were only qualitatively correct. The BEBOP parameters in Tables 1, 3, 4, 5, and 6, were

used for all calibration and application studies.

Table 6: BEBOP ζAB parameters (Å−1).

H Li Be B C N O F
H 8.19
Li 2.71 3.26
Be 5.31 2.85 4.28
B 5.92 5.77 4.27 6.73
C 7.17 7.02 4.26 6.68 7.53
N 7.81 4.85 4.25 6.64 7.44 13.84
O 8.68 2.18 4.25 5.57 7.30 8.99 8.42
F 9.56 1.24 4.99 4.61 7.57 7.50 10.91 1.17
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Bond Energies vs. Bond Dissociation Energies

Figure 5: Deviation (Theory-Experiment) of BEBOP’s bond dissociation energy (shown in
parentheses) to the experimental bond dissociation energies from an active thermochemical
table (ATcT34,35) found in Ref. 36 for various small hydrocarbons. The BEBOP net bond
energies for each chemical species are shown next to the chemical bonds, and curly arrows
represent anti-bonding interactions. All values are shown in kcal/mol.

Bond dissociation energies (or enthalpies) are simply the energy necessary to break a bond.

Bond energies can be defined as the contribution a bond makes to the total energy of a

molecule relative to the energy of the separated atoms. The two are necessarily equal for

diatomic molecules, but are not in general equal for polyatomic molecules. For example, the

energy necessary to separate a methane molecule into four hydrogen atoms and a carbon
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atom is 392.3± 0.2 kcal/mol. The bond energy for each of the four C–H bonds is therefore

−98.1 kcal/mol. However, the CH4 → CH3 + H bond dissociation energy is 103.35 kcal/mol

(which includes the geometric relaxation energy of the methyl radical). The C-H bond energy

has decreased to −96.20 kcal/mol in CH3. The bond dissociation energy (BDE), in general,

can be interpreted as the difference between the sum of the relaxed product bond energies

and the sum of the reactant bond energies. The BEBOP model includes the repulsive geminal

H · · ·H interactions arising from the typically negative 1, 3 bond orders. The BEBOP value

for the CH4 → CH3 + H bond dissociation energy is therefore [3 × 6.33 + 3 × −103.66] −

[6× 6.33 + 4×−107.55] = 100.23 kcal/mol (Figure 5). Note that our convention results in

negative bond energies, but positive bond dissociation energies.

The sequence of C-H bond dissociation energies from ethane to C2 provides a more

interesting bond energy analysis (Figure 5). The C–H bond dissociation energies vary by

almost 100 kcal/mol (from 34.25 kcal/mol to 131.44 kcal/mol), but the C–H bond energies

are almost constant (from −102.42 kcal/mol to −106.81 kcal/mol). The principal variation

in bond orders and thus bond energies resides in the C∼C bonds. The large increase in C∼C

bond energy (and resulting small C–H BDE) when a new π-bond forms is hardly a revelation,

but it is not generally appreciated that the large C–H BDE of acetylene is a consequence of

the much weaker C≡C bond in ethynyl radical, rather than an especially strong C–H bond

in acetylene.

The C–––C bond dissociation energies from acetylene and the ethynyl radical (Figure 5)

demonstrate that the reduced strength of the C≡C bond is not an artifact of the BEBOP

analysis. These C≡C bond dissociation energies are enhanced by the small bond energy of

the C–H product, but the reduced C≡C bond energy of the ethynyl radical is unmistakable.

1,3-Antibonding Repulsions

The ubiquitous appearance of repulsive geminal interactions in the BEBOP analysis invites

some explanation. The transition state for the reaction of H2 with a hydrogen atom provides

18



a convenient prototype. Since the singly occupied 1σu orbital must be orthogonal to the

1σg orbital, the 1σu orbital will necessarily introduce a 1, 3-antibonding interaction. This

repulsive germinal interaction is responsible for the linearity of the H3 transition state, and

is a recurrent theme in hundreds of molecules we have examined. These 1, 3-antibonding

interactions are generally ∼ 6 kcal/mol for H· · ·H interactions, ∼ 7 kcal/mol for C· · ·H

interactions, and ∼ 8 kcal/mol for C · · · C interactions. They are reduced to ∼ 3 kcal/mol

for linear structures, but are amplified by about a factor of 2 to 3 in transition states such

as the H3 structure below (Figure 16).

The BEBOP Analysis

A detailed analysis of bond energies must include the hybridization energy:

∆ATE0 =
∑
A 6=B

[(
AO∑
µAνB

MO∑
i

CiµACiνBSµAνB

)
βA,B +DAB exp(−ζAB

[
RAB −

Re(A,B)√
2

]
)

]

+
∑
A

[
n2s(A)ref −

MO∑
i

|Ci2sA|2
]

∆E(A)2s→2p

=
∑
A 6=B

E(A,B)gross +
∑
A

E(A)hybridization

(16)

It is often desirable to partition the total energy over the bonds, without terms associated

with individual atoms. We have elected to partition the hybridization energy for an atom
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over all bonds to this atom, weighted by the gross bond energies:

E(A,B)net ≡ E(A,B)gross + E(A)hybridization

 E(A,B)gross∑
C 6=A

E(A,C)gross



+ E(B)hybridization

 E(A,B)gross∑
C 6=B

E(B,C)gross


∆ATE0 =

∑
B 6=A

E(A,B)net

(17)

These molecular energy components can be concisely presented as a square matrix as shown

in Figure 6. We shall employ the convention that the diagonal elements are the hybridization

energies, the elements above the diagonal are the gross bond energies, and the elements below

the diagonal are the net bond energies.

Table 7: Slater atomic exponential exponents ζSlater for valence orbitals fitted to STO-6G
minimal basis.

Atoms Valence
Orbitals

ζSlater
(Å−1)

H 1s 1.23
He 1s 1.67
Li 2s 0.80
Be 2s 1.15
B 2p 1.50
C 2p 1.72
N 2p 1.95
O 2p 2.25
F 2p 2.55

The BEBOP model can seamlessly decompose the individual bond energies into σ and

π bond contributions. The model separates the total bond order to σ and π bond orders

by employing: (i) Roothan’s two-center σ-σ and π-π overlap integrals37 and (ii) fixed Slater

atomic exponents (ζSlater) for valence electrons. The ζSlater is an essential parameter to

compute the overlap integrals. We generated the optimum values (Table 7) by fitting a
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Slater function to STO-6G atomic basis sets for each first row elements’ valence orbitals.38,39

The gross and net bond energies for individual σ and π bonds are then computed using Eq.16

and Eq.17, respectively. Eventually, the BEBOP model generates the individual σ and π

molecular bond energy components as elements from lower-diagonal matrices.

Figure 6: BEBOP’s bond energy analysis matrices depicting the gross bond energies (upper-
diagonal elements), hybridization energies (diagonal elements), and net bond energies (lower-
diagonal elements) values for methylidyne radicals (C–H 2Π and 4Σ state), ethynyl radical
(H–C–––C:), and acetylene (H–C–––C–H).

The C–H diatomic molecule nicely illustrates the significance of each energy component

(Figure 6). The 2Π ground state bond is essentially a combination of a carbon 2p with a

hydrogen 1s, so the hybridization energy is very small (14.19 kcal/mol), but the bond is

relatively weak (Egross = −97.66 kcal/mol). The carbon of the 4Σ excited state bonds with

an sp hybrid orbital, forming a stronger bond (Egross = −114.14 kcal/mol), but the enhanced

bonding is insufficient to overcome the increased hybridization energy (60.89 kcal/mol), so

the 2Π state net bond energy (−83.6 kcal/mol) is greater than the 4Σ state net bond energy

(−53.26 kcal/mol). The gross bond energy is a more direct measure of the orbital bonding,

but the net bond energy is a more complete measure of the bonding energy. The BEBOP

bond energy for the 2Π state is in good agreement with the ROCBS-QB3 result (−80.08
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kcal/mol), but without a correction for the reduced repulsion between electrons with parallel

spin, BEBOP underestimates the 4Σ bond energy (ROCBSQB3: D0 = 61.31 kcal/mol).

We now have the tools to analyze the reduced C≡C bond energy of the ethynyl radical

relative to acetylene (Figure 6). The gross C–––C bond energy of the ethynyl radical (−303.62

kcal/mol) is just slightly smaller (than −311.39 kcal/mol in acetylene), consistent with the

very small increase in C–––C bond length from 1.198 Å to 1.202 Å. The hybridization energy

of the terminal carbon (78.73 kcal/mol) is more than 9 kcal/mol smaller for the ethynyl

radical, but the terminal carbon lacks a C–H bond to share this hybridization energy. The

net C–––C bond energy of the ethynyl radical (−162.24 kcal/mol) is therefore 23.80 kcal/mol

smaller than that of acetylene (−186.04 kcal/mol).

We can rescale the BEBOP net bond energies to reproduce the ROCBS-QB3 energies

exactly (Figure 7), but the agreement is sufficiently good before rescaling that our interpre-

tation remains unchanged.

Figure 7: Rescaled BEBOP net bond energy matrices to ROCBS-QB3 energies for ethynyl
radical and acetylene molecules.

The hybridization energy is generally ∼ 75 kcal/mol for sp3 hybridized carbons, ∼ 82

kcal/mol for sp2 hybridized carbons, and ∼ 90 kcal/mol for sp hybridized carbons, increasing

as more pure p orbitals are occupied.

Bond energies and charges of atoms in molecules are useful intuitive concepts that have

enjoyed wide acceptance as qualitative parameters, but cannot be given unique quantitative

definitions. Just as the only rigorous constraint on “atomic charges” is that the sum of these

charges equal the total charge of the molecule, the only rigorous constraint on bond energies

is that the sum of the bond energies equal the total energy required to dissociate the molecule
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into the constituent atoms (i.e., the atomization energy).

Computational Details

We have employed a calibration set of 192 species including the subset (109 species) of the

G2/97 test set40 containing only the elements H through F (Table 8). The errors in the

total atomization energies at 0 K, ∆ATE0, were determined by comparison with available

experimental data or by comparison with ROCBS-QB3 energies in the absence of reliable

experiments. The experimental ∆ATE0 used for our reference were at room temperature and

were converted to 0 K using the thermal corrections from ROCBS-QB3’s thermochemistry

calculations.

We will now give the computational details of our atomization energies at 0 K and BDE

calculations. We used various computational methods to compare BEBOP’s performance

for energetics across the G2/97 test set. In the Results and Discussion sections, we will use

the following abbreviations to compare the performance of BEBOP to other computational

methods: root-mean-squared error (RMSE), mean absolute deviation (MAD), and maximum

unsigned deviation (MAX).

Calibration for Atomization Energies

We compute the atomization energy at 0 K as the difference in the sum of the molecular

total electronic energy,Emol.,elec, and zero-point vibrational energy,Emol.,ZPVE, to the sum of

the constituent atomic energies,E(i), present in the molecule:

∆ATE0 = Emol.,elec + Emol.,ZPVE −
∑
i

E(i). (18)

Unless stated otherwise, the E(i) and Emol.,elec were computed for molecules and atoms,

respectively, at the employed level of theory, but the Emol.,ZPVE are from ROCBS-QB3’s
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thermochemistry calculations.

The ROCBS-QB3 method was computed in GAUSSIAN1625 (i.e, using “# ROCBSQB3"

as the keywords). This model attempts to estimate the total CCSD(T)/CBS energy using

multiple quantum chemistry models. The composite method includes the following compu-

tations: (i) UB3LYP/6-311G(2d,d,p) for geometry optimization and frequency calculations

(ZPVEs are scaled by 0.9900), (ii) UMP2/6-311+G(3d2f,2df,2p) for energy and CBS ex-

trapolation calculations, (iii) UMP4(SDQ)/6-31+G(d(f),p) for energy calculations, and (iv)

UCCSD(T)/6-31+G† for energy calculations. The calculations from steps (ii)-(iv) were done

at the optimized geometry from (i), and no imaginary modes were present in any of our data

set.

The BEBOP method required a geometry optimization calculation from a different QC

method. We will use UB3LYP/6-311G(2d,d,p) as the recommended method to optimize our

calibration data sets since the parameters had been generated at that method’s geometry. We

then run ROHF/6-311+G(3d2f,2df,2p) and the Mulliken minimum population analysis, so

the minimal population Mulliken Bond orders and the 2s orbital populations are calculated.

Finally, we compute the BEBOP atomization energy using Eq.15 with the parameters in

Table 1 through Table 6.

We compare our model’s performance on accuracy to various KS-DFT hybrids. We

use B3LYP,41 PBE0,42–44 APF45 and M062X46 exchange-correlations. The geometry of the

calibration set was done at the respective level of the method using Pople’s 6-31G*47–51 basis

set. Single-point energies were then computed using Dunning’s cc-pVTZ52,53 basis sets on the

optimized geometries, except PBE0/6-31G* geometries. We included dispersion corrections

to each hybrid model (except APF and M062X) using Grimme’s D354 empirical dispersion

model with Becke-Johnson damping (D3BJ55). For the APF model, we used the empirical

Petersson-Frisch dispersion model, which is designated as APFD. All DFT calculations were

done in the GAUSSIAN16(Revision C.01) code.25

We include in our study the AM1,56 PM6,57 PM7,58 and DFTB359,60 energies to provide
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context for the accuracy of the BEBOP model by comparison with popular SQM models. All

geometry optimization and single-point energy calculations were done at the respective SQM

method in MOPAC1661 (for AM1, PM6, and PM7) and DFTB+62 (DFTB3 with the recom-

mended 3OB63,64 Slater-Koster element-pair parameters) codes. The AM1, PM6, and PM7

total energies from MOPAC16 include ZPVE corrections for molecules. For DFTB3,however,

E(i) were calculated using the recommended atomic energies found in the supporting infor-

mation of Ref. 64 and the ROCBS-QB3’s ZPVE values was used as Emol.,ZPVE.

The AM1 and DFTB3 model has a smaller number of data sets used. The AM1 model

present in MOPAC16 does not have parameters for B, and DFTB3 does not have parameters

for Li,Be, and B. Moreover, the DFTB3-3OB model’s parameters are optimized for ground-

state energies of closed shell species, so we discarded any excited-state species from our test

sets. These excited-state compounds include C–H (4Σ), CH2 (3B1), C–F (4Σ), CF2 (3B1),

and Be–H (2Σ).

Bond Dissociation Energies

We made a data set of 79 BDEs for this investigation. Of the total BDEs, 30 BDEs were

computed from the calibration set consisting of diverse chemical bonding(Figure 10). We

elected to compute these diverse BDEs using the same computational approach and level of

theory methods used in our atomization calibration studies. For a general homolytic bond

dissociation reaction HnA∼BHm → AHn + BHm , BDEs at 0 K,D0, are computed as:

D0 = ∆ATE0(AHn) + ∆ATE0(BHm)−∆ATE0(HnA ∼ BHm), (19)

where ∆ATE0(AHn) and ∆ATE0(BHm) are the atomization energies (Eq.18) of the relaxed

(i.e., ground-state geometry and energy) product states and ∆ATE0(HnA ∼ BHm) is the

atomization energy of HnA∼BHm .

The other 49 BDEs are from small alcohol molecules (Figure 11) not present in our
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calibration data set. These BDEs at room temperature (D298) were computed for our familiar

reaction scheme by summing D0 and the thermal correction difference in the relaxed product

states (Ethermal(AHn) and Ethermal(BHm)) and the reactants(Ethermal(HnA ∼ BHm)):

D298 = D0 + Ethermal(AHn) + Ethermal(BHm)− Ethermal(HnA ∼ BHm). (20)

The thermal corrections from this investigation were obtained from ROCBS-QB3 calcula-

tions. The computational methods for obtaining atomization energies at 0 K for the products

and reactant molecules were the same as the atomization calibration study, and no imaginary

frequencies from ROCBS-QB3 calculations were found.

We computed D298 data from a popular and free online machine learning model called the

machine-learning derived, fast, accurate bond enthalpy tool (ALFABET).65,66 The ALFA-

BET model can predict and extrapolate D298 energies based on reference D298 data of small

organic molecules at the M062X level of theory with Weigend’s def2-TZVP67 basis sets. The

model can only compute D298 data for species consisting of C, H, O, and N atoms. By in-

serting a SMILES string or using a drawing tool in https://bde.ml.nrel.gov, ALFABET

generates D298 values (from least to greatest) at low cost. The errors of this model relative

to experiments are low for most compounds, which makes this model useful for gas-phase

studies and is competitive to other computational models.

All D298 calculations were compared to Oyeyemi et al. multi-reference averaged coupled-

pair functional theory (MRACPF268,69) study on small alcohol and aldehyde molecules’

D298 trends.70 The errors were studied for C–C, C–H, C–O, and O–H alcohol bonds for all

computational methods to gauge BEBOP’s estimations for D298. The number of sets present

for each bond are 13, 20, 8, and 8, respectively.
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Results and Discussion

As shown in Table 8, BEBOP outperforms all SQMs and several hybrid DFT methods for

atomization energies. The RMSE (8.42 kcal/mol) is intermediate to M062X/6-31G* (7.11

kcal/mol) and APF/cc-pVTZ (9.82 kcal/mol). The MAD value (5.87 kcal/mol) is inter-

mediate to APF/cc-pVTZ (5.62 kcal/mol) and APFD/cc-pVTZ (6.40 kcal/mol). BEBOP

and other methods’ performance on hydrocarbons, hetero-carbons, and inorganics will be

discussed below. We will then discuss the results for the bond dissociation energies at 0 K

and 298 K for all methods used in this study.

Hydrocarbons

The C∼C bonds of the hydrocarbons provide the broadest range of bond orders and bond

energies and thus provide the most rigorous test of the BEBOP concept. We supplemented

the 41 hydrocarbons and radicals of the G2/97 test set with 15 additional species such as

the C–H 4Σ excited state (to test the BEBOP treatment of hybridization), calicene (to test

the ability of the BEBOP model to handle charges), and tetrahedrane (to push the limits of

ring strain).

The BEBOP model gives similar or lower RMSE and MAD errors for hydrocarbons

compared to hybrid DFT methods that uses large basis sets (see Table 8). On one hand, the

BEBOP RMSE (4.80 kcal/mol) is intermediate between the ROCBS-QB3 RMSE value(2.37

kcal/mol) and the M062X/cc-pVTZ//M062X//6-31G* RMSE value(5.03 kcal/mol). On the

other hand, BEBOP’s MAD value (3.82 kcal/mol) is intermediate between B3LYP-D3BJ/cc-

pVTZ//B3LYP-D3BJ/6-31G* value (2.82 kcal/mol) and M062X/6-31G*//M062x/6-31G*

(3.86 kcal/mol). BEBOP is far more accurate than any other popular SQM method for

hydrocarbon species. This is essential since the BEBOP formulation is similar to SQM

formalism, except that the BEBOP model computes highly robust bond orders by using a

minimal Mulliken population analysis on ROHF orbital populations.
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Thus, our BEBOP model produces smaller errors for hydrocarbons species with negligible

dispersion than the other methods computed in this paper. The BEBOP absolute error is

intermediate with the MAX error of ROCBS-QB3 (4.66 kcal/mol) and B3LYP-D3BJ/6-

31G*//B3LYP/6-31G* (23.88 kcal/mol). The MAX error for BEBOP’s hydrocarbon data

(13.57 kcal/mol) comes from the C2 diradical. Similarly, this species gives MAX errors

for B3LYP(all in Table 8, except B3LYP/cc-pVTZ energies), DFTB3, and M062X (for all

shown in Table 8). The PM6 and PM7 MAX errors stem from cubane, while the AM1

MAX error is from n-octane. Finally, the PBE0-D3BJ/6-31G* and PBE0/6-31G* energies

produce the MAX errors from anthracene and phenanthrene, respectively. The C2 diradical

has multireference behavior, which means that single determinant methods are not able to

describe the physics of this molecule.

The moderate BEBOP error for calicene (7.79 kcal/mol):

is particularly noteworthy, since we omitted an explicit treatment of charge transfer and

electrostatic effects. The large dipole moment (5.1 Debye) of calicene implies an essentially

zwitterionic structure.

Hetero-organic Species

The BEBOP RMSE and MAD errors for hetero-organic species are higher, as the current

BEBOP model give a poor description of polar bonds. DFT methods, however, outperform

the current BEBOP model for hetero-organic molecules, as the MAD and RMSE errors

are lower for the latter. The RMSE value for BEBOP (10.40 kcal/mol) is intermediate

between DFTB3 (10.01 kcal/mol) and PM7 (10.96 kcal/mol). However, the MAD value (8.49

kcal/mol) is intermediate between DFTB3 (6.65 kcal/mol) and AM1 (8.58 kcal/mol) MAD
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values. Thus, the BEBOP’s performance for hetero-organics is similar to the performance

of semi-empirical methods.

The BEBOP MAX value for hetero-organic species is attributed to weak description of

C––O· molecule, and the BEBOP and DFT models significantly overestimates the energy

of ––C–F bonds, but has no difficulty with the fragments of CF4 (CF, CF2, etc.) as AM1,

PM6, and PM7 methods. The AM1, PM6, PM7, and DFTB3 models MAX errors stems from

estimating the incorrect energy of CO, CF (4Σ state), and N–––C–C–––N species, respectively.

Some DFT models, such as M062X/6-31G* and B3LYP-D3BJ/cc-pVTZ, gave large errors

from aromatic nitrogen heterocycles, but BEBOP gives better results for these species. The

validity of a BEBOP analysis of bonding in organic molecules with hetero-atoms must be

determined on a case-by-case basis through comparison with ab initio energies.

Inorganic Species

The wide range of bonding found in inorganic molecules presents a significant challenge

for BEBOP and SQM methods. The species were selected to survey the possible bonding

combinations. They include many species that have not been observed experimentally, but

the consistent accuracy of the ROCBS-QB3 energies for the experimentally known species

gives us confidence in these reference energies for the remainder. This test set includes a

larger fraction of small molecules than the previous two sets, giving a deceptively small

RMSE and MAD errors for BEBOP.

The 77 inorganic species include 31 examples from Table 2, which further reduces the

BEBOP RMSE and MAD errors. The errors for the AM1, PM6, PM7, and DFTB3 models

are much larger, reflecting that these models have difficulty modeling inorganic molecules.

The DFT methods had the largest MAX error from B3H3 and B2H2. BEBOP energy for

HBNH, however, deviates the most since ionic and charge transfer are critical in this struc-

ture. The BEBOP result for Be4 is encouraging, as it suggests that bonding in metal clusters

might be amenable to a BEBOP analysis.
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Figure 8: BEBOP bond energy matrix depicting the net-bond energies (upper-diagonal ele-
ments), hybridization energies (diagonal elements), and gross bond energies (lower-diagonal
elements) for diborane (with atom labels) and borane.

The 30.63 kcal/mol error in the BEBOP energy of diborane was initially disappoint-

ing, since we had hoped to achieve an improved understanding of the unusual three-center

two-electron bonds. However, closer examination of the diborane and borane bond en-

ergy matrices (Figure 8) reveals terminal B-H net bond energies (−94.39 kcal/mol) almost

unchanged from those in BH3 (−92.12 kcal/mol). Combined with the bonding of each bridg-

ing hydrogen to each boron (−45.87 kcal/mol), the BEBOP model indicates a small (−8.20

kcal/mol) increase in the total directly bonded B-H bond energy. The energy of the B-B bond

of diborane (−25.78 kcal/mol) would then account for the remainder of the B2H6→ 2BH3

dissociation energy (D0,exp. = 37.55 kcal/mol). Unfortunately, the individually small, but

numerous repulsive geminal interactions in diborane destroy the agreement with experiment.

Nevertheless, the BEBOP description of the three-center two-electron bonds of diborane ap-

pears to be qualitatively correct and is not significantly altered by rescaling (by 1.052) to fit

the ROCBS-QB3 energy (Figure 9).

Bond Dissociation Energies

The RMSE for 30 BEBOP bond dissociation energies (8.20 kcal/mol), ∆BDE0 (Figure 10),

is comparable to the error in the 192 total atomization energies (8.42 kcal/mol), D0 (Table
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Figure 9: Scaled BEBOP net bond energy matrix of the diborane molecule to fit ROCBS-
QB3 data.

8). The majority of the hybrid DFT methods’ absolute errors stems from underestimating

the BDEs of C–H bonds in H–C–––C (∼20 kcal/mol) and the ortho- and para-positioned

hydrogen from the phenyl radical (around or above 10 kcal/mol), but the BEBOP model

has lower absolute deviation errors for the BDEs of these species (less than 10 kcal/mol).

All semi-empirical models gave significant absolute deviation errors (above 20 kcal/mol) for

C–H bonds present in the phenyl radical (except DFTB3) and the C––C bond of ethylene.

Additionally, the AM1 and DFTB3 had difficulty estimating BDEs for N2O and FOOF.

Similarly, BEBOP had difficulty estimating the C––C BDE of ethylene (19.16 kcal/mol as

shown in Figure 10), as the bonding of each CH2 fragment is underestimated by 7.00 kcal/mol

and the C––C bonding of ethylene is overestimated by 5.00 kcal/mol (Table 8). The failure of

the BEBOP model to quantitatively describe the three-center two-electron bonds of diborane

was noted previously. However, in most cases the BEBOP error is small enough to give us

confidence in the BEBOP analysis.
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Figure 10: Deviation of BEBOP’s BDE energy to experimental energies in kcal/mol from
species used in our test set. All experimental D0 were obtained from Ref. 36, except com-
pounds containing B and (CH3)3COOH which were obtained from ROCBS-QB3.
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Table 9: Root mean squared errors (RMSE), mean absolute deviation (MAD), and maximum
unsigned deviation (MAD), in kcal/mol, for the 30 bond dissociation energies at 0 K present
in Figure 10.

Method RMSE MAX MAD
thermochemical

CBS-QB3//B3LYP/CBSB7 0.86 2.05 0.64
BEBOP//B3LYP/CBSB7 7.95 27.54 5.79

SQM
PM7//PM7 13.17 27.82 11.04
DFTB3/3OB//DFTB3/3OB 15.73 34.28 11.77
PM6//PM6 15.99 37.84 13.00
AM1//AM1 19.45 42.80 15.86

DFT
B3LYP/6-31G*//B3LYP/6-31G* 5.69 19.91 3.73
B3LYP-D3BJ/6-31G*//B3LYP/6-31G* 5.70 20.24 3.69
B3LYP-D3BJ/cc-pVTZ//B3LYP/6-31G* 5.85 24.07 3.78
B3LYP/CBSB7//B3LYP/CBSB7 5.88 23.14 3.78
B3LYP/cc-pVTZ//B3LYP/6-31G* 5.98 23.74 3.96
APF/6-31G*//APF/6-31G* 6.51 22.75 4.58
APFD/cc-pVTZ//APFD/6-31G* 6.67 26.07 4.58
APFD/6-31G*//APFD/6-31G* 6.56 22.86 4.63
APF/cc-pVTZ//APF/6-31G* 6.70 25.97 4.66
PBE0/6-31G*//PBE0/6-31G* 6.80 23.45 4.82
PBE0-D3BJ/6-31G*//PBE0/6-31G* 6.95 23.78 4.92
M062X/cc-pVTZ//M062X/6-31G* 7.14 29.14 3.90
M062X/6-31G*//M062X/6-31G* 7.13 25.42 4.38

The BEBOP model, in general, generated better D298 for the small alcohol molecules

(Figure 11) than all SQMs and some popular hybrid DFT methods. As shown in Table 10,

the RMSE (5.29 kcal/mol) is between B3LYP-D3BJ/6-31G* (5.02 kcal/mol) and APF/cc-

pVTZ (5.60 kcal/mol). The MAD (3.33 kcal/mol) is also between these two methods. A deep

analysis into the accuracy of D298 of each alcohol bond reveals where the current BEBOP

model is limited.
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Figure 11: Deviation of BEBOP’s and the reference70 D298 energies for small alcohol
molecules in kcal/mol.

The bulk of error from BEBOP comes from C–C, C–O, and O–H, but the C–C BDEs

contributed the most error. For C–C bonds, our current model has no distinct Hückel-

type energy and short-range repulsion parameters to describe σ-σ and π-π bonding. The

C–O and O–H errors are not as large but significant for BEBOP relative to other hybrid

DFT methods since the model is not modeling ionic bonding and charge transfer properly.

However, BEBOP predicted the O–H D298 far more accurate than other DFT methods,

except for M062X/cc-pVTZ and other SQM methods (not including PM7). In general, DFT

methods were more accurate for nonpolar bonds (i.e., C–C and C–H) than polar bonds (i.e.,
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O–H and C–O). A similar conclusion from Truhlar group’s on BDEs of unsaturated methyl

esters showed most exchange-correlation methods do not estimate polar BDEs to chemical

accuracy.71 Finally, the ROCBS-QB3 and ALFABET ML model, in general, gave accurate

D298 for these species, with ROCBS-QB3 being the most accurate.

The ALFABET model is more competitive in giving accurate BDEs for species contain-

ing C,H,O, and H. However, the BEBOP model has strengths in generating QC-based bond

energies essential for general chemistry applications. ML models can generate large numbers

of optimizable parameters to extrapolate the energy from thousands of data. The BEBOP

implementation is far more robust than ML models for the following reasons: (i) equations

are physically rooted on the SQM formalism, (ii) the current parameters are physically-based

and transferable across chemical space, (iii) the number of parameters is small, (iv) 36 ref-

erence species were used for parametrization, and (v) the model attempts to extrapolate the

ROCBS-QB3 total electronic energy well for hydrocarbons (especially C–H bond in alcohol).

Thus, the current BEBOP implementation and parameterization schemes of extrapolating

the total energy are as simple but not robust as ML models because of current limitations.

The BEBOP model’s current limitations for small molecules are the inability to model

charge transfer, ionic bonding, and multivalent bond energies. For these reasons, we get

large errors for O-H, C-O, and C-C BDEs. Thus, the current BEBOP model ensures that

the reliability of the energetic properties of a species depends on the accuracy of atomization

energy.

Applications

The differences in the energies of related species are of more chemical interest than the

absolute energies. We will now introduce several tools that BEBOP seamlessly computes at

low costs, such as resonance stabilization energies of aromatic species, relative energies of

C4H6, strain energies of small ring compounds, and barriers for chemical reactions.
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Resonance Energy

Figure 12: Aromatic structures used for computing BEBOP’s resonance energies.

The extra stability of aromatic molecules is accurately reflected by the increased bond

orders. The total atomization energies of a variety of aromatic species (Table 11) are thus

well described by the BEBOP model (6.14 kcal/mol and 4.25 kcal/mol for RMSE and MAD,

respectively). However, the real utility of the BEBOP model lies in the interpretation of

these energies. The close association of the energies of aromatic species with bond orders

invites an analysis of resonance stabilization energies based on these bond orders. The total

BEBOP energy:

Etotal =
∑
A 6=B

[(
AO∑
µAνB

MO∑
i

CiµACiνBSµAνB

)
βA,B +DAB exp(−ζAB

[
RAB −

Re(A,B)√
2

]
)

]

+
∑
A

[
n2s(A)ref −

MO∑
i

|Ci2sA|2
]

∆E(A)2s→2p

=
∑
A 6=B

[P (A,B)βA,B + E(A,B)repulsion] +
∑
A

E(A)hybridization

(21)

includes the bond-order-dependent covalent energy along with the short-range repulsion

and hybridization terms, which vary with geometry and 2s population respectively, but

are independent of the bond-order. The resonance stabilization of aromatic species can thus
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be directly calculated as the difference between the total BEBOP energy and the BEBOP

energy of a hypothetical species with the same geometry and hybridization, but with the

bond orders associated with the Lewis structures (Figure 12):

∆Eresonance =
∑
A 6=B

[βA,B (P (A,B)− P (A,B)reference)] . (22)

For example, we subtract the reference bond-order for a C–C single bond (0.7874 for the

central bond of 1, 3-butadiene twisted 90◦) for each formal C–C single bond and the reference

bond-order for a C=C double bond (1.1958 for the central bond of cis-2-butene) for each

formal C=C double bond. This is identical to the definition used with simple Hückel theory

but with reference π-bond-orders of 0 and 1, respectively.

Resonance stabilization energies derived from enthalpies of combustion vary considerably

with the choice of reference species.72–75 If we assign a reference C–C single bond order

(0.8) that is intermediate between trans-1, 3-butadiene (0.8378) and the single bonds in

cis-2-butene (0.7679), we obtain resonance stabilization energies in good agreement with the

estimates of Dewar.72–74 At the other extreme, if we assign a reference C–C single bond order

(0.7760) that is intermediate between 1, 3-butadiene twisted 90◦ (0.7874) and cis-2-butene

(0.7679), we obtain resonance stabilization energies in good agreement with the estimates

of Allinger.75 We prefer the middle ground, using the reference C–C single bond order from

1, 3-butadiene twisted 90◦ (0.7874). This species is obviously not an option as a reference for

experimentally based estimates of resonance energies, but it provides a single bond between

sp2 hybridized carbons with no possibility of π-delocalization.

The ”experimental” energies of species such as the hypothetical non-aromatic cyclohex-

atriene must necessarily refer to a relaxed geometry appropriate in the absence of delocal-

ization, and cannot easily adjust for additional effects such as ring strain. However, our

BEBOP estimate for biphenylene retains the low bond order (0.7363) for the strained C–C

bonds of the four-membered ring, resulting in a somewhat larger estimate of the resonance
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stabilization energy (44.6 kcal/mol vs. 39.0 kcal/mol).

Table 11: Comparison of ab initio and BEBOP total atomization energies (kcal/mol) for
aromatic species, and comparison of BEBOP resonance energies with experiment. The "Non-
Aromatic” energy substitutes bond ordersa consistent with the structures drawn.

Species CBS-QB3 Aromatic
BEBOP Non-Aromatica

Resonance Energy
∆cH298

Dewarb
BEBOPa/C-C BO= ∆cH298

Allingerc0.8000 0.7874 0.7760
pyrrole -1019.61 -1033.69 -1012.99 17.8 20.7 23.2 21.2
pyridine -1182.11 -1183.61 -1168.41 9.5 15.2 20.3 22.7
benzene -1303.74 -1307.94 -1279.74 20 19.7 28.2 36 36.1
azulene -2034.47 -2042.8 -2020.2 4.2 5.6 22.6 38.1 33.3

naphthalene -2068.97 -2070.21 -2022.31 30.5 30.8 47.9 63.3 61.4
biphenylene -2344.7 -2339.6 -2333.7 -16.9 5.9 26.5 39.0d

biphenyl -2503.73 -2503.79 -2450.59 33.3 53.2 71.3 70.7
anthracene -2831.3 -2829.66 -2765.26 36.9 38.8 64.4 87.6 84.3

phenanthrene -2836.88 -2834.67 -2764.67 44.6 44.3 70.0 93.1 92.7

a C−C → 0.7874; C=C → 1.1958; C−N· → 0.6941; C=N → 1.0699; =C−N: → 0.7644.
b Table 5.4, p177, in Ref. 73.
c Table 11.3, p252 and Table 13.1, p284, in Ref. 75.
d Table 9-2, p244, in Ref. 76.

The choice of appropriate reference bond orders is important to obtain meaningful results.

We employ the reference C–N bond order (0.6941) from H2C=CH–N=CH2 twisted 90◦, and

the reference C=N bond order (1.0699) from cis-CH3CH=NCH3 for pyridine, but use the

reference C–N: bond order (0.7644) from planar vinyl amine, H2CCH–NH2, for pyrrole.

In general, one should compare to the most structurally similar acyclic species available.

Although our choice of reference is ultimately still subjective, we believe the BEBOP “non-

aromatic” resonance stabilization energies in Table 11 are a realistic measure of the specific

effects of delocalization in these species. The BEBOP model will accommodate whatever

reference one finds appropriate.
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Strain Energy

Figure 13: Strained structures used for computing BEBOP’s strain energies.

The reduced stability of molecules with ring strain is again reflected by the (now reduced)

bond orders. The total atomization energies of a variety of strained species (Figure 13)

are thus well described by the BEBOP model (3.56 and 2.81 kcal/mol RMSE and MAD,

respectively). However, our focus now is on the interpretation of these energies.

Quantitative estimates of strain energies once again raise the issue of selecting a suitable

reference. The ring strain in the simple cycloalkanes can be readily estimated by assigning one

sixth of the energy of cyclohexane (i.e., 1657.00/6 = 276.17 kcal/mol) to a strain-free cyclic

methylene, CH2, group. The difference between three times this value and the calculated

energy for cyclopropane is then the strain energy (Table 12).

We obtain virtually the same strain energies for cyclopentane (6.13 kcal/mol), cyclobu-

tane (25.82 kcal/mol), and cyclopropane (26.95 kcal/mol), if we employ experimental heats

of formation.36
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Table 12: Comparison of ab initio and BEBOP total atomization energies (kcal/mol) for
strained species. The “Unstrained” energy substitutes bond orders consistent with the ab-
sence of ring strain.

Species CBS-QB3 BEBOP
∆E Strain EnergyStrained Unstrained

cyclohexane -1657.00 -1656.87 0.00 0
cyclopentane -1374.69 -1377.42 -1385.13 7.71 6.13
cyclobutane -1078.83 -1082.44 -1116.19 33.75 25.82
cyclopropane -801.28 -808.80 -839.91 31.11 26.95
spiropentane -1211.12 -1212.26 -1272.54 60.28
bicyclobutane -930.19 -924.94 -987.24 62.30

cubane -1617.24 -1616.82 -1826.56 209.74
prismane -1189.09 -1187.22 -1314.31 127.09

tetrahedrane -753.42 -751.38 -938.17 186.79

With the cycloalkanes as a starting point, we have developed a procedure analogous to

our treatment of resonance stabilization for a BEBOP analysis of ring strain. We treat

the C–C bond order in cyclohexane (0.7336) as a reference for a strain-free cyclic C–C

bond, except in three-membered rings. The (1, 3) antibonding interaction between alternant

carbons in cyclohexane (−0.0465) must be included in the reference bond order for both

adjacent carbons in a 3-membered ring, since these directly bonded carbons are also geminal

in a 3-membered ring. We therefore employ 0.6406 as a reference for a strain free C–C bond

in a 3-membered ring. The resulting “unstrained” energies in Table 12 give energy changes,

∆E = Estrained − Eunstrained in reasonable agreement with the energetically derived strain

energies for the cycloalkanes. They also provide a plausible estimate of the ring strain in

species such as spiropentane and tetrahedrane.
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Valence Isomers

Figure 14: Deviation of BEBOP’s relative energies (shown in parentheses) of the C4H6 iso-
mers compared to experimental energies in kcal/mol. All experimental relative energies
were obtained from Ref. 36, except for the experimental relative energies of methylenecyclo-
propane, bicyclobutane, and methylcyclopropene obtained from Ref. 77.

The BEBOP model facilitates a detailed analysis of the relative energies of valence isomers

(Figure 14). The relative energies of eight C4H6 isomers are qualitatively correct, but the

range is about 1/3 too large (Table 13).

The ordering is qualitatively correct except 1, 2-butadiene, and the largest MAX error is

from 1, 3-butadiene. In general, DFT methods gave lower errors than BEBOP and SQMs.

However, SQMs do rank the relative energies of these species qualitatively except for cy-

clobutene and methylcyclopropene (for AM1, PM6, and PM7 models only). The RMSE

and MAD errors of BEBOP (5.17 kcal/mol and 4.41 kcal/mol, respectively) are comparable

to those of aromatic and strained species. On one hand, the RMSE is intermediate be-

tween APFD/cc-pVTZ (4.64 kcal/mol) and DFTB3 (5.48 kcal/mol). On the other hand,

the MAD error is intermediate between DFTB3 (3.37 kcal/mol) and PM6 (5.68 kcal/mol).

The most interesting comparisons are the structures with the same number of single, double,

and triple bonds, such as 1, 2-butadiene vs. 1, 3-butadiene. These are energy differences that

are accurately reflected by the bond orders.
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Table 13: Root mean squared error (RMSE), maximum absolute difference (MAX), and
mean absolute deviation (MAD) for the relative energies (in kcal/mol) of C4H6 isomers.

Methods RMSE MAX MAD
composite thermochemical

CBS-QB3//B3LYP/CBSB7 1.07 1.93 0.76
BEBOP//B3LYP/CBSB7 5.08 7.95 4.17

SQM
DFTB3/3OB//DFTB3/3OB 5.36 10.86 3.27
PM6//PM6 8.05 17.95 5.40
PM7//PM7 9.66 23.32 6.18
AM1//AM1 11.07 28.20 6.38

DFT
B3LYP/CBSB7//B3LYP/CBSB7 2.49 4.31 1.93
B3LYP-D3BJ/cc-pVTZ//B3LYP/6-31G* 2.69 4.07 2.03
B3LYP/cc-pVTZ//B3LYP/6-31G* 2.73 4.15 2.40
M062X/cc-pVTZ//M062X/6-31G* 3.02 5.15 2.14
B3LYP/6-31G*//B3LYP/6-31G* 3.57 5.56 1.77
B3LYP-D3BJ/6-31G*//B3LYP/6-31G* 3.61 5.68 1.70
M062X/6-31G*//M062X/6-31G* 4.52 7.13 2.75
APF/cc-pVTZ//APF/6-31G* 4.68 7.83 2.00
APFD/cc-pVTZ//APFD/6-31G* 4.75 7.77 2.29
APF/6-31G*//APF/6-31G* 6.40 9.58 2.99
APFD/6-31G*//APFD/6-31G* 6.52 9.54 3.29
PBE0/6-31G*//PBE0/6-31G* 6.76 9.96 3.30
PBE0-D3BJ/6-31G*//PBE0/6-31G* 6.84 10.08 3.42

Thus far, we have focused on the total BEBOP energies. The relative differences are more

reliably obtained from the ab initio calculations than using BEBOP. The more interesting

results of the BEBOP analysis come from the partitioning of the energy over the individual

bonds.
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Figure 15: BEBOP bond energy matrix depicting the gross bond energy (upper-diagonal ele-
ments), the hybridization energy (diagonal elements), and net bond energies (lower-diagonal
elements) in kcal/mol for 1,2-butadiene and trans-1,3-butadiene.

The total gross bonding and anti-bonding of the C∼C bond energies favor 1, 2-butadiene

(−620.31 kcal/mol) over trans-1, 3-butadiene (−616.57 kcal/mol) by 3.74 kcal/mol, but

carbon 2 of 1, 2-butadiene has no hydrogen to share the cost of hybridization, so the net

C∼C bond energies (−395.36 kcal/mol and −408.68 kcal/mol, respectively) favor trans-1, 3-
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butadiene by over 13.32 kcal/mol. A similar hybridization effect was seen in the comparison

of the ethynyl radical with acetylene (vide supra). The BEBOP analysis correctly identi-

fies trans-1, 3-butadiene as the more stable isomer and supports the conventional wisdom

that conjugation enhances the strength of the C–C single bond in 1, 3-butadiene. Twisting

1, 3-butadiene by 90◦ about this bond to break the conjugation raises both the CBS-QB3

energy and the BEBOP energy by 5.80 kcal/mol and results in C=C and C–C BEBOP net

bond energies of −155.50 and −110.40 kcal/mol respectively, directly verifying the source for

half of the extra stability of the 1, 3 isomer. The remainder can be attributed to the larger

hybridization energy (89.94 kcal/mol) for the sp hybridized carbon in the 1, 2 isomer, which

propagates into reduced C=C BEBOP net bond energies in the 1, 2 isomer. The gross bond

energies indicate that the extra energy required for sp hybridization is the problem, rather

than a reduced ability of the orbitals of the 1, 2 isomer to form the C––C bonds. The final

contribution to the energy difference is the reduced C· · ·C 1, 3 antibonding interaction in the

linear 1, 2 isomer, favoring this isomer by over 4.99 kcal/mol. The BEBOP model provides

a detailed quantitative and objective version of generally accepted qualitative concepts of

chemical bonding in the isomers of butadiene.

Qualitative Chemical Reaction Mechanism Analyses

In general, single reference quantum chemistry methods are not recommended for analyz-

ing structures away from stationary points on a potential energy surface. Since orbital

populations used by BEBOP can be from either single reference unrestricted or restricted

(open-shell) HF calculations, this BEBOP model in its present form is also generally not

recommended for such applications. However, we wanted to test the interpretability of BE-

BOP energy decompositions along reaction pathways where a single reference HF calculation

would be acceptable. A detailed BEBOP analysis of the barriers for a sequence of hydro-

gen abstraction reactions provides a clear example of the increased level of understanding

that the method offers. We employ the standard BEBOP analysis using UHF to describe
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bond breaking appropriately and UCBS-QB33 reference energies along the intrinsic reaction

pathway for UMP2/6-311G(2d,d,p) optimized geometries.

Beginning with the most elementary example, the reaction of H2 with a hydrogen atom

(Figure 16):

H2 + H· → H · · ·H · · ·H→ H + H2

we see that the formation of the new H–H bond (BE23) strongly overlaps the disappearance of

the old H–H bond (BE12), so that the change in the sum of these bond energies (∆E12+∆E23)

is very small. We could reasonably describe the mechanism as the bond moving from the

1, 2 to the 2, 3 hydrogen pair. The small barrier (9.1 kcal/mol) for this reaction results from

the 1, 3-antibonding interaction of the unpaired electron originating on the hydrogen atom.
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Figure 16: The variation of the BEBOP net bond energies and the ROCBS-QB3 total energy
along the reaction path for the H2 + H· → H· + H2 reaction.

The reaction of methane with a methyl radical:

H3C−H + ·CH3 → H3C · · ·H · · ·CH3 → H3C ·+H−CH3

very closely resembles the H3 reaction, but the C···C 1, 3-antibonding interaction is a bit

more repulsive (∆E‡0 ≈ 17 kcal/mol). Once again, the formation of the new bond strongly

overlaps the disappearance of the old bond (Figure 17).
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Figure 17: The variation of the BEBOP net bond energies and the ROCBS-QB3 total energy
along the reaction path for the H3C–H +·CH3 → H3C·+ H–CH3 reaction.

The isomerization of ethyl radical:

presents a new contribution to the barrier for hydrogen abstraction. The directly bonded

carbons cannot form hybrid orbitals directed at an acute angle to the C–C bond as required

to maintain bonding to the migrating hydrogen. This provides an additional ∼ 20 kcal/mol,
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raising the barrier to ∼ 40 kcal/mol (Figure 18). Note that the C· · ·C 1,3-antibonding

interaction is now superimposed on the C–C σ-bond and thus exhibits as a reduction in

the ethyl radical C–C bond energy from ∼ 105 kcal/mol in the reactant to ∼ 80 kcal/mol

in the transition state. The closer proximity of these directly bonded carbons increases this

1,3-antibonding relative to the CH4 + CH3 reaction.

Figure 18: The variation of the BEBOP net bond energies and the ROCBS-QB3 total energy
along the reaction path for the H3C-ĊH2 → H2Ċ –CH3 reaction.

The isomerization of the vinyl radical (Figure 19):
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closely follows the behavior of the ethyl radical, but the C––C bond energy is of course larger

than the C–C bond energy of the ethyl radical. The reduced C––C bond length increases the

barrier to ∼ 47 kcal/mol. The C···H···C 1, 3 antibonding (BE13) and the inability to maintain

bonding to the migrating hydrogen (∆E12+∆E23) both contribute to this substantial barrier.

Figure 19: The variation of the BEBOP net bond energies and the ROCBS-QB3 total energy
along the reaction path for the H2C= ĊH → HĊ =CH2 reaction.

The isomerization of vinylidene (Figure 20):

presents a qualitatively different potential energy surface with a very small (∼ 2 kcal/mol)
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barrier. The contribution from the inability to bind the migrating hydrogen (∆E12 + ∆E23)

tightly is comparable, but the 1,3-antibonding interaction is now superimposed on the newly

forming C–C π-bond. The C–C bond energy (BE13) increases to 187 kcal/mol in the product,

acetylene. If we partition this bond energy into the σ- and π-components, we find the π-

component, BEπ13, monotonically increasing in strength, while the σ-component, BEσ13,

presents a reaction barrier (Figure 20) similar to those in Figure 18 and Figure 19.

Figure 20: The variation of the BEBOP net bond energies and the CBS-QB3 total energy
along the reaction path for the H2C––C: → HC–––CH reaction.

The vinylidene isomerization was a subject of considerable interest a few years ago.78

This strongly exothermic (∆E0 = −44 kcal/mol) reaction has a very low barrier (∆E‡0 = 2

kcal/mol) and a transition state structure resembles the product as much as the starting

material. The energy profile along the reaction path for the total energy (i.e. CBS-QB3
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in Figure 21) apparently violates the Hammond postulate.79 However, we can interpret the

vinylidene isomerization as the superimposition of two distinct processes: the transfer of

the migrating hydrogen, and the conversion of the vinylidene lone pair to the new C∼C

π-bond in the acetylene product. The barrier height (i.e., the peak in ∆E12 +∆E23 +Eσ13 in

Figure 21) and transition state structure for the hydrogen migration are consistent with their

counterparts for isomerization of the ethyl (Figure 18) and vinyl (Figure 19) radicals. The

vinylidene reactant is the transition state for the formation of the new C∼C π-bond (∆Eπ13 in

Figure 21). Each of these processes individually satisfies the Hammond postulate. We would

expect the Hammond postulate to describe individual reaction processes more consistently

than composite reactions. These are the same conclusions we reached previously,78but the

BEBOP analysis is free from subjective decisions and is far less complicated than our earlier

analysis.
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Figure 21: The variation of the BEBOP net bond energies and the CBS-QB3 total energy
along the reaction path for the H2C––C: → HC–––CH reaction.

Limitations

As authors are prone to do, we have emphasized the strengths of our model. However, it is

also important to appreciate the limitations of any method.

1. Ionic species are not properly described by the purely covalent bond energy analysis

of the BEBOP model. We obtain the correct bond energy for species such as LiF in

our calibration study through the artifact of an unrealistically large value for βLiF, but
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this can provide no insight into the nature of the bonding in ionic species.

2. We must be cautious in applications to species other than hydrocarbons. The current

BEBOP model overestimates the strength of each ––C–F bond by ∼ 10 kcal/mol,

and often underestimates the strength of C––O bonds by a comparable error. These

effects combine to produce a BEBOP error of more than 30 kcal/mol for the C–F bond

dissociation energy of F2C––O.

3. The BEBOP model recovers only ∼ 25% of the dissociation energy of diborane, B2H6,

to form two molecules of borane, BH3. This is disappointing in view of the inter-

esting three-center two-electron bonds in diborane. However, the qualitative BEBOP

description of these bonds appears to be correct.

We strongly caution against the application of the current BEBOP analysis to any inorganic

species unless a reliable ab initio energy is available to verify the BEBOP energy.

Conclusions

We have developed BEBOP, a bond energies from bond orders and populations model, for

the partition of ab initio energies among the bonds of a molecule. The necessary parameters

have been determined for all bonds involving H, Li, Be, B, C, N, O, and F atoms. The

BEBOP model reproduces the atomization energies of 56 hydrocarbon molecules and radicals

to within ±4.80 kcal/mol RMSE. The model provides reliable and qualitative analyses of

resonance stabilization energies, ring strain energies, and variations in bond dissociation

energies in hydrocarbons. The BEBOP analysis of transition state barriers for chemical

reactions offers new qualitative insights about the nature of these barriers. The reliability of

the model deteriorates as we introduce hetero-atoms (±10.40 kcal/mol RMSE for 60 species)

and for applications to inorganic chemistry (±8.77 kcal/mol RMSE for 76 species), but the

potential for useful qualitative interpretations of ab initio energies is very broad. Our future
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work with the BEBOP model will also extend parameters for second row elements. We hope

to include additional expressions for charge transfer and ionic effects that are expected to

improve the performance for inorganic and hetero-organic species. We also plan to include

an empirical dispersion correction to model long range electron correlations.
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